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ABSTRACT 
Electric Vehicles (EVs) are very quite at low speed, which can be hazardous for pedestrians. It is 
necessary to add warning sounds but this can represent an annoyance if they are poorly designed. On 
the other hand, they can be not enough detectable because of the masking effect due to the background 
noise. In this paper, we propose a method for the design of EV sounds that takes into account in the 
same time detectability and unpleasantness. It is based on user tests and implements Interactive Genetic 
Algorithms (IGA) for the optimization of the sounds. Synthesized EV sounds, based on additive 
synthesis and filtering, are proposed to a set of participants during a hearing test. An experimental 
protocol is proposed for the assessment of the detectability and the unpleasantness of the EV sounds. 
After the convergence of the method, sounds obtained with the IGA are compared to different sound 
design proposals. Results show that the quality of the sounds designed by the IGA method is 
significantly higher than the design proposals, validating the relevance of the approach. 
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1 INTRODUCTION 

Electric vehicles (EVs) and hybrid vehicles are becoming a serious alternative to internal combustion 

engine cars (Gillibrand et al., 2011). However, at low speed (under 40km/h), EVs are very quiet and 

may be dangerous for pedestrian or visually impaired peoples who have to rely on auditory cues when 

intending to cross a road (Parizet et al., 2014). Regulation concerning the sounds of electric cars is still 

under study. Nevertheless, several countries such as Japan and the United States of America already 

decided that adding artificial sounds to EVs is compulsory (Konet et al., 2011). Car manufacturers 

started to design warning sound generator devices, named for instance AVAS (Approaching vehicle 

Audible System), VSP (Vehicle Sound for Pedestrian), VPNS (Vehicle Proximity Notification 

Systems)… Many studies have been conducted to recommend design guidance for warning sounds 

and external sound generation systems (Senselab, 2011), (Robart et al., 2013), (Singh et al., 2014). 

The sonification of EVs is a complex design problem, with many constraints and stakeholders 

involved. Stakeholders include cyclists and pedestrians some of whom might have difficulties hearing 

warning sounds in a urban environment, drivers who expect audio-feedback on the performance of the 

car, and other third parties who prefer not to be disturbed by additional sounds (Petiot et al., 2013). 

The main difficulty in the design concerns the tradeoff between detectability and acceptance of the EV 

sound (Lee et al., 2017).  

It is indeed clear that EV sounds may be masked by the background noise of the environment, making 

them hard to detect. And a naïve solution consisting in a simple increase of the sound level to reduce 

the masking effect may have dramatic consequences on the sound pollution of cities. There is then 

clearly a conflict between detectability and annoyance for the perception of EV sounds. Different 

studies addressed this problem (Campillo-Davo and Rassili, 2016), (Lee et al., 2017), (Parizet et al., 

2014). All these studies are based on hearing tests of a predefined set of sound stimuli. They produced 

interesting results to give recommendations for the design of sounds by the fitting of a model between 

the perceptual dimensions and the sounds parameters. This data modeling stage may constitute a 

limitation for the optimization of sounds, given the number of parameters of the sounds and the 

possible interaction between them. 

To address this problem, we propose in this paper an interactive optimization of EV sounds based on 

Interactive Genetic Algorithms (IGA). This model-free approach is efficient to improve design solutions 

during interactive assessments (Poirson et al., 2013), and to take into account subtle perceptual 

phenomenon (Wakefield et al., 2005). The first objective is to define a design method for the 

optimization of the tradeoff detectability/unpleasantness of EV sounds. It is based on hearing tests of 

synthesized EV sounds by a panel of participants, and uses Interactive Genetic Algorithms (IGA) for the 

optimization of quality (or fitness) of the sounds. A second objective of the paper is to assess the 

efficiency of the design solutions compared to different designs and current proposals of a designer. 

The remainder of the paper is organized as follows. Section 2 presents a short background on 

interactive Genetic Algorithms (IGA) and their use in product design. Section 3 presents the material 

and methods for the experiment. It starts with a presentation of the sound synthesis method and the 

associated parameters, the tasks given to the participants, the sound stimuli used, and the method used 

for the analysis of the results. Results are presented in section 4. The concluding section provides 

implications for sound design and perspectives. 

2 BACKGROUND ON IGA 

2.1 Principles  

Genetic Algorithms (GA) are evolutionary optimization methods (Goldberg, 1989) The principle of 

GA is based on iterative generations of population of individuals, converging step by step toward 

solutions, which are adapted to the problem. Based on the principle of Darwin’s natural evolution 

theory, the algorithm proceeds to a selection of parents, which will spread their genetic dominant 

heritage in the next generation, suitable to a desired objective. Classically, the fitness evaluation of the 

individuals is calculated numerically with a mathematical function known beforehand. A particular 

category of GA, Interactive Genetic Algorithms (IGA) introduces the user in the optimization loop to 

assess the fitness. During each iteration the user selects solutions (products) that he/she considers as 

the most interesting for the desired objective. After a number of iterations, the method may converge 
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towards solutions that fulfill the user’s objective. These algorithms are used for example to explore 

design spaces and to encourage creativity (Kim and Cho, 2006), (Qian and Ben-Arieh, 2009). Since 

the user decides the individual fitness, there is no need for a prior and unique formulation of the fitness 

function. For some applications, such as exploring semantic dimensions (Poirson et al., 2013) or 

integrating complex perceptual processes (Wakefield et al., 2005) (Lee and Chang, 2010), this 

advantage is crucial. 

2.2 Implementation of IGA 

After a definition of the variables of the product and their corresponding levels, a coding of the 

designs, represented by a chromosome, is proposed. Our implementation uses a binary coding and 

discrete-valued variables. A more complete description of the implementation of our IGA can be 

found in (Poirson et al., 2013). The IGA creates an initial population of designs by randomly 

generating the chromosomes and presents them to the user (e.g. pictures or sounds). Based on personal 

criteria, and according to the instructions given to the user for the experiment, the user has to select a 

subset of these individuals (1 or 2), or to rate each individual according to its “fitness”. A new 

population of individuals is then created using one of three different operations on each individual 

from the previous population. The efficiency of our IGA is ruled by its 3 operators: crossover, 

mutation, and selection, chosen randomly for each individual of the population, and controlled by the 

crossover rate ( rc ), the mutation rate ( rm ) and the selection rate (
rs ). These values are chosen between 

0 and 1 in such a way that   1r r rc m s . An indicator, rand(i), is randomly chosen between 0 and 1 

for each individual i with a uniform distribution.  

– If rand(i) < rc , the operation is a crossover (single point crossover – the second parent is 

chosen randomly in the population) 

– If rc  ≤ rand(i) ≤ r rc m , the operation is a mutation (random mutation of one variable) 

– If rand(i) > r rc m , the operation is a selection (simple duplication of the individual) 

A fourth important parameter of the IGA is the roulette wheel rw . In the crossover operation, the 

probability that an individual will be a parent in the crossover operation is increased by the weight 

rw  >1. An automatic process was implemented to tune the different parameters of our IGA (Poirson et 

al., 2013). This process uses simulated “virtual” users and a “target” product in the design space 

(defined by target values of the design variables). To simulate the choices of a virtual user, a distance 

function between the individuals of the population and the target is computed. By launching several 

simulations in the same conditions (Monte Carlo method), an average estimate of the convergence 

rates of the IGA is computed, given the value of the parameters. This process allows the experimenter 

to determine the “optimal” tuning of the parameters, given a maximum number of generations. 

3 MATERIAL AND METHODS 

3.1 EV sound synthesis 

3.1.1 Components of the sound 

The EV sounds were synthesized using the mathematical modeling software Matlab and the additive 

synthesis technique. In order to generate different but plausible sounds for an electric car, after an 

analysis of current sounds of different carmakers (Misdariis et al., 2012) and personal propositions 

(Petiot et al, 2013), four main components of the sound were considered. The components are also 

named design factors in this paper. 

 Component C1 “A thermic motor sound”. This component synthesizes the first harmonics of a 

classical 4-stroke internal combustion engine (H0.5, H1, H1.5, H2, H4, H6), 

 Component C2 “A Harmonic Sound”. This component synthesizes different musical ‘notes’, 

harmonic, that constitute a chord (chord with 2, 3, or 4 notes), 

 Component C3 and C4: “A broad band Noise” (granular synthesis). These components synthesize 

two filtered noises. 

The final temporal signal ( )s t  is simply a weighted sum of the different components (equation 1). 

1 2 3 4( )   . 1( ) . 2( ) . 3( ) . 4( )C C C Cs t a C t a C t a C t a C t  (1) 
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In addition to this, different parametric filters were applied to the final sound: (1) a sweeping filter 

(envelop filter), which changes the harmonics amplitude in function of time – (2) a flanging filter 

(swept comb filter effect), which produces time variations of the frequency spectrum. 

Since it is out of the scope of this paper to describe all the parameters of the synthesizer (there are 

more than 70 independent parameters to define a sound), we can mention that all the frequencies and 

amplitudes of the components are adjustable, to create credible and original sounds, as well as the 

filters parameters. The sound is not constant but ‘played’ by a control parameter of the car: the speed. 

To make the sound evolve with the speed of the car, we choose to adjust the frequencies and the 

amplitudes of the different components according to the speed with parameterized patterns.  

3.1.2 Design variables of the EV sound 

Among the different synthesis parameters of the sounds, it is necessary to define which one are 

manipulated by the IGA and coded in the genome (space of exploration of the genetic code). After 

several experiments, the following 6 variables, and their corresponding levels, were chosen as factors 

to get a large diversity of sounds (table 1). The four first factors (C1, C2, C3, C4) control the 

frequencies of the components C1, C2, C3, C4, the factor Amp control the relative amplitude of the 

different components, and the Filter controls the use of different filters to alter the global sound. 4 

levels were chosen for each factor. The setting of the levels of the factors required many adjustments 

(not reported here) to obtain audible differences between sounds, but with still convenient sounds. 

Table 1. Definition of the 6 factors (design variables) and their levels 

Factor Variable Level 1 Level 2 Level 3 Level 4 

C1 Fundamental 

frequency of C1 

70Hz 100Hz 130Hz 160Hz 

C2 Fundamental 

frequency of C2 

100Hz 150Hz 200Hz 250Hz 

C3 Central frequency of 

C3 

100Hz 200Hz 300Hz 400Hz 

C4 Central frequency of 

C4 

500Hz 600Hz 700Hz 800Hz 

Amp Amplitude of C1, C2, 

C3, C4 

 1 2Ca  

 2 1Ca  

 3 0.75Ca  

 4 0Ca  

 1 0.5Ca  

 2 0.75Ca  

 3 1.5Ca  

 4 0.33Ca  

 1 0.25Ca  

 2 0.5Ca  

 3 0.1Ca  

 4 0.25Ca  

 1 0Ca  

 2 0.1Ca  

 3 0.1Ca  

 4 0.5Ca  

Filter Type of filter None Sweeping filter Flanger Sweep+flanger 

With these six factors and four level, the design space counts 64 4096 possible designs (all the 

possible combinations of the full factorial). 

3.2 Scenario and sound stimuli 

Given that the objective of the test is to assess the reaction time associated to the detection of the EV 

sound, the sound must be incorporated in a background noise (masking signal).  The background noise 

considered in the study corresponds to a two-lane street in downtown. The soundscape was 

synthesized with the SimScene software1 (Rossignol et al., 2015), from real recordings in a city. To be 

used as background noise, the soundscape must not contain any strong emergent event (horns, car 

passing, …) (Kerber and Fastl, 2008). The level of the background noise was adjusted to a convenient 

level and kept constant for all the stimuli proposed in the hearing test. To avoid the potential fatigue of 

the participant due to the repetition of the same background noise during the test, the part of the audio 

file selected (15 seconds) was randomly chosen in the total background noise (duration 1mn). The 

scenario chosen for the test corresponds to the following situation (Misdariis et al., 2013): a pedestrian 

located on the sidewalk of a street waits before crossing (Figure 1). An EV may pass by, coming either 

from the right or from the left. The listener is static, and must indicate when he/she detects the EV. 

                                                      

 
1 Open-source project available at: https://bitbucket.org/ mlagrange/simscene 
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Figure 1. Passing-by scenario for the hearing test: pedestrian located on the sidewalk of a 
street 

To obtain a pseudo-realistic passing-by scenario, the following properties have been implemented: 

 The sound level of the EV is modulated according to the vehicle/listener distance. The model 

used, based on acoustic theory, considers the EV as a monopole and provides a sound level 

inversely proportional to the distance to the listener (1/r) (see figure 2) (Misdariis et al., 2013), 

(Lee et al., 2017). 

 The speed of the EV is considered as constant and equal to 30km/h 

 The duration of the sound stimuli is 15 seconds 

 The Doppler effect (shifting in frequency due to the speed of the source) is taken into account for 

a more realistic experience, 

 The direction of the car (from the right or from the left) is randomly chosen 

 The panning of the EV sound is managed in such a way that the source goes progressively from 

one canal (left or right, depending of the direction of the EV) to the other (right or left) according 

to the position of the vehicle 

Figure 2 describes the assembly of the background and the EV sounds and their respective sound level 

evolution. 

 

Figure 2. Timeline of the assembly of the background and the EV sound, with their respective level 
evolution (the x axis represents indifferently the time or the distance of the EV, given that the speed of 

the vehicle is constant) 

We can mention that for experimental reasons related to the test duration, the attenuation function of 

the EV sound is asymmetrical, as in (Misdariis et al., 2013) (the attenuation is more fast than the 

increase of the sound level). Of course this aspect does not affect the detectability of the EV sound, 

which always occurs in the approach phase. 

3.3 Experiment 

The objective of the experiment is to assess the detectability and the unpleasantness of EV sounds. 

Background sound 

level 

t=0 

EV sound 

level 

t1 

Listener 

position 

t2: detection time 

Fade in Fade out 

Time/distance 

0 

0 

t3 

r: distance to 

pedestrian 
1/r 
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15 participants (12 males), with no reported auditory deficiencies, performed the experiments. The 

audio stimuli were presented with the same hardware desktop configuration, sound card and software, 

as well as Beyerdynamics DT-990 headphones in a quiet environment. The same sound output level 

was set by the experimenter for all computers. Instructions were given to the participants at the 

beginning of the experiment, mainly to explain how to assess the detection time. 

After selecting a sound (“select” button Figure 3), participants had to strike the “space bar” to start 

playing the stimuli (t = 0), and next strike the “a” key as soon as they detect the EV coming from the 

left, or the “e” key if it is coming from the right. This allows the definition of the detection time 2t . The 

detection duration dD  is then given by (equation 2). 

2 1dD t t  (2) 

In case the participant did not strike any key, or strike a key before 1t  (starting time of the EV), the 

detection duration was arbitrarily set to the maximum value, and a warning was recorded. In case the 

participant struck the wrong key (mistake in the direction of the EV), the detection duration was still 

computed, but a warning was recorded. The change in the direction of the car in the protocol is very 

important to be able to detect “false alarm” cases, where the participants strike the key before 

detecting the car. Furthermore, to avoid habituation of the participant in the detection time, the starting 

time 1t  of the EV sound in the mixture (figure 2) was not always the same, and was randomly chosen in 

the interval [1, 3] seconds. 

After assessing the detectability of the sound, participants were asked to rate the unpleasantness  sUn of 

the sound on a structured semantic scale (figure 3 – from “0”: not at all unpleasant to “10”: very 

unpleasant)). To explain this semantic dimension unpleasantness, the following information was given 

to the participants « If the car passed by your house during a calm moment, how unpleasant would the 

sound be? ». They were able to play again the stimuli, but of course it was not possible to assess again 

the detectability (given that they already heard the sound and knew the direction of the car). 

 

Figure 3. Interface for the assessment of the detectability and the unpleasantness of a 
sound stimulus (structured rating scale). 

3.4 IGA test 

The assessment of the EV sound according to detectability and unpleasantness has been included in an 

IGA iterative experiment. The problem of IGA tests is to manage a good balance between 

convergence properties and fatigue of the participant. After different tests, we considered that the 

assessment of 11 populations of 9 sounds was enough to not fatigue the participant. This corresponds 

to a test duration of around 35mn. An automatic process was implemented to tune the different 

parameters of our IGA (Poirson et al., 2010). The optimal tuning parameters of the IGA are as 

follows: 

 Wheelrate: 14rw  

 Crossrate:   0.65rc  

 Mutation rate: 0.3rm  

The fitness of the individuals was computed from the detectability and unpleasantness assessments 

(equation 3). The following form was defined, according to the detection duration  dD and the 

unpleasantness rating score sUn : 

3 1

1
1 (10 )

2

d
s

D
fitness a Un

t t
 (3) 
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The higher the unpleasantness, and the higher the detection duration, the lower the fitness. The 

parameter a represents the relative contribution of the detection time to the fitness. After several tests, 

it was set to 5a  to give a similar importance to detectability and unpleasantness given the variance 

in the population. At the end of the IGA test, the individual with the highest fitness optIGA  in the last 

population can be defined for each participant. 

3.5 Assessment of sounds proposals 

At the end of the IGA test, participants were asked to assess the detectability and unpleasantness of six 

different EV sound proposals (interface given in Figure 3). Four EV Sounds (

1,  2,  3,  4) rand rand rand rand were randomly defined in the experimental space, whereas two EV sounds 

( 1,  2)Sound Sound  were designed by a sound designer with instructions for good detectability and good 

acceptance. In total, each participant had to assess 105 sound stimuli (11*9 for the IGA + 6 design 

proposals). For each participant, the detection time, unpleasantness, fitness of his/her best individual 

optIGA  was next compared to those of the different sound proposals. In addition to this, the detection 

time was converted into the distance to pedestrian, i.e. the distance of the EV to the participant at the 

instant of detection. 

4 RESULTS 

Concerning the detection of the car direction, one participant made more than 50% or errors in the 

detection direction (problem with the headphone). He was withdrawn of the panel. The other 14 

participants made very few errors (less than 5 errors for the 105 stimuli), errors only in the direction of 

the car due to careless mistakes (strike of the wrong key). Their data were considered as valid. 

4.1 IGA convergence 

The average fitness of the population according to the generations for the whole panel of participants 

is presented in Figure 4. 

 

Figure 4. Average fitness of the populations over the generations. 

An improvement of the fitness is noticed over the generations, sign of the reliability of the 

experimental protocol for the assessment of the detection time and the unpleasantness, and a correct 

tuning of the IGA parameters. 

4.2 Analysis of the best IGA sounds 

Table 2 shows the occurrences of each level of the variables in the set of optIGA  sounds. For example, 

for the fundamental frequency of the motor sound (C1), 6 participants chose the level 3 (130Hz), 3 the 

level 2 (100Hz) or level 4 (160 Hz), and 2 the level 1 (70Hz) for their final sound. To define the 

variables subjected to the most consensual choice concerning their levels, a multinomial goodness of 

fit test of the distribution of the occurrences was carried out. Results are presented in Table 2. 
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Table 2: Occurrences of the levels of the variables in the IGA final choices of the 
participants (IGA test) 

 C1 C2 C3 C4 Amp Filter 

Level 1 2 2 3 5 8 1 

Level 2 3 4 4 4 0 4 

Level 3 6 3 3 2 3 3 

Level 4 3 5 4 2 2 5 

Multinomial 

test Signif. 

N.S. N.S. N.S. N.S.  *** N.S. 

 ***: p<0.01 N.S.: not significant 

Only one variable (Amp) obtains occurrences significantly different from a random distribution at the 

1% level. For the amplitude of the components of the sounds, the level 1 (strong presence of the 

thermic motor sound) is by far the most represented. This over-representation could be explained by 

the “naturalness” of the thermic motor sound in the street, and the habit of people to be surrounded by 

such noises. 

In conclusion, for the whole group, the presence of the thermic motor sound is important for the 

detectability and the acceptance of the EV sounds. For the other variables (C1, C2, C3, C4, Filter), 

there was no significant consensus, mainly because of the small size of the panel of participants. 

Additional studies are needed to identify the sound that better fits in average the requirement of all 

participants. 

4.3 Comparison IGA sounds/design proposals 

Figure 5 presents, for the panel of 14 participants, the average performances of the sounds proposals 

and of the best sound optIGA  according to the two criteria detection time and unpleasantness. The 

standard error is also reported for information. 

 

Figure 5. Scatterplot of the average performances of the different EV sounds (detection time 
vs. unpleasantness) with their standard error. 

It is clear on Figure 5 that the optIGA  sound is Pareto efficient. In average, the optIGA  sound obtains the 

best performances both for detectability and unpleasantness. The first proposal of the sound designer, 

Sound1, is still not unpleasant, but less detectable than optIGA . The second proposal, Sound2, is more 

detectable, but the price to pay is the unpleasantness, that is the largest. The randomly generated 

sounds (rand1 to rand4) obtain average performances: they are rather unpleasant, and with large 

detection times. 

To investigate the differences in the performances of the sounds, the average scores with their standard 

errors are presented in Figure 6 left (Detection time), Figure 6 right (distance to pedestrian), Figure 7 

left (Unpleasantness), and Figure 7 right (Fitness). To study the differences in the average score, a 

one-tailed paired t-test is carried out for every pair of sounds (significant threshold: p = 0.05). The 

results are presented with bold lines connecting the sounds in the figures. When sounds are connected, 

pairs are not significantly different, whereas they are when not connected.  
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According to detection time, there is no significant difference between two groups of sounds (Figure 6 

left): (rand2, Sound2, IGAopt) and (rand4, rand1, Sound1, rand3, rand2, Sound2). With detection 

time only, the optIGA  sound does not outrank two other proposals, particularly the sound designer 

proposal Sound2.  Concerning the distance to pedestrian, figure 6 (right) shows that some proposals 

(rand4, rand1) are detected under the stopping distance of the vehicle (considered as 11m at 30km/h). 

These sounds do not allow the EV to stay in a safety zone with regard to a blind detectability.  

 

Figure 6. Bar graph of the average value of the Detection time (left) and distance to 
pedestrian (right) for the different EV sounds. Non significant differences between pairs of 

sounds (p>.05) are linked with an horizontal line (paired t-test). 

According to Unpleasantness (Figure 7 left), there is no significant difference between three groups of 

sounds. Again the optIGA  sound does not outrank all the proposals, particularly the sound designer 

proposal Sound1. When global fitness is considered (Figure 7 right), optIGA  is then significantly 

different of all the other proposals. This result shows that the IGA allows a conjoint optimization of 

the two conflicting criteria. 

 

Figure 7. Bar graph of the average value of the Unpleasantness (left) and Fitness (right) for 
the different EV sounds. Non significant differences between pairs of sounds (p>.05) are 

linked with an horizontal line (paired t-test). 

These results are average results for the whole panel. At the individual level, the IGA sounds got the 

best fitness for 7 participants out of 14. The IGA procedure is interesting to define convenient EV 

sounds, optimized for unpleasantness and detectability. It allows ones to uncover tradeoffs between 

detectability and unpleasantness.  

We are of course aware that there is a bias in the evaluation process because the same experimental 

protocol is used for the optimization and for the evaluation. A different experiment should be 

proposed, why not in real environment, to prove with an independent experiment that the IGA process 

is efficient to design EV sounds. This will be conducted in future experiments. The positive results are 

nevertheless encouraging given the small number of studies on the interactive optimization of sounds. 
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5 CONCLUSION 

This paper presented an experiment aiming at designing EV sounds that are detectable but not 

unpleasant. An Interactive Genetic Algorithm was implemented in order to optimize the fitness of 

synthesized sounds. The designed experimental protocol provided a realistic assessment of the 

detection time. With hearing tests, and inclusions of the EV sounds in a background sound, 

assessments of the detection time and the unpleasantness of the sounds were provided. First results 

show the potential of the method: the IGA algorithm is effective for the design of efficient sounds. 

Comparisons between sound proposals showed that in average, the sound provided by the IGA was 

significantly more efficient. Several perspectives can be drawn for this project. We are of course aware 

that our study would need more participants to confirm these first encouraging results. A next stage of 

the project will be to explain the performances in detectability and unpleasantness with sound 

parameters (spectral or spectro-temporal). This will be important to be able to draw recommendations 

to a sound designer and to improve the design of sounds for EVs. 
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