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On Rubin’s variant of the p-adic Birch and

Swinnerton-Dyer conjecture

A. Agboola

Abstract

We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM
elliptic curves concerning certain special values of the Katz two-variable p-adic L-function
that lie outside the range of p-adic interpolation.

1. Introduction

Let E/Q be an elliptic curve with complex multiplication by OK , the ring of integers of an imaginary
quadratic field K (necessarily of class number one). Let p > 3 be a prime of good, ordinary reduction
for E; then we may write pOK = pp∗, with p = πOK and p∗ = π∗OK .

Set K∞ := K(Eπ∞), K∗∞ := K(Eπ∗∞), and K∞ := K∞K∗∞. Write K∞ (respectively K∗∞) for
the unique Zp extension of K unramified outside p (respectively p∗). Let O denote the completion
of the ring of integers of the maximal unramified extension of Qp. For any extension L/K we set
Λ(L) := Λ(Gal(L/K)) := Zp[[Gal(L/K)]], and Λ(L)O := O[[Gal(L/K)]]. We write X(L) (respec-
tively X∗(L)) for the Pontryagin dual of the p-primary Selmer group Sel(L,Eπ∞) (respectively the
p∗-primary Selmer group Sel(L,Eπ∗∞)) of E/L.

Let

ψ : Gal(K/K)→ Aut(Eπ∞) ∼−→ O×
K,p

∼−→ Z×
p ,

ψ∗ : Gal(K/K)→ Aut(Eπ∗∞) ∼−→ O×
K,p∗

∼−→ Z×
p

denote the natural Z×
p -valued characters of Gal(K/K) arising via Galois action on Eπ∞ and Eπ∗∞ ,

respectively. We may identify ψ with the Grossecharacter associated to E (and ψ∗ with the complex
conjugate ψ of this Grossencharacter), as described, for example, in [Rub92a, p. 325]. We write T
(respectively T ∗) for the p-adic (respectively p∗-adic) Tate module of E.

The two-variable Iwasawa main conjecture (proved by Rubin [Rub92b]) implies that X(K∞) is a
torsion Λ(K∞)-module whose characteristic ideal in Λ(K∞)O is generated by a twist of Katz’s two-
variable p-adic L-function Lp by the character ψ. The function Lp satisfies a p-adic interpolation
formula that may be described as follows (see [Rub92a, Theorem 7.1] for the version given here,
and also [deS87, Theorem II.4.14]). For all pairs of integers j, k ∈ Z with 0 � −j < k, and for all
characters χ : Gal(K(Ep)/K)→ K

×, we have

Lp(ψkψ∗jχ) = A · L(ψ−kψ−j
χ−1, 0). (1.1)

Here L(ψ−kψ−j
χ−1, s) denotes the complex Hecke L-function, and A denotes an explicit, non-zero

factor whose precise description need not concern us here.
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Birch and Swinnerton-Dyer conjecture

Define
Lp(s) := Lp(ψ〈ψ〉s−1), L∗

p(s) := Lp(ψ∗〈ψ∗〉s−1)
for s ∈ Zp. The character ψ lies within the range of interpolation of Lp, and the p-adic Birch and
Swinnerton-Dyer conjecture for E (see [BGS85, pp. 133–134] and [Per84, Theorem V.8]) predicts
that ords=1 Lp(s) is equal to the rank r of E(Q), and that

lim
s→1

Lp(s)
(s − 1)r

∼ [logp(ψ(γ1))]r ·
(

1− ψ(p)
p

)
·
(

1− ψ(p∗)
p

)
· |X(K)(p)| ·RK,p,

where γ1 is a topological generator of Gal(K∞/K), X(K)(p) is the p-primary component of the
Tate–Shafarevich group X(K) of E/K, RK,p is the regulator associated to the algebraic p-adic
height pairing

{ , }K,p : Sel(K,T ∗)× Sel(K,T )→ OK,p

on E/K (see [Per83]), and the symbol ‘∼’ denotes equality up to multiplication by a p-adic unit.
On the other hand, the character ψ∗ lies outside the range of interpolation of Lp and the function

L∗
p(s) has not been studied nearly as much as Lp(s). The only results concerning L∗

p(s) of which the
author is aware are due to Rubin (see [Rub92a, Rub94]). When r � 1, Rubin formulated a variant of
the p-adic Birch and Swinnerton-Dyer conjecture for L∗

p(s) which predicts that ords=1 L
∗
p(s) is equal

to r− 1, and which gives a formula for lims→1[L∗
p(s)/(s− 1)r−1]. Under suitable hypotheses, Rubin

showed that his conjecture is equivalent to the usual p-adic Birch and Swinnerton-Dyer conjecture,
and he proved both conjectures when r = 1. In the case r = 1, he then used these results to give
a striking p-adic construction of a global point of infinite order in E(Q) directly from the special
value of a p-adic L-function.

When r = 0, however, the above analysis breaks down, and the situation is less clear. The
functional equation satisfied by Lp (see [deS87, ch. II, § 6]) shows that ords=1 Lp(s) and ords=1 L

∗
p(s)

have opposite parity, and so when r = 0, one knows that ords=1 L
∗
p(s) is odd. This may perhaps

be viewed as being an analogue of a similar exceptional zero phenomenon observed in the work of
Mazur, Tate and Teitelbaum concerning p-adic Birch and Swinnerton-Dyer conjectures for elliptic
curves without complex multiplication [MTT86] (see also [Gre94]). As Rubin points out (see [Rub94,
Remark, p. 74]), it is reasonable to guess that ords=1 L

∗
p(s) = 1. If this is so, then one would like to

determine the value of lims→1[L∗
p(s)/(s − 1)].

In this paper we study an Iwasawa module naturally associated to L∗
p(s) via the two-variable

main conjecture and, among other things, we prove that the above guess is indeed correct. The
Iwasawa module in question is the Pontryagin dual Xp∗(K∗∞,W ∗) of a certain restricted Selmer
group Σp∗(K∗∞,W ∗). This restricted Selmer group is defined by reversing the Selmer conditions
above p and p∗ that are used to define the usual Selmer group Sel(K∗∞,W ∗). The two-variable main
conjecture implies that a characteristic power series HK ∈ Λ(K∗∞) of Xp∗(K∗∞,W ∗) may be viewed
as being an algebraic p-adic L-function corresponding to L∗

p(s). We study L∗
p(s) by analysing the

behaviour of HK .
A special case of our results may be described as follows. We define a compact restricted Selmer

group Σ̌p∗(K,T ∗) ⊆ H1(K,T ∗). The OK,p∗-module Σ̌p∗(K,T ∗) is free of rank |r − 1|, and if r � 1,
then it lies in the usual Selmer group Sel(K,T ∗) associated to T ∗. The OK,p∗-rank of Σ̌p∗(K,T ∗)
governs the order of vanishing of L∗

p(s) at s = 1 in the same way that the OK,p-rank of Sel(K,T )
determines ords=1 Lp(s). We also define a similar group Σ̌p(K,T ) ⊆ H1(K,T ), and we explain how
to construct a p-adic height pairing

[ , ]K,p∗ : Σ̌p(K,T ) × Σ̌p∗(K,T ∗)→ OK,p∗.

If r � 1, then in fact Σ̌p(K,T ) ⊆ Sel(K,T ), Σ̌p∗(K,T ∗) ⊆ Sel(K,T ∗), and, if the p∗-adic Birch
and Swinnerton-Dyer conjecture is true, then the p-adic height pairing [ , ]K,p∗ is non-degenerate.
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We conjecture that [ , ]K,p∗ is also non-degenerate when r = 0 (see Remark 6.6).

Define

Xrel(p)(K) := Ker
[
H1(K,E) →

∏
v�p

H1(Kv, E)
]
,

and write Xrel(p)(K)(p∗) for its p∗-primary subgroup. Let Xrel(p)(K)(p∗)/div denote the quotient
of Xrel(p)(K)(p∗) by its maximal divisible subgroup. It may be shown that Xrel(p)(K)(p∗) has
OK,p∗-corank one, and that Xrel(p)(K)(p∗)/div is finite.

Theorem A. Suppose that [ , ]K,p∗ is non-degenerate and let γ be a topological generator of
Gal(K∗∞/K). Then, if r = 0, we have ords=1 L

∗
p(s) = 1, and

lim
s→1

L∗
p(s)
s− 1

∼ logp(ψ
∗(γ)) · (1− ψ(p∗)) · |Xrel(p)(K)(p∗)/div|

[H1(Kp∗ , T ) : locp∗(Σp(K,T )]
· RK,p∗,

where RK,p∗ is a p-adic regulator associated to [ , ]K,p∗.

We also obtain an exact (but much less explicit) formula for lims→1L
∗
p(s)/(s − 1) by applying

the methods of [Rub92a] in our present setting (see Theorem 9.5).

Suppose now that r � 1, and assume that X(K)(p) is finite. Then E(K) ⊗OK OK,p∗ is a free
OK,p∗-module of rank r, and the kernel of the localisation map

E(K)⊗OK OK,p∗ → E(Kp∗)⊗OK OK,p∗
has OK,p∗-rank r−1. Let y1, . . . , yr−1 be an OK,p∗-basis of this kernel, and extend it to an OK,p∗-basis
y1, . . . , yr−1, yp∗ of E(K)⊗OK OK,p∗. We write x1, . . . , xr−1, yp for a similarly constructed OK,p-basis
of E(K) ⊗OK OK,p. The following result is a direct consequence of Rubin’s precise formula for
lims→1[L∗

p(s)/(s − 1)r−1] (see [Rub92a, Corollary 11.3]). We give a new proof of this result which
is different from that contained in [Rub92a]. In particular, our proof gives an alternative way of
viewing the somewhat unusual regulator R∗

p defined in [Rub92a, § 11].

Theorem B. Suppose that r � 1 and that [ , ]K,p∗ is non-degenerate. Then ords=1 L
∗
p(s) = r − 1,

and

lim
s→1

L∗
p(s)

(s− 1)r−1
∼ [logp(ψ

∗(γ))]r−1 · p−2 · |X(K)(p∗)| · logE,p∗(yp∗) · logE,p(yp) · RK,p∗, (1.2)

where logE,p∗ (respectively logE,p) denotes the p∗-adic (respectively p-adic) logarithm associated
to E.

An outline of the contents of this paper is as follows. In § 2 we recall some basic facts about
twists of Iwasawa modules and derivatives of characteristic power series, and we apply these re-
sults to describe the relationship between L∗

p(s) and a characteristic power series HK ∈ Λ(K∗∞) of
Xp∗(K∗∞,W ∗). In § 3 we define various Selmer groups and establish some of their properties. We de-
scribe how to construct an algebraic p-adic height pairing on restricted Selmer groups in § 4. In § 5 we
calculate (under certain hypotheses) the leading term of a characteristic power series HF ∈ Λ(F ∗∞)
of Xp∗(F ∗∞,W ∗), where F/K is any finite extension, and F ∗∞ := FK∗∞. In § 6 we study restricted
Selmer groups over K and show that, under certain standard assumptions, ords=1 L

∗
p(s) = |r−1|. We

then give the proof of Theorem A in § 7 and that of Theorem B in § 8. Finally, in § 9, we explain how
the methods of [Rub92a] may be used to give a formula for the exact value of lims→1 L

∗
p(s)/(s− 1)

when r = 0.
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Notation and conventions
For each integer n � 1, we write

Kn := K(Eπn), K∗
n := K(Eπ∗n).

For each place v of K, we write kv for the residue field of v and Ẽv/kv for the reduction of the
elliptic curve E modulo v. We set W := Eπ∞ and W ∗ := Eπ∗∞ .

Throughout this paper, F denotes a finite extension of K, and we set

Fn := FKn, F∞ := FK∞, F∞ := FK∞,
F∗
n := FK∗

n, F∗
∞ := FK∗

∞, F ∗
∞ := FK∗

∞,
F∞ := FK∞.

For any extension L/K we write M(L) (respectively M∗(L)) for the maximal abelian pro-p
extension of L which is unramified away from p (respectively p∗), and we set

X (L) := Gal(M(L)/L), X ∗(L) := Gal(M∗(L)/L).

We let B(L) (respectively B∗(L)) denote the maximal abelian pro-p extension of L which is unrami-
fied away from p (respectively p∗) and totally split at all places of L lying above p∗ (respectively p),
and we write

Y(L) := Gal(B(L)/L), Y∗(L) := Gal(B∗(L)/L).

If M is any Zp-module, then Mdiv denotes the maximal divisible submodule of M , and we set
M/div := M/Mdiv. We write Mtors for the torsion submodule of M and M∧ for the Pontryagin dual
of M . If M is a torsion OK,q-module, with q ∈ {p, p∗}, then we write Tq(M) for the q-adic Tate
module of M .

We set Dp := Kp/OK,p and Dp∗ := Kp∗/OK,p∗.

2. Twists and derivatives

In this section we recall some basic facts concerning twists of Iwasawa modules and derivatives of
characteristic power series. We then apply these results to a twist of the Katz two-variable p-adic
L-function Lp by the character ψ∗.

Let GF := Gal(F∞/F ), and suppose that ρ : GF → Z×
p is any character. Then we have a twisting

map
Twρ : Λ(GF )→ Λ(GF )

associated to ρ which is induced by the map g �→ ρ(g)g for all g ∈ GF . If M is a finitely generated
Λ(GF )-module with characteristic power series fM , then a routine computation shows that Twρ(fM )
is a characteristic power series of M(ρ−1) := M ⊗ ρ−1.

Set H := Ker(ρ). Then there is a natural quotient map

ΠGF /H : Λ(GF )→ Λ(GF /H),

and ΠGF /H(Twρ(fM )) is a characteristic power series of the Λ(GF /H)-module

M(ρ−1)⊗Λ(GF ) Λ(GF /H).

If ρ1 : GF → Z×
p is any character which factors through GF /H, then

[Twρ(fM )](ρ1) = [ΠGF /H(Twρ(fM ))](ρ1), (2.1)

and there is an isomorphism

M(ρ−1)⊗Λ(GF ) Λ(GF /H) 	 (M ⊗Λ(GF ) Λ(GF /H))(ρ−1)
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of Λ(GF /H)-modules. Hence, we may study the values of Twρ(fM) at characters ρ1 which factor
through GF /H by studying the values of ΠG/H(Twρ(fM )) at such characters.

Suppose now that ρ is of infinite order, and let N be a finitely generated Λ(GF /H)-module with
characteristic power series fN ∈ Λ(GF /H). We may write

GF /H 	 ∆×G,
where |∆| is prime to p, and G 	 Zp. Let γ be a fixed topological generator of GF /H, and let
ΠG : Λ(GF /H) → Λ(G) be the natural quotient map. We identify Λ(G) with Zp[[t]] in the usual
way via the map ΠG(γ) �→ 1 + t.

Let IGF /H denote the augmentation ideal of Λ(GF /H), and suppose that n � 0 is the largest inte-
ger such that fN ∈ InGF /H and fN /∈ In+1

GF /H. It is not hard to check that ΠG(fN )(t) is a characteristic
power series of the Λ(G)-module N∆, and that

((γ − 1)−nfN )(1) =
ΠG(fN )
tn

∣∣∣∣
t=0

, (2.2)

where 1 denotes the identity character of GF /H.

For any character ν : GF /H → Z×
p , we set ϑν := ν(γ)−1γ − 1. Then if m � 0 is any integer, it

follows from the definitions that we have

(ϑ−mν fN )(ν) = [(γ − 1)−m Twν(fN )](1), (2.3)

where Twν : Λ(GF /H)→ Λ(GF /H) is the twisting map associated to ν.

We now recall how (2.3) is related to derivatives of certain p-adic analytic functions as described
in [Rub92a, § 7]. Write 〈ν〉 : GF /H → Z×

p for the composition of ν with the natural projection
Z×
p → 1 + pZp, and suppose that χ : GF/H → Z×

p is any character of order prime to p. The map
from Zp to Cp given by s �→ fN(νχ〈ν〉s−1) defines an analytic function on Zp. Define

ordνχ(fN ) := ords=1 fN (νχ〈ν〉s−1),

and set

D(m)fN(νχ) :=
1
m!

(
d

ds

)m
fN(νχ〈ν〉s−1)

∣∣∣∣
s=1

.

We write

f
(m)
N (νχ) := D(m)fN(νχ),

and we extend these definitions to Λ(GF ) via the quotient map ΠGF /H. A routine calculation shows
that we have

D(m)(ϑmν (νχ)) = {logp(ν(γ))}m,
and

D(m)(ϑmν fN )(νχ) = {logp(ν(γ))}mfN (νχ) = [{logp(ν(γ))}m Twν(fN )](χ). (2.4)

We can now see from (2.2), (2.3), and (2.4) that if nν := ordν(fN ), then we may write fN = ϑnνν Fν
with Fν ∈ Λ(GF /H), and we have

f
(nν)
N (ν) = lim

s→1

fN (ν〈ν〉s−1)
(s− 1)nν

= D(nν)(ϑnνν Fν)(ν)
= [{logp(ν(γ))}nν Twν(Fν)](1)
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= {logp(ν(γ))}nν ·ΠG(Twν(Fν))(0)

= {logp(ν(γ))}nν ·
ΠG(Twν(fN ))

tnν

∣∣∣∣
t=0

. (2.5)

We now apply the above discussion to the case in which F = K, M = X (K∞), ρ = ν = ψ∗,
H = Gal(K∞/K∗∞), G = Gal(K∗∞/K), and χ = 1.

Recall that the two-variable main conjecture asserts that X (K∞) is a torsion Λ(K∞)-module, and
that the Katz two-variable p-adic L-function Lp is a characteristic power series of X (K∞) in Λ(K∞)O.
We therefore see that Twψ∗(Lp) ∈ Λ(K∞)O is a characteristic power series of X (K∞)(ψ∗−1). Let
IK∗∞ denote the kernel of the natural map Λ(K∞) → Λ(K∗∞). Fix any characteristic power series
HK ∈ Λ(K∗∞) of the Λ(K∗∞)-module

X (K∞)(ψ∗−1)⊗Λ(K∞) (Λ(K∞)/IK∗∞) 	 X (K∞)(ψ∗−1)/IK∗∞X (K∞)(ψ∗−1).

Then we deduce from (2.1), (2.2), and (2.5) that

ords=1 L
∗
p(s) = ordt=0HK , (2.6)

and if we set nψ∗ := ords=1 L
∗
p(s), then

L(nψ∗)
p (ψ∗) = lim

s→1

L∗
p(s)

(s− 1)nψ∗ ∼ {logp(ψ∗(γ))}nψ∗ · HK

tnψ∗

∣∣∣∣
t=0

, (2.7)

where ‘∼’ denotes equality up to multiplication by a p-adic unit (in fact, in this case, we have
equality up to multiplication by an element of O×).

3. Selmer groups

In this section we define various Selmer groups that we require, and establish some of their properties.
For any place v of F , we define H1

f (Fv,W ) to be the image of E(Fv)⊗Dp under the Kummer
map

E(Fv)⊗Dp → H1(Fv ,W ),

and we define H1
f (Fv,W

∗) in a similar manner. Note that H1
f (Fv,W ) = 0 if v � p. We also set

H1
f (Fv , Eπn) := Im[E(Fv)/πnE(Fv)→ H1(Fv , Eπn)],

H1
f (Fv, Eπ∗n) := Im[E(Fv)/π∗nE(Fv)→ H1(Fv , Eπ∗n)].

Suppose that M ∈ {W,W ∗, Eπn , Eπ∗n} and that q ∈ {p, p∗}. If c ∈ H1(F,M), then we write
locv(c) for the image of c in H1(Fv ,M). We define:

• the true Selmer group Sel(F,M) by

Sel(F,M) = {c ∈ H1(F,M) | locv(c) ∈ H1
f (Fv ,M) for all v};

• the relaxed Selmer group Selrel(F,M) by

Selrel(F,M) = {c ∈ H1(F,M) | locv(c) ∈ H1
f (Fv ,M) for all v not dividing p};

• the strict Selmer group Selstr(L,M) by

Selstr(F,M) = {c ∈ Sel(F,M) | locv(c) = 0 for all v dividing p};
• the q-strict Selmer group Selstr(q)(F,M) by

Selstr(q)(F,M) = {c ∈ Sel(F,M) | locv(c) = 0 for all v dividing q};
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• the q-restricted Selmer group (or simply restricted Selmer group for short when q is understood)
Σq(F,M) by

Σq(F,M) = {c ∈ Selrel(F,M) | locv(c) = 0 for all v dividing q}.
(The terminology ‘restricted Selmer group’ is meant to reflect a choice of a combination of
relaxed and strict Selmer conditions at places above p.)

We also define

Šel?(F, T ) := lim←−
n

Sel?(F,Eπn), Šel?(F, T ∗) := lim←−
n

Sel?(F,Eπ∗n),

Σ̌q(F, T ) := lim←−
n

Σq(F,Eπn), Σ̌q(F, T ∗) := lim←−
n

Σq(F,Eπ∗n).

If L/K is an infinite extension, we define

Sel?(L,M) = lim−→Sel?(L′,M), Σq(L,M) = lim−→Σq(L′,M),

Šel?(L, T ) = lim−→ Šel?(L′, T ), Šel?(L, T ∗) = lim−→ Šel?(L′, T ∗),

where the direct limits are taken with respect to restriction over all subfields L′ ⊂ L finite over K.
For any extension L/K, we set

Sel?(L,M)∧ = X?(L,M), Σq(L,M)∧ = Xq(L,M).

Theorem 3.1. Let L be any field such that F∗∞ ⊆ L ⊆ F∞. Then there is an isomorphism

Xp∗(L,W ∗) 	 X (L)(ψ∗−1) (3.1)

of Λ(L)-modules.

Proof. This is simply the analogue for restricted Selmer groups of a well-known theorem of Coates
concerning true Selmer groups (see [Coa83, Theorem 12]). We first observe that, since F∗∞ ⊆ L, we
have isomorphisms of Λ(L)-modules

X (L)(ψ∗−1) 	 Hom(T ∗,X (L)), X (L)(ψ∗−1)∧ 	 Hom(X (L),W ∗).

Hence, in order to establish the desired result, it suffices to show that there is a natural isomorphsim

Σp∗(L,W ∗) ∼−→ Hom(X (L),W ∗). (3.2)

This may be proved in exactly the same way as [Coa83, Theorem 12].

The following result is a ‘control theorem’ for restricted Selmer groups.

Proposition 3.2. (a) Let IF∗∞ denote the kernel of the quotient map ΠF∗∞ : Λ(F∞) → Λ(F∗∞).
Then the kernel of the restriction map

Σp∗(F∗
∞,W

∗)→ Σp∗(F∞,W ∗)[IF∗∞ ]

is finite. A characteristic power series in Λ(F∗∞) of the Pontryagin dual of the cokernel of this map is
given by

eF = (γ − ψ∗−1(γ))−1
∏
v|p∗

(γv − ψ∗−1(γv)),

where γ is a topological generator of Gal(F∗∞/F ) and, for each place v of F∗∞ lying above p∗,
γv denotes a topological generator of Gal(F∗∞,v/Fv) � Gal(F∗∞/F ).

Hence, if f ∈ Λ(F∞) is a characteristic power series of Xp∗(F∗∞,W ∗), then e−1
F ΠF∗∞(f) ∈ Λ(F∗∞)

is a characteristic power series of Xp∗(F∗∞,W ∗).
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(b) Suppose that L is any field such that F ⊆ L ⊆ F∗∞, and write IL for the kernel of the
quotient map Λ(F∗∞)→ Λ(L). Then the restriction map

Σp∗(L,W ∗)→ Σp∗(F∗
∞,W

∗)[IL]

is an isomorphism.

Hence, the dual of this restriction map is an isomorphism of Λ(L)-modules:

Xp∗(F∗
∞,W

∗)/ILXp∗(F∞,W ∗) ∼−→ Xp∗(L,W ∗).

Proof. Let N denote the maximal extension of F∞ that is unramified away from all places of F∞
lying above p. Consider the following commutative diagram:

0 �� Σp∗(F∗∞,W ∗)

α

��

�� H1(N/F∗∞,W ∗)

��

locp∗ ��
∏
v|p∗ H

1(Nv/F∗∞,v,W
∗)

��

0 �� Σp∗(F∞,W ∗)[IF∗∞ ] �� H1(N/F∞,W ∗)[IF∗∞ ]
locp∗ ��

∏
v|p∗ H

1(Nv/F∞,v,W
∗)

in which the vertical arrows are the obvious restriction maps.

Applying the Snake lemma (together with the inflation–restriction exact sequence) to this dia-
gram yields the exact sequence

0→ Ker(α)→ H1(F∞/F∗
∞,W

∗) g1−→
∏
v|p∗

H1(F∞,v/F∗
∞,v,W

∗)

→ Coker(α)→ H2(F∞/F∗
∞,W

∗) g2−→
∏
v|p∗

H2(F∞,v/F∗
∞,v,W

∗)→ 0. (3.3)

Now,

H1(F∞/F∗
∞,W

∗) 	 Hom(Gal(F∞/F∗
∞),W ∗),∏

v|p∗
H1(F∞,v/F∗

∞,v,W
∗) 	

∏
v|p∗

Hom(Gal(F∞,v/F∗
∞,v),W

∗), (3.4)

and, as Gal(F∞/F∗∞) 	 ∆× Zp with p � ∆, we have

H2(F∞/F∗
∞,W

∗) 	 H0(F∞/F∗
∞,W

∗) 	W ∗,∏
v|p∗

H2(F∞,v/F∗
∞,v,W

∗) 	
∏
v|p∗

H0(F∞,v/F∗
∞,v,W

∗) 	
∏
v|p∗

W ∗.

We now deduce that g1 is non-zero, and therefore has finite kernel (since H1(F∞/F∗∞,W ∗) is
divisible), and that g2 is injective. It follows from (3.3) that Ker(α) is finite, and that there is an
exact sequence

0→ Ker(α)→ H1(F∞/F∗
∞,W

∗) g1−→
∏
v|p∗

H1(F∞,v/F∗
∞,v,W

∗)→ Coker(α)→ 0. (3.5)

It follows from (3.4) that

CharΛ(F∗∞)(H
1(F∞/F∗

∞,W
∗))∧ = γ − ψ∗−1(γ);

CharΛ(F∗∞)

(∏
v|p∗

H1(F∞,v/F∗
∞,v,W

∗)
)∧

=
∏
v|p∗

(γv − ψ∗−1(γv)).
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Hence, we deduce from (3.5) that

CharΛ(F∗∞)(Coker(α))∧ = eF = (γ − ψ∗−1(γ))−1
∏
v|p∗

(γv − ψ∗−1(γv)),

as asserted.
(b) In this case we consider the following commutative diagram.

0 �� Σp∗(L,W ∗) ��

β1

��

H1(N/L,W ∗)

β2

��

locp∗ ��
∏
v|p∗ H

1(Nv/Lv,W ∗)

β3

��

0 �� Σp∗(F∗∞,W ∗)[IL] �� H1(N/F∗∞,W ∗)
locp∗ ��

∏
v|p∗ H

1(N/F∗∞,v,W
∗)

We have that

Ker(β2) = H1(F∗
∞/L,W

∗) = 0,

Ker(β3) =
∏
v|p∗

H1(F∗
∞,v/Lv,W

∗) = 0,

Coker(β2) = H2(F∗
∞/L,W

∗) = 0,

(see for example, [Per84, p. 40]), and so the Snake lemma implies that β1 is an isomorphism, as
claimed.

Corollary 3.3. For any field L with F ⊆ L ⊆ F∗∞, we have an isomorphism

Xp∗(L, T ∗) 	 X (F∗
∞)(ψ∗−1)/IL(X (F∗

∞)(ψ∗−1) (3.6)

of Λ(L)-modules.

Proof. This follows directly from Proposition 3.2 and Theorem 3.1.

Remark 3.4. If we take F = K in Proposition 3.2, then it is easy to check that eK ∈ Λ(K∗∞)×. We
therefore see from Proposition 3.2(a) and Corollary 3.3 that the element HK ∈ Λ(K∗∞) fixed in § 2
is a characteristic power series of Xp∗(K∗∞,W ∗).

Definition 3.5. For any finite extension F/K and any prime q of K we define

X(F )rel(q) := Ker
[
H1(F,E)→

∏
v�q

H1(Fv, E)
]
,

and we set

E1,q(F ) := Ker
[
E(F )⊗OK OK,q →

∏
v|q

E(Fv)
]
.

Lemma 3.6. Let F/K be any finite extension, and let q ∈ {p, p∗}. Then Σ̌q(F, Tq) is a free OK,q-
module.

Proof. It follows from the definitions that Σ̌q(F, Tq)tors ⊆ Šel(F, Tq). The desired result now follows
from the fact that the restriction of the localisation map

Šel(F, Tq)→
∏
v|q

E(Fv)⊗OK OK,q

to Šel(F, Tq)tors is injective.
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4. The p-adic height pairing on restricted Selmer groups

In this section we shall explain how the methods described by Perrin-Riou in [Per83, Per84] may
be used to construct a p-adic height pairing

[ , ]F,p∗ : Σp(F, T )× Σp∗(F, T ∗)→ OK,p∗.

We begin by describing the p-adic Leopoldt hypotheses with which we shall work.

Definition 4.1. Let M/K be any finite extension, and consider the diagonal injection

iM : O×
M →

∏
v|p

O×
M,v.

Let iM (O×
M ) denote the p-adic closure of iM (O×

M ) in
∏
v|pO

×
M,v, and set

δ(M) := rkZ(O×
M )− rkZp(iM (O×

M )).

The weak p-adic Leopoldt hypothesis for F asserts that the numbers δ(L′) are bounded as L′ runs
through all finite extensions of F contained in F∗∞. The strong p-adic Leopoldt hypothesis for F
asserts that the numbers δ(L′) are all equal to zero.

We remark that the strong Leopoldt hypothesis is known to hold for all abelian extensions of K
(see [Bru67]).

Recall that B(F∗∞) denotes the maximal abelian pro-p extension of F∗∞ which is unramified
away from p and totally split at all places above p∗, and that Y(F∗∞) = Gal(B(F∗∞)/F∗∞). The main
ingredient in the construction of [ , ]F,p∗ is the following result.

Theorem 4.2. If the weak p-adic Leopoldt hypothesis holds for F then there is a natural isomor-
phism

ΨF : Σ̌p(F, T ) ∼−→ Hom(T ∗,Y(F∗
∞))Gal(F∗∞/F ).

The proof of this theorem is very similar to that of [Per83, Théorème 3.2]. We shall therefore
just describe the main outlines of the proof and we refer the reader to [Per83] for some of the details
which we omit.

In order to describe the proof of Theorem 4.2, we require a number of intermediary results.

Lemma 4.3. There is an isomorphism of Gal(F∗
n/F )-modules

H1(F∗
n, Eπn)

∼−→ Hom(Eπ∗n ,F∗×
n /F∗×pn

n ); f �→ f̃ . (4.1)

For each place v of F∗
n, there is also a corresponding local isomorphism

H1(F∗
n,v, Eπn)

∼−→ Hom(Eπ∗n ,F∗×
n,v/F∗×pn

n,v ).

Proof. See [Per83, Lemme 3.8]. The isomorphism (4.1) is defined as follows. Let f ∈ H1(F∗
n, Eπn),

and write
wn : Eπn × Eπ∗n → µpn

for the Weil pairing. We identify F∗×
n /F∗×pn

n with H1(F∗
n, µpn) via Kummer theory. If u ∈ Eπ∗n ,

then f̃(u) ∈ H1(F∗
n, µpn) is defined to be the element represented by the cocycle

σ �→ wn(f(σ), u)

for all σ ∈ Gal(F/F∗
n).

Lemma 4.4. For each place v of F∗
n with v � p∗, there is an isomorphism

E(F∗
n,v)/π

nE(F∗
n,v)

∼−→ Hom(Eπ∗n , O×
F∗
n,v
/O×pn

F∗
n,v

).
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Proof. See [Per83, Lemme 3.11].

Corollary 4.5. Suppose that h ∈ H1(F∗
n, Eπn). Then h ∈ Σp(F∗

n, Eπn) if and only if, for each
u ∈ Eπn , the following local conditions are satisfied:

(a) h̃(u) ∈ F∗×pn
n,v for all v | p;

(b) pn | vF∗
n
(h̃(u)) for all v � p∗.

(Note that we impose no local conditions at places lying above p∗.)

Proof. This follows directly from Lemmas 4.3 and 4.4.

In what follows, we set Gn := Gal(F∗
n/F ) and write Jn for the group of finite ideles of F∗

n. We
let Vn denote the subgroup of Jn consisting of those elements whose components are equal to 1 at
all places dividing p and are units at all places not dividing p∗. We set

Cn := Jn/VnF∗×
n , Ωn :=

∏
v|p
µpn(F∗

n,v),

and we note that the order of Ωn is bounded as n varies.

Proposition 4.6. There is an exact sequence

Hom(Eπ∗n ,Ωn)Gn → Hom(Eπ∗n , Cn)Gn
ηn−→ Σp(F,Eπn)→ 0.

Proof. The proof of this proposition is identical, mutatis mutandis, to that of [Per83, Proposi-
tion 3.13].

Now let η′n be the map obtained from ηn via passage to the quotient by the kernel of ηn, and
write Cn(p) for the p-primary part of Cn. Then it may be shown exactly as in [Per83, pp. 387–389]
that passing to inverse limits over the maps η′−1

n yields an isomorphism

ΞF : lim←− Σ̌p(F,Eπn) = Σp(F, T ) ∼−→ Hom(T ∗, lim←−Cn(p))
Gal(F∗∞/F ).

(Here the inverse limit lim←−Cn(p) is taken with respect to the norm maps F∗×
n → F∗×

n−1.)
The proof of Theorem 4.2 is completed by the following result.

Proposition 4.7. If the weak p-adic Leopoldt hypothesis holds for F , then there is an isomorphism

Hom(T ∗, lim←−Cn(p))
Gal(F∗∞/F ) 	 Hom(T ∗,Y(F∗

∞))Gal(F∗∞/F ).

Proof. This may be shown in the same way as [Per83, Lemme 3.18].

We now explain how the isomorphism ΨF may be used to construct a p-adic height pairing

[ , ]F,p∗ : Σ̌p(F, T )× Σ̌p∗(F, T ∗)→ OK,p∗.

We first recall (see Proposition 3.2(b)) that the restriction map

Σp∗(F,W ∗)→ Σp∗(F∗
∞,W

∗) (4.2)

is injective, and that there is a natural isomorphism (see Theorem 3.1)

Σp∗(F∗
∞,W

∗) ∼−→ Hom(X (F∗
∞),W ∗). (4.3)

It follows from the local conditions defining the restricted Selmer group Σp∗(F,W ∗) that (4.2) and
(4.3) induce an injection

Σp∗(F,W ∗)→ Hom(Y(F∗
∞),W ∗), (4.4)

and taking Pontryagin duals yields a surjection

Hom(T ∗,Y(F∗
∞))→ Xp∗(F,W ∗). (4.5)
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Composing this with the natural surjection

Xp∗(F,W ∗)→ [Σp∗(F,W ∗)div]∧

and taking Gal(F∗∞/F )-invariants yields a homomorphism

βF : Hom(T ∗,Y(F∗
∞))Gal(F∗∞/F ) → [Σp∗(F,W ∗)div]∧.

Next, we observe that we have a canonical isomorphism

[Σp∗(F,W ∗)div]∧ 	 HomOK,p∗ (Tp∗(Σp∗(F,W ∗)div), OK,p∗)

= HomOK,p∗ (Tp∗(Σp∗(F,W ∗)), OK,p∗),

where the last equality holds because

Tp∗(Σp∗(F,W ∗)div = Tp∗(Σp∗(F,W ∗)).

Also, for each n � 1, we have a surjective map

Σp∗(F,Eπ∗n)→ Σp∗(F,W ∗)π∗n

with finite kernel. Via passage to inverse limits, these yield a map

Σ̌p∗(F, T ∗)→ Tp∗(Σp∗(F,W ∗))

which is an isomorphism because Σ̌p∗(F, T ∗) is OK,p∗-free (see Lemma 3.6).
It follows from the above discussion that we may view βF as a homomorphism

βF : Hom(T ∗,Y(F∗
∞))Gal(F∗∞/F ) → HomOK,p∗ (Σ̌p∗(F, T ∗), OK,p∗).

We thus obtain a map

βF ◦ΨF : Σ̌p(F, T )→ HomOK,p∗ (Σ̌p∗(F, T ∗), OK,p∗),

and this yields the desired pairing

[ , ]F,p∗ : Σ̌p(F, T )× Σ̌p∗(F, T ∗)→ OK,p∗.

It is natural to conjecture that this pairing is always non-degenerate (see Remark 6.6).
If x1, . . . , xm is an OK,p-basis of Σ̌p(F, T ) (respectively if y1, . . . , ym is an OK,p∗-basis of

Σ̌p∗(F, T ∗)), then we define the regulator RF,p∗ associated to [ , ]F,p∗ by

RF,p∗ := det([xi, yj ]F,p∗). (4.6)

5. The leading term

We retain the notation of the previous section. Write ΓF := Gal(F ∗∞/F ), fix a topological generator
γF of ΓF , and identify Λ(F ∗∞) with the power series ring Zp[[t]] via the map γF �→ t + 1. Let
HF ∈ Λ(F ∗∞) be a characteristic power series of Xp∗(F ∗∞,W ∗). In this section we shall calculate
the leading coefficient of HF , assuming that the strong Leopoldt hypothesis holds for F and that
[ , ]F,p∗ is non-degenerate.

Proposition 5.1. Suppose that F satisfies the strong p-adic Leopoldt hypothesis. Then the Λ(F ∗∞)-
module Xp∗(F ∗∞,W ∗) has no finite, non-trivial submodules.

Proof. It is straightforward to show that a slight modification of the arguments given in [Gre78, § 4]
establishes the fact that if F satisfies the strong p-adic Leopoldt hypothesis, then the Λ(F ∗∞)-module
X(F ∗∞) has no finite, non-trivial submodules. For brevity, we omit the details. The desired result
now follows from Proposition 3.2 and Theorem 3.1.
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Theorem 5.2. Let HF ∈ Λ(F ∗∞) be a characteristic power series of Xp∗(F ∗∞,W ∗). Assume that
the strong p-adic Leopoldt hypothesis holds for F and that [ , ]F,p∗ is non-degenerate. Set
m := rkOK,p∗ (Σ̌p∗(F, T ∗)). Then ordt=0HF = m and

HF

tm

∣∣∣∣
t=0

∼ |Σp∗(F,W ∗)/div| · RF,p∗. (5.1)

Proof. We begin by noting that there is a surjective homomorphism

Xp∗(F ∗
∞,W

∗)→ [Σp∗(F,W ∗)div]∧.

This implies that HF is divisible by tm. If we write Z∞ for the kernel of this map, then the Snake
lemma yields the following exact sequence:

0→ (Z∞)ΓF → Xp∗(F ∗
∞,W

∗)ΓF ξF−→ [Σp∗(F,W ∗)div]∧

→ (Z∞)ΓF → Xp∗(F ∗
∞,W

∗)ΓF → [Σp∗(F,W ∗)div]∧ → 0.

The kernel of the last map

Xp∗(F ∗
∞,W

∗)ΓF → [Σp∗(F,W ∗)div]∧

is dual to the cokernel of the map

Σp∗(F,W ∗)div → Σp∗(F ∗
∞,W

∗)ΓF .

Since Σp∗(F,W ∗) 	 Σp∗(F ∗∞,W ∗)ΓF (via Proposition 3.2(b)), it follows that this cokernel is isomor-
phic to Σp∗(F,W ∗)/div, which is finite.

We therefore deduce that the multiplicity of t in HF is equal to m if and only if (Z∞)ΓF is finite,
which in turn is the case if and only if the cokernel of ξF is finite. Recall (see Theorem 3.1) that

Xp∗(F ∗
∞,W

∗)ΓF 	 Hom(T ∗,X (F∗
∞))Gal(F∗∞/F ),

and that the homomorphism ξF may be written as the following composition of maps

Hom(T ∗,X (F ∗
∞))Gal(F∗∞/F ) → Hom(T ∗,Y(F ∗

∞))Gal(F∗∞/F ) → Σp∗(F,W ∗)∧ → [Σp∗(F,W ∗)/div]
∧

(see (4.4), (4.5)). Hence, the cokernel of ξF is finite if and only if the p-adic height pairing [ , ]F,p∗
is non-degenerate.

We now see that if [ , ]F,p∗ is non-degenerate, then (Z∞)ΓF is finite. This implies that (Z∞)ΓF is
also finite, whence it follows via Proposition 5.1 that (Z∞)ΓF = 0. Hence, we have

HF

tm

∣∣∣∣
t=0

∼ |(Z∞)ΓF | ∼ |Σp∗(F,W ∗)/div| · |Coker(ξF )|.

Now

|Coker(ξF )| = [(Σp∗(F,W ∗)div)∧ : ξF (Xp∗(F ∗
∞,W

∗)ΓF )]

= [Tp∗(Σp∗(F,W ∗)) : ΨF (Σ̌p(F, T ))]

= RF,p∗ · [Ker(Σ̌p∗(F, T ∗)→ Tp∗(Σp∗(F,W ∗)))]
= RF,p∗.

Hence,
HF

tm

∣∣∣∣
t=0

∼ |Σp∗(F,W ∗)/div| · RF,p∗,
as claimed.
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6. Restricted Selmer groups over K

In this section we shall analyse various properties of restricted Selmer groups over K. The main
tool for doing this is the Poitou–Tate exact sequence (see, e.g., [CS00, Theorem 1.5] or [Per92,
Proposition 4.1.1]).

We write SF for the set of places of F lying above p and GF,SF for the Galois group over F of
the maximal abelian extension of F that is unramified away from all places in SF .

Proposition 6.1. There are isomorphisms

Šelstr(F, T ∗) 	 H2(GF,SF ,W )∧, Šelstr(F, T ) 	 H2(GF,SF ,W
∗)∧.

Proof. The middle of the Poitou–Tate exact sequence yields

0→ Selstr(F,Eπ∗n)∧ → H2(GF,SF , Eπn)→
⊕
v∈SF

H2(Fv , Eπn).

Dualising, and using the fact that, via Tate local duality, we have H2(Fv , Eπn)∧ 	 H0(Fv , Eπ∗n) for
each place v of F gives⊕

v∈SF
H0(Fv, Eπ∗n)→ H2(GF,SF , Eπn)

∧ → Selstr(F,Eπ∗n)→ 0.

By passing to limits we obtain⊕
v∈SF

H0(Fv , T ∗)→ H2(GF,SF ,W )∧ → Šelstr(F, T ∗)→ 0,

and this establishes the first isomorphism, because the first term of this last sequence is equal to
zero.

The second isomorphism may be proved in a similar manner.

Recall that r = rkOK (E(K)).

Proposition 6.2. Suppose that r � 1. Then

rkOK,p∗ (Šelstr(K,T ∗)) = rkOK,p∗ (Šelstr(p∗)(K,T
∗))

= rkOK,p∗ (Šel(K,T ∗))− 1.

Proof. Since r � 1, the image of the localisation map

Sel(K,T ∗)→ E(Kp∗)⊗OK,p∗
is infinite. The result now follows from the fact that

rkOK,p∗ [E(Kp∗)⊗OK,p∗] = rkOK,p∗

[∏
v|p

E(Kv)⊗OK,p∗
]

= 1.

Lemma 6.3. (a) The cohomology group H1
f (Kp∗ , T ) is finite, and

|H1
f (Kp∗ , T )| ∼ |Ẽp∗(kp∗)| ∼ 1− ψ(p∗)

in Zp.

(b) We have

H1
f (Kp∗ , T ) = H1(Kp∗ , T )tors,

and H1(Kp∗ , T )/H1
f (Kp∗ , T ) is OK,p∗-free of rank one.
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Proof. Part (a) follows directly from [Coa83, Lemma 1].
To prove part (b), we observe that, via Tate local duality, the dual of H1(Kp∗ , T )/H1

f (Kp∗ , T )
is equal to E(Kp∗)⊗Dp∗ , and this last group is divisible of OK,p∗-corank one.

Proposition 6.4. (a) Suppose that r � 1. Then

rkOK,p∗ (Šelrel(K,T ∗)) = rkOK,p∗ (Šel(K,T ∗)),

and

[Šelrel(K,T ∗) : Šel(K,T ∗)] ∼ |Ẽp∗(kp∗)|.
(b) Suppose that r = 0. Then

rkOK,p∗ (Šelrel(K,T ∗)) = 1.

Proof. The Poitou–Tate exact sequence yields

0→ Šel(K,T ∗)→ Šelrel(K,T ∗) α−→
⊕
v|p

H1(Kv , T
∗)

H1
f (Kv , T ∗)

→ Sel(K,W )∧. (6.1)

The cokernel of α is the Pontryagin dual of the image of the localisation map

Sel(K,W )→
⊕
v|p

H1
f (Kv ,W ),

and so has OK,p∗-rank one if r � 1 and rank zero if r = 0. As

rkOK,p∗

[⊕
v|p

(H1(Kv , T
∗)/H1

f (Kv , T
∗))

]
= 1,

we therefore deduce that rkOK,p∗ (Šelrel(K,T ∗)) is equal to rkOK,p∗ (Šel(K,T ∗)) if r � 1, and is equal
to one if r = 0. In particular, we have that Šelrel(K,T ∗)/Šel(K,T ∗) is finite if r � 1.

Now suppose that r � 1. As H1(Kp, T ∗)/H1
f (Kp, T

∗) is OK,p∗-free of rank one (Lemma 6.3(b))
and Šelrel(K,T ∗)/Šel(K,T ∗) is finite, (6.1) implies that there is an exact sequence

0→ Šelrel(K,T ∗)
Šel(K,T ∗)

→ H1(Kp∗ , T ∗)
H1
f (Kp∗ , T

∗)
α′−→ Sel(K,W )∧.

Since E(Kp∗)⊗Dp = 0, it follows that α′ is the zero map. The dual of H1(Kp∗ , T ∗)/H1
f (Kp∗ , T

∗) is
isomorphic to H1

f (Kp∗ , T ), and Lemma 6.3(a) implies that

|H1
f (Kp∗ , T )| ∼ |Ẽp∗(kp∗)|.

Hence, [Šelrel(K,T ∗) : Šel(K,T ∗)] ∼ |Ẽp∗(kp∗)|, as claimed.

Proposition 6.5. Suppose that r � 1. Then

Σ̌p∗(K,T ∗) = Šelstr(p∗)(K,T
∗).

In particular, we have

rkOK,p∗ (Σ̌p∗(K,T ∗)) = rkOK,p∗ (Šel(K,T ∗))− 1.

Proof. From Proposition 6.4(a), we have

rkOK,p∗ (Šelrel(K,T ∗)) = rkOK,p∗ (Šel(K,T ∗)).

This implies that

rkOK,p∗ (Σp∗(K,T ∗)) = rkOK,p∗ (Šelstr(p∗)(K,T
∗))

= rkOK,p∗ (Šel(K,T ∗))− 1. (6.2)
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It follows from the definitions of Σ̌p∗(K,T ∗) and Šelstr(p∗)(K,T ∗) that we have the following
exact sequence

0→ Šelstr(p∗)(K,T
∗)→ Σ̌p∗(K,T ∗) β−→ H1(Kp∗ , T ∗)

H1
f (Kp, T ∗)

→ Coker(β)→ 0,

where β is induced by the obvious localisation map. From (6.2), we see that

Σ̌p∗(K,T ∗)/Šelstr(p∗)(K,T
∗)

is finite. Hence, as H1(Kp, T ∗)/H1
f (Kp, T

∗) is OK,p∗-free of rank one (see Lemma 6.3(b)), it follows
that β is the zero map. This implies that

Σ̌p∗(K,T ∗) = Šelstr(p∗)(K,T
∗)

as claimed.
The final assertion of the proposition is a direct consequence of Proposition 6.2.

Remark 6.6. Suppose that r � 1. Then it follows from Proposition 6.5, together with the definition
of [ , ]K,p∗ that the pairing [ , ]K,p∗ is simply the restriction of Perrin-Riou’s algebraic p-adic height
pairing { , }K,p∗ to Šelstr(p∗)(K,T ∗)× Šelstr(p)(K,T ). Hence, if r � 1 and { , }K,p∗ is non-degenerate,
then so is [ , ]K,p∗. We conjecture that the pairing [ , ]K,p∗ is also non-degenerate when r = 0.

Proposition 6.7. Suppose that r = 0. Then

rkOK,p∗ (Σ̌p∗(K,T ∗)) = 1.

Proof. We have an injection
0→ Σ̌p∗(K,T ∗)→ Šelrel(K,T ∗),

and we know that rkOK,p∗ (Šelrel(K,T ∗)) = 1 (Proposition 6.4(b)). Hence, rkOK,p∗ (Σ̌p∗(K,T ∗)) is
either zero or one.

Suppose that rkOK,p∗ (Σ̌p∗(K,T ∗)) = 0. Then the proof of Theorem 5.2 shows that the char-
acteristic power series HK ∈ Λ(K∗∞) of Xp∗(K,W ∗) does not vanish at t = 0. This implies that
ords=1 L

∗
p(s) = 0 (see (2.6)). On the other hand, it follows from the functional equation satisfied

by the two-variable p-adic L-function Lp (see [deS87, ch. II, § 6]) that the orders of the zeros at
s = 1 of Lp(s) and L∗

p(s) have opposite parity. Since r = 0, the order of X(K) is known to be finite
(see [Rub87]), and so

ords=1 Lp(s) = rkOK,p∗ (Sel(K,T ∗)) = 0.
This implies that ords=1 L

∗
p(s) � 1, which is a contradiction.

It therefore follows that rkOK,p∗ (Σ̌p∗(K,T ∗)) = 1 as claimed.

Corollary 6.8. Assume that [ , ]K,p∗ is non-degenerate.

(a) If r � 1 and X(K)(p∗) is finite, then

ords=1 L
∗
p(s) = r − 1.

(b) If r = 0, then

ords=1 L
∗
p(s) = 1.

Proof. This follows directly from Propositions 6.5 and 6.7, and (2.6).

Remark 6.9. Corollary 6.8(b) confirms the expectation expressed in [Rub94, Remark, p. 74] (see also
[Rub92a, § 11, Remarks (2)]). It would be interesting to know wether there is any way of showing
that rkOK,p∗ (Σp∗(K,T ∗)) = 1 when r = 0 without appealing to the functional equation satisfied
by Lp.
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Proposition 6.10. (a) Suppose that r � 1, and assume that X(K)(p∗) is finite. Then
Xrel(p)(K)(p∗) is also finite, and we have

|Xrel(p)(K)(p∗)| = |X(K)(p)| · [E(Kp)⊗OK,p : locp(Sel(K,T ))].

(b) Suppose that r = 0. Then Xrel(p)(K)(p∗) has OK,p∗-corank one.

Proof. (a) For each n � 1, we define Bn via exactness of the sequence

0→X(K)π∗n → H1(K,E)π∗n →
∏
v

H1(Kv, E)π∗n → Bn → 0.

Then there exists a map hn : H1(Kp, E)π∗n → Bn, and the sequence

0→X(K)π∗n →Xrel(p)(K)π∗n → H1(Kp, E)π∗n
hn−→ Bn (6.3)

is exact. Passing to direct limits over n in (6.3) yields the sequence

0→X(K)(p∗)→Xrel(p)(K)(p∗)→ H1(Kp, E)(p∗)
lim−→hn−−−−→ lim−→Bn. (6.4)

It follows from a theorem of Cassels (see [Cas65, p. 198]) that the dual of Bn is isomorphic
to Sel(K,Eπn). Tate local duality implies that the dual of H1(Kp, E)π∗n is isomorphic to
E(Kp)/πnE(Kp) and that the kernel of lim−→hn is isomorphic to the dual of the cokernel of the
localisation map

locp : Šel(K,T )→ E(Kp)⊗OK,p.
If r � 1, then this cokernel is finite, and we therefore deduce that

[Xrel(p)(K)(p∗) : X(K)(p∗)] = [E(Kp)⊗OK,p : locp(Šel(K,T ))].

Hence, we have

|Xrel(p)(K)(p∗)| = |X(K)(p∗)| · [E(Kp)⊗OK,p : locp(Šel(K,T ))]

as claimed.
(b) If r = 0, then Šel(K,T ) is trivial, because X(K) is known to be finite, and E(K)(p) = 0.

This implies that Coker(locp) = E(Kp) ⊗ OK,p is OK,p-free of rank one. It now follows from (6.4)
that Xrel(p)(K)(p∗) has OK,p∗-corank one.

Proposition 6.11. Suppose that r � 1, and assume that X(K)(p∗) is finite. Then

|Σp∗(K,W ∗)/div| = |Xrel(p)(K)(p∗)| · [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))].

Proof. Let y1, . . . , yr−1 be an OK,p∗-basis of E1,p∗(K), and extend it to an OK,p∗-basis
y1, . . . , yr−1, yp∗ of E(K)⊗OK OK,p∗. There is an exact sequence

0→ OK,p∗ · yp∗ → E(Kp∗)⊗OK OK,p∗ → U → 0,

with

|U | = [E(Kp∗)⊗OK OK,p∗ : locp∗(E(K)⊗OK OK,p∗)]
= [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))].

Tensoring this sequence with Dp∗ yields an exact sequence

0→ V → (OK,p∗ · yp∗)⊗OK Dp∗ → E(Kp∗)⊗OK Dp∗ → 0,

with |U | = |V |. As

E(K)⊗OK OK,p∗ 	 E1,p∗(K)⊕ (OK,p∗ · yp∗),
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it follows that the kernel of the localisation map

E(K)⊗OK Dp∗ → E(Kp∗)⊗OK Dp∗
is isomorphic to (E1,p∗(K)⊗OK Dp∗)⊕ V .

Define

X(K)rel := Ker
[
H1(K,E)→

∏
v�p

H1(Kv , E)
]
;

then we have an exact sequence

0→ E(K)⊗Dp∗ → Selrel(K,W ∗)→Xrel(K)(p∗)→ 0.

Now consider the following commutative diagram, in which the vertical arrows are the obvious
localisation maps.

0 �� E(K)⊗Dp∗

��

�� Selrel(K,W ∗)

��

�� Xrel(K)(p∗)

��

�� 0

0 �� E(Kp∗)⊗Dp∗ �� H1(Kp∗ ,W ∗) �� H1(Kp∗ , E)(p∗) �� 0

Applying the Snake lemma to this diagram yields the exact sequence

0→ (E1,p∗(K)⊗Dp∗)⊕ V → Σp∗(K,W ∗)→Xrel(p)(K)(p∗)→ 0.

As Xrel(K)(p∗) is finite (see Proposition 6.10) and E1,p∗(K)⊗OK Dp∗ is divisible, it follows that

Σp∗(K,W ∗)/div = |Xrel(K)(p∗)| · |V |
= |Xrel(p)(K)(p∗)| · [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))],

as asserted.

7. Proof of Theorem A

Proposition 7.1. Suppose that r = 0. Then

|Σp∗(K,W ∗)/div| ∼ (1− ψ(p∗)) · |X(K)rel(p)(p∗)/div|
[H1(Kp∗ , T ) : locp∗(Σp(K,T ))]

.

Proof. Consider the following diagram in which all columns are exact and f1, f2 are the obvious
localisation maps.

0

��

�� Σp∗(K,W ∗)

��

�� Xrel(p)(K)(p∗)

��
0 �� E(K)⊗Dp∗ = 0

��

�� Selrel(K,W ∗)

f1
��

�� Xrel(K)(p∗)

f2
��

�� 0

0 �� E(Kp∗)⊗Dp∗

��

�� H1(Kp∗ ,W ∗)

��

�� H1(Kp∗ , E)(p∗)

��

�� 0

E(Kp∗)⊗Dp∗ �� Coker(f1) �� Coker(f2)

Applying the Snake lemma to this diagram yields an exact sequence

0→ Σp∗(K,W ∗)→Xrel(p)(K)(p∗)→ E(Kp∗)⊗Dp∗ → Coker(f1)→ Coker(f2)→ 0. (7.1)
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Let us first determine Coker(f1). The Poitou–Tate exact sequence gives

0→ Σp∗(K,W ∗)→ Selrel(K,W ∗) f1−→ H1(Kp∗ ,W ∗)→ Σ̌p(K,T )∧ → H2(GK,SK ,W
∗),

where GK,SK denotes the Galois group over K of the maximal extension of K that is unramified
away from p. Since r = 0, Propositions 6.1 and 6.2 imply that H2(GK,SK ,W

∗) = 0, and so we have

Coker(f1) 	 Σ̌p(K,T )∧. (7.2)

In particular, it follows from Lemma 3.6 and Proposition 6.7 that Coker(f1) is divisible of OK,p∗-
corank one.

In order to determine Coker(f2), we observe that E(Kp∗)⊗Dp∗ is divisible of OK,p∗-corank one,
and the kernel of the map

E(Kp∗)⊗Dp∗ → Coker(f1)

in (7.1) is isomorphic to Xrel(p)(K)(p∗)/Σp∗(K,W ∗). This last group is finite, because both
Xrel(p)(K)(p∗) and Σp∗(K,W ∗) have OK,p∗-corank one (see Propositions 6.10(b) and 6.7). It there-
fore follows that Coker(f2) = 0.

From (7.1) and (7.2), we obtain the sequence

0→ Xrel(p)(K)(p∗)
Σp∗(K,W ∗)

→ E(Kp∗)⊗Dp∗ → Σ̌p(K,T )∧ → 0. (7.3)

Dualising this sequence yields

0→ Σ̌p(K,T )→ H1(Kp∗ , T )
H1
f (Kp∗ , T )

→
[
Xrel(p)(K)(p∗)
Σp∗(K,W ∗)

]∧
→ 0.

We therefore have∣∣∣∣
[
Xrel(p)(K)(p∗)
Σp∗(K,W ∗)

]∧∣∣∣∣ =
∣∣∣∣Xrel(p)(K)(p∗)

Σp∗(K,W ∗)

∣∣∣∣
=

∣∣∣∣Xrel(p)(K)(p∗)/div

Σp∗(K,W ∗)/div

∣∣∣∣
= [H1(Kp∗ , T ) : locp∗(Σ̌p(K,T ))] · |H1

f (Kp∗ , T )|−1,

which in turn implies that

|Σp∗(K,W ∗)/div| =
|Xrel(p)(K)(p∗)/div|

[H1(Kp∗ , T ) : locp∗(Σ̌p(K,T ))]
· |H1

f (Kp∗ , T )|.

Since

|H1
f (Kp∗ , T )| ∼ 1− ψ(p∗)

(see Lemma 6.3), we finally obtain

|Σp∗(K,W ∗)/div| ∼ (1− ψ(p∗)) · |X(K)rel(p)(p∗)/div|
[H1(Kp∗ , T ) : locp∗(Σp(K,T ))]

,

as claimed.

Proof of Theorem A. We first note that, as [ , ]K,p∗ is non-degenerate (by hypothesis), we have
ords=1 L

∗
p(s) = 1 (Corollary 6.8(b)). Hence, from (5.1), (2.7), Proposition 7.1 and Remark 3.4,
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we have

lim
s→1

L∗
p(s)
s− 1

∼ logp(ψ
∗(γ)) · HK

t

∣∣∣∣
t=0

∼ logp(ψ
∗(γ)) · |Σp∗(K,W ∗)/div| · RK,p∗

∼ logp(ψ
∗(γ)) · (1− ψ(p∗) · |Xrel(p)(K)(p∗)/div|

[H1(Kp∗ , T ) : locp∗(Σp(K,T ))]
· RK,p∗.

This completes the proof of Theorem A.

8. Proof of Theorem B

Suppose now that r � 1. Then E(K) ⊗ OK,p∗ is a free OK,p∗-module of rank r. Proposition 6.2
implies that the kernel of the localisation map

locp∗ : E(K)⊗OK OK,p∗ → E(Kp∗)⊗OK,p∗
has OK,p∗-rank r−1. Let y1, . . . , yr−1 be an OK,p∗-basis of this kernel, and extend it to an OK,p∗-basis
y1, . . . , yr−1, yp∗ of E(K)⊗OK,p∗.
Proposition 8.1. With the above assumptions and notation, we have

[E(Kp∗)⊗OK OK,p∗ : locp∗(E(K)⊗OK OK,p∗)] ∼ p−1 logE,p∗(yp∗),

where logE,p∗ denotes the p∗-adic logarithm associated to E. Similarly, we also have

[E(Kp)⊗OK OK,p : locp(E(K)⊗OK OK,p)] ∼ p−1 logE,p(yp),

when yp ∈ E(Kp)⊗OK OK,p is defined analogously to yp∗.

Proof. We give the proof of the first assertion; that of the second is of course essentially identical.
We first observe that, from the definitions, we have

[E(Kp∗)⊗OK OK,p∗ : locp∗(E(K)⊗OK OK,p∗)] = [E(Kp∗)⊗OK,p∗ : locp∗(OK,p∗ · yp∗)].
Let E0 denote the kernel of reduction modulo p∗ of E, so we have an exact sequence

0→ E0(Kp∗)→ E(Kp∗)→ Ẽp∗(kp∗)→ 0.

Set

Z := OK,p∗ · yp∗, Z0 := locp∗(Z) ∩ E0(Kp∗), C := locp∗(Z)/Z0.

Write λp∗ for the restriction of locp∗ to Z. We have the following commutative diagram.

0 �� Z0
��

ρ

��

Z ��

λp∗
��

C ⊗OK OK,p∗ ��

ρ′
��

0

0 �� E0(K∗
p )⊗OK OK,p∗ �� E(Kp∗)⊗OK OK,p∗ �� Ẽp∗(kp∗)⊗OK OK,p∗ �� 0

Observe that ρ is injective since λp∗ is injective, and that Ẽp∗(kp∗) ⊗OK OK,p∗ = 0 because
Ẽp∗(kp∗)(p) = Ẽp∗(kp∗)(p) (see, e.g., [Per84, p. 28]). Applying the Snake lemma to the diagram
yields the exact sequence

0→ Ker(ρ′)→ Coker(ρ)→ Coker(λp∗)→ 0,

and so we have

|Coker(λp∗)| = |C ⊗OK OK,p∗|−1 · |Coker(ρ)|.
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Set k = [Z : Z0] = |C ⊗ OK,p∗|; then kyp∗ is an OK,p∗-generator of Z0. Since there is an
isomorphism

logE,p∗ : E0(Kp∗)
∼−→ p∗OK,p∗,

it follows that we have

|Coker(ρ)| ∼ p−1 logE,p∗(kyp∗) = kp−1 logE,p∗(yp∗).

Therefore,
|Coker(λp∗)| ∼ p−1 logE,p∗(yp∗),

and this establishes the desired result.

Corollary 8.2. Suppose that r � 1 and assume that X(K)(p∗) is finite. Then

|Xrel(p)(K)(p∗)| = p−1 · |X(K)(p∗)| · logE,p(yp).
Proof. This follows directly from Propositions 6.10(a) and 8.1.

Proof of Theorem B. By hypothesis, [ , ]K,p∗ is non-degenerate, r � 1, and X(K)(p) is finite; hence
we have that ords=1 L

∗
p(s) = r− 1 (Corollary 6.8(a)). Proposition 6.11 and Corollary 8.2 imply that

|Σp∗(K,W ∗)/div| = |Xrel(p)(K)(p∗)| · [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))]

∼ p−2 · |X(K)(p∗)| · logE,p∗(yp∗) · logE,p(yp).
We therefore deduce from (5.1), (2.7) and Remark 3.4 that

lim
s→1

L∗
p(s)

(s− 1)r−1
∼ [logp(ψ

∗(γ))]r−1 · p−2 · |X(K)(p∗)| · logE,p∗(yp∗) · logE,p(yp) · RK,p∗,

as asserted.
This completes the proof of Theorem B.

9. Canonical elements in restricted Selmer groups

The goal of this section is to explain how the methods of [Rub92a] may be used to produce an
exact formula for lims→1 L

∗
p(s)/(s − 1) when r = 0 (see Theorem 9.5). The arguments involved are

quite similar to those of [Rub92a], and so, in what follows, we assume that the reader has a copy of
[Rub92a] and is willing to refer to it from time to time for some of the details we omit.

We begin by introducing the following notation (some of which differs from that of [Rub92a]):

Un,p := units in Kn,p congruent to 1 modulo p;
Un,p∗ := units in Kn,p∗ congruent to 1 modulo p∗;
U∞,p := lim←−Un,p, U∞,p∗ := lim←−Un,p∗;
U∗
n,p := units in K∗

n,p congruent to 1 modulo p;

U∗
n,p∗ := units in K∗

n,p∗ congruent to 1 modulo p∗;

U∗
∞,p := lim←−U

∗
n,p, U∗

∞,p∗ := lim←−Un,p∗,
where all inverse limits are taken with respect to norm maps. We also set

En := global units of Kn, E∗n := global units of K∗
n;

En := the closure of the projection of En into Un,p;

E∗n := the closure of the projection of E∗n into U∗
n,p∗;

E∞ := lim←−En, E∗∞ := lim←−E
∗
n.
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Remark 9.1. Note that since the strong Leopoldt conjecture holds for all abelian extensions of K
(see [Bru67]), we have that

En 	 En ⊗Z Zp, E∗n 	 E∗n ⊗Z Zp,

and so we may also view E∞ as being a submodule of U∞,p∗ and E∗∞ as being a submodule of U∗∞,p.
We do this without further comment several times in what follows.

Proposition 9.2. There are natural injections

ρ : Hom(T ∗, (U∗
∞,p ⊗Q)/E∗∞)Gal(K∗∞/K) ↪→ Σ̌p(K,T ),

ρ∗ : Hom(T, (U∞,p ⊗Q)/E∞)Gal(K∞/K) ↪→ Σ̌p∗(K,T ∗).

Proof. The proof of this result is essentially the same, mutatis mutandis, as that of [Rub92a, Propo-
sition 2.4]. The map ρ is defined as follows.

For any f ∈ Hom(T ∗, (U∗∞,p ⊗ Q)/E∗∞)Gal(K∗∞/K) and any integer n � 1, we define fn ∈
Hom(Eπn , E∗n/E∗p

n

n )Gal(K∞/K) to be the image of f under the following composition of maps:

Hom(T ∗, (U∗
∞,p ⊗Q)/E∗∞)Gal(K∗∞/K) → Hom(T ∗, (U∗

n,p ⊗Q)/E∗n)Gal(K∗∞/K)

→ Hom(Eπ∗n , E∗n/E∗p
n

n )Gal(K∗∞/K),

where the first arrow is the map induced by the natural projection U∗∞,p → U∗
n,p and the second

arrow is induced by raising to the pnth power in U∗
n,p.

Recall that, for each n � 1, there is an isomorphism

ρn : H1(K,Eπn) ∼−→ Hom(Eπ∗n ,K∗×
n /K∗×pn

n )Gal(K∗
n/K)

(see, e.g., [Rub92a, Lemma 2.1] or [Per83, Lemme 12]). We define

ρ(f) := [(p − 1)(π∗)2nρ−1
n (fn)] ∈ lim←−

n

H1(K,Eπn).

It is not hard to check from the definition that ρ is injective. It follows from Theorem 3.1, Propo-
sition 3.2, and Corollary 3.3 that ρ−1

n (fn) ∈ Σp(K,Eπn) if and only if the restriction of ρ−1
n (fn) to

H1(K∞, Eπn) is unramified outside p∗. It may be shown via an argument very similar to that given
in [Rub92a, Lemmas 2.1 and 2.3] that this in fact the case.

We now explain how elliptic units may be used (following [Rub92a]) to construct canonical
elements

s
(1)
p ∈ Σ̌p(K,T ), s

(1)
p∗ ∈ Σ̌p∗(K,T ∗)

when r = 0. These are the analogues in the present situation of the elements x(1)
p ∈ Šel(K,T ) and

x
(1)
p∗ ∈ Šel(K,T ∗) constructed in [Rub92a] when r = 1.

Let C∞ ⊆ E∞ and C∗∞ ⊆ E∗∞ denote the norm-coherent systems of elliptic units constructed in
[Rub92a, § 3], and write C∞ and C∗∞ for the closure of C∞ in E∞ and C∗∞ in E∗∞, respectively. Set

J ∗ := Ker(ψ∗ : Λ(K∗
∞)→ Zp), J := Ker(ψ : Λ(K∞)→ Zp),

and let ϑ∗ be the generator of J ∗ fixed in [Rub92a, § 6] (so ϑ∗ = γψ∗(γ−1) − 1, where γ is any
topological generator of Gal(K∗∞/K) satisfying logp(ψ∗(γ)) = p). Write f ⊆ OK for the conductor
of the Grossencharacter associated to E, and let N(f) denote the norm of this ideal. Fix B ∈
Ef/Gal(K/K), and generators w of T and w∗ of T ∗ according to the recipe described in [Rub92a,
§ 6]. Let

θB(N(f)−1w∗) ∈ C∗∞ ⊆ U∗
∞,p ⊗Q

denote the elliptic unit constructed in [Rub92a, § 3].
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Suppose that t is a positive integer such that

C∗∞ ⊆ It−1E∗∞ ⊆ U∗
∞,p ⊗Q and C∗∞ ⊆ It(U∗

∞,p ⊗Q).

Proposition 9.3. There exists a unique homomorphism σ
(t)
p ∈ Hom(T ∗, (U∗∞,p⊗Q)/E∗∞)Gal(K∗∞/K)

such that

σ
(t)
p (w∗)ϑ

∗t
= θB(−N(f)−1w∗)

in E∗∞/J ∗tE∗∞.

Proof. Theorem 7.2(i) of [Rub92a] implies that U∗∞,p contains no ϑ∗-torsion elements. The existence

of σ(t)
p therefore follows via an argument very similar to that of [Rub92a, Theorem 4.2].

We set
s
(t)
p := ρ(σ(t)

p ), s
(t)
p∗ := ρ∗(σ(t)

p∗ ),

where of course the definition σ
(t)
p∗ ∈ Hom(T, (U∞,p∗ ⊗ Q)/E∞)Gal(K∞/K) is the same, mutatis

mutandis, as that of σ(t)
p .

Remark 9.4. In fact the only non-zero values of s(t)p and s(t)p∗ occur when r = 0 and t = 1, as we now
shall demonstrate.

(a) Suppose that r = 0. Then Lp(1) �= 0, and so we have (via [Rub92a, Theorem 7.2(i)], for
example) that

C∞ ⊆ E∞ ⊂ U∞,p ⊗Q and C∞ �⊆ I(U∞,p ⊗Q).
In particular, we have that C∞ �⊆ IE∞ ⊆ U∞,p⊗Q. Similar remarks also imply that C∗∞ �⊆ I∗E∗∞ ⊆
U∗∞,p∗ ⊗Q. Applying Remark 9.1, we deduce that

C∗∞ �⊆ I∗E∗∞ ⊆ U∗
∞,p∗ ⊗Q. (9.1)

Now suppose in addition that [ , ]K,p∗ is non-degenerate. Then Theorem A implies that ords=1 L
∗
p(s)

= 1, and so from [Rub92a, Theorem 7.2(i)], we have

C∗∞ ⊆ I∗(U∗
∞,p ⊗Q). (9.2)

We now deduce from (9.1) and (9.2) and the definition of ρ that s(1)p �= 0.

A similar argument also shows that s(1)p∗ �= 0.
(b) Suppose now that r � 1. Assume that X(K)(p) is finite, and that the height pairing [ , ]K,p∗

is non-degenerate. Then Theorem B (or [Rub92a, Corollary 11.3]) implies that ords=1 L
∗
p(s) = r−1,

and so it follows from [Rub92a, Theorem 7.2(i)] that

C∗∞ ⊆ I∗r−1(U∗
∞,p ⊗Q). (9.3)

On the other hand, [Rub92a, Theorem 4.2 and Proposition 4.4] imply that

C∗∞ ⊆ I∗r−1E∗∞ ⊆ U∗
∞,p∗ ⊗Q, C∗∞ �⊆ I∗rE∗∞ ⊆ U∗

∞,p∗ ⊗Q,

and so applying Remark 9.1, we deduce that

C∗∞ ⊆ I∗r−1E∗∞ ⊆ U∗
∞,p ⊗Q, C∗∞ �⊆ I∗rE∗∞ ⊆ U∗

∞,p ⊗Q. (9.4)

It now follows from (9.3) and (9.4) that s(t)p = 0 for 1 � t � r− 2 and that s(t)p is not defined for
t � r − 1.

(c) Suppose that r = 0, but that ords=1 L
∗
p(s) > 1 (so, in particular, the pairing [ , ]K,p∗ is

degenerate, which we expect never to happen). Then an argument similar to that given in part (b)
above shows that s(1)p = 0, and that s(t)p is not defined for t > 1.
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Theorem 9.5. Suppose that r = 0 and that [ , ]K,p∗ is non-degenerate, so ords=1 L
∗
p(s) = 1. Then

lim
s→1

L∗
p(s)
s− 1

= N(f)−1(p− 1)
(

1− ψ∗(p)
p

)
lim
n→∞ logp(σ

(1)
p,n(w

∗)).

Proof. This may be shown in exactly the same way as [Rub92a, Proposition 9.4(ii)].

Remark 9.6. The precise relationship between Theorem A and Theorem 9.5 is not clear, and it
would be interesting to obtain a better understanding of this.
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