
BULL. AUSTRAL. MATH. SOC. 20E34, 20M10

VOL. 52 (1995) [253-261]

SOLUBLE AND LINEAR REPETITIVE GROUPS

A.V. KELAREV AND P.V. SHUMYATSKY

Our main theorem describes FC-soluble and linear repetitive groups. As a corollary,
we characterise algebraic linear repetitive semigroups.

1. INTRODUCTION

Let 5 be a semigroup, and let s — 8%,... ,sm be a sequence of elements of 5 .
A k-factoriaation of s is a sequence t = ti,... ,tm, where the tj's are the values of
fc consecutive segments of a, that is, tj — 8^8^+1 • • • 8ii+l-i for j = 1, . . . ,k and
some 1 ^ ii < »2 < • • • < U+i ^ m + 1. We say that t is a power fc-factorisation
if t1 = ... = tk. A semigroup S is said to be repetitive if and only if, for each finite
subset X of S and every integer k > 0, there exists a positive integer L = L(S,X,k)
such that every sequence Si, . . . , SL of elements of X has a power fc-factorisation.

Repetitive semigroups were introduced by Justin [5, 6]. The fact that the infinite
cyclic group is repetitive is a generalisation of the van der Waerden theorem on arith-
metic progressions (see [6]). A well-known corollary to Ramsey's theorem implies that
every finite semigroup is repetitive (see [15, Section 4.1]). Repetitivity is related to a
few other combinatorial conditions (see [9, 12, 13, 15, Section 4.2, 16]).

Complete descriptions of repetitive commutative semigroups and repetitive Rees
quotients of free monoids were obtained in [7] and [10], respectively. The preservation
of repetitivity by various constructions was investigated in [5], [6] and [17]. It is known
that a nilpotent group is repetitive if and only if it is of linear growth (see [4, 6, 8] and
the survey [11]). In view of Gromov's theorem, this gives a description of all repetitive
groups of polynomial growth. However, the problem of characterising repetitive groups
remains open.

In this paper we solve this problem for FC-soluble and linear groups, obtaining a
description in the language of forbidden sections. This result is analogous to Justin's
characterisation of repetitive commutative semigroups (see Proposition 3.1 below). Note
that FC-groups play key roles in considerations of several other combinatorial properties
of groups (see, for example, [2]). The exact analog of our theorem is not true for
arbitrary groups (Example 2.3).
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It was conjectured in [11] that every repetitive group has a linear growth. Our main
theorem shows that this conjecture is true for FC-soluble and linear groups. On the
other hand, there exist repetitive semigroups with non-linear growth ([10, Theorems 1,
3], or [5]).

As an application of our main theorem we shall easily describe all algebraic linear
repetitive semigroups (Corollary 2.2).

2. MAIN RESULTS

A group H is called a section of G if it is a homomorphic image of a subgroup
of G. We shall call a semigroup 5 a section of G if it is a homomorphic image of
a subsemigroup of G. We shall use Z and N to denote the additive group of all
integers and the additive semigroup of all positive integers respectively. Recall that the
free commutative group (semigroup) of rank two is isomorphic to Z x Z (respectively,

n

N x N). For a subset X of a semigroup 5, put X^ = \J X\ As usual the wreath

product of groups G and H is denoted by G I H. The subgroup generated in G by a
set X is denoted by {X).

THEOREM 2 . 1 . Let G be an FC-soluble or linear group. Then the following are
equivalent:

(i) G is repetitive;
(ii) G has linear growth;

(iii) every finitely generated subgroup of G is cych'c-by-finite;
(iv) G has no section isomorphic to the free commutative semigroup of rank

two.

COROLLARY 2 . 2 . An algebraic linear semigroup is repetitive if and only if it
does not contain a subsemigroup that can be homomorphically mapped onto the free
commutative semigroup of rank two.

EXAMPLE 2.3. Let G be the infinite finitely generated Burnside group of Novikov and
Adjan (see [l]) satisfying the identity xn = 1 for some n. Obviously, it has no section
isomorphic to N x N. However, it is not repetitive. Indeed, repetitivity and the identity
xn = 1 easily imply that G is locally finite, giving a contradiction. Thus, the analog
of our main theorem for arbitrary groups is not true.

EXAMPLE 2.4. Let C = (c) be the infinite cyclic group with a generator c, and let
d — {a) be the cyclic group of order i with a generator c,-; i = 2 ,3 , . . . . Denote
by D the direct product of all these cyclic groups. We shall use additive notation for
the group operation in D. Let 6j denote the automorphism of D which maps c to
c + Ci and leaves all Cj 's fixed. Put B = (bi; i = 2,3,...) and consider the semidirect
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product G = DB. Every finitely generated subgroup of G is cyclic-by-finite, and so
repetitive. However, G has no normal infinite cyclic subgroup. Thus, G is a repetitive
group which is not an extension of a cyclic group by a locally finite group.

EXAMPLE 2.5. For a prime p , consider the wreath product W = Z p J Z . It has no
section isomorphic to the free Abelian group of rank two. By Lemma 3.8 below W is not
repetitive. Therefore in condition (iv) of the main theorem we cannot replace sections
isomorphic to the free commutative semigroup of rank two by sections isomorphic to
the free Abelian group of rank two.

3. PROOFS

Our proofs rely on the technique developed by Justin in other results concerning
repetitivity. In particular, we shall use the following

PROPOSITION 3 . 1 . (Justin [7]). A commutative semigroup is repetitive if and
only if it does not contain the free commutative semigroup of rank two.

For preliminaries on semigroups, algebraic linear semigroups, groups, FC-groups
and linear groups we refer to [3, 17, 18, 20] and [21], respectively. Let us first record
two easy lemmas.

LEMMA 3 . 2 . A semigroup is repetitive if and only if all its finitely generated
subsemigroups are repetitive.

LEMMA 3 . 3 . Tie class of repetitive semigroups is closed under subsemigroups
and homomorphic images.

The class of repetitive groups is not closed under group extensions, as is clear from
Example 2.5. In contrast, the next lemma shows that the class of repetitive semigroups
is closed under ideal extensions.

LEMMA 3 . 4 . Let T be an ideal of a semigroup S. If T and S/T are repetitive,
then S is repetitive, too.

PROOF: Let 5 be a semigroup, T an ideal of S, and let T and S/T be repetitive.
Take any finite subset X of S. We shall denote the image of X in S/T by the same
letter X. Take a positive integer k.

Put m = L(S/T,X,k), Y = Xm D T, n = L{T,Y,k), and L = mn. We claim
that L satisfies the definition of L(S,X, k).

Consider a sequence a = « i , . . . , at, of elements of X and its factorisation u =
«i,--- )««, where u< = «(i_i)m+i • ••«,„, for t = 1,. . . ,n. If ult... ,un G T, then u
has a power Jk-factorisation by the choice of n. If, however, «,• £ T for some i, then ttj
has a power Jb-factorisation by the choice of m. The latter is a power Jfe-factorisation
of a, too. Thus S is repetitive. 0
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LEMMA 3 . 5 . If a semigroup S is the union of its repetitive right (or left) ideals
Ri, where » £ / , then 5 is repetitive.

PROOF: We shall consider only the case of right ideals, since for left ideals the
proof is similar. Every finitely generated subsemigroup of 5 is the union of a finite
number of subsemigroups of the Ri's. All these subsemigroups are repetitive. In view
of Lemma 3.2 without loss of generality we may assume that the indexing set / is finite.
By induction it suffices to consider the case where |/| = 2.

Take an arbitrary finite subset X of 5 . Let X{ = X D Ri, for i = 1,2. Put
m = L(R2,X2,k) and Yi = X\ UXiX^m'. Since Yi is contained in the repetitive right
ideal R\, the number L(Ri,Yi,k) can be defined, and we put n = m(L(Ri,Yi,k) + 1).
We claim that n can serve as L(S,X,k).

Indeed, look at an arbitrary sequence a = a\,... ,an of elements of X. Let
SJJ , Si7,... , Sit be all elements of a belonging to X\, where i\ < i2 < . •. < it •

If a has m consecutive elements which all belong to the set X2, then the segment
formed by these elements has a power A-factorisation by the choice of m.

It remains to consider the case where every segment of m consecutive elements of
a contains an element of Xi. Then ii ^ m, and ij+i ^ ij+m, for all j[ = 1, ...,.£ — 1.
Hence by the choice of n we get t > L(R\,Yi,k). Since R\ is a right ideal, all elements
Uj — Si- ••• «j.+1-i of the factorisation u = u\,... ,ut-\ belong to Y\. Therefore a
has a power fc-factorisation again, because I — 1 ^ L{R\,Y\,k). This completes the
proof. U

REMARK 3.6. It follows from Lemmas 3.2, 3.3 and 3.4, that every semigroup S with
zero has a largest repetitive ideal Tl(S) such that S/%{S) has no nonzero repetitive
ideals.

LEMMA 3 . 7 . If G is a repetitive group, and S = M°(G; I, A; P) is a fiees matrix
semigroup, then S is repetitive.

PROOF: It is well-known that every Rees matrix semigroup S is the union of its
right ideals Ri, i G / , where every Ri is the union of its left ideals Hi\, A £ A, such
that each Hi\ is either a group isomorphic to G with zero adjoined, or a semigroup
with zero multiplication [3, Section 3.2]. Applying Lemma 3.5 twice we see that 5 is
repetitive. D

LEMMA 3 . 8 . If G is a nontriviaJ group and H is a nonperiodic group, then the
wreath product W = G I H contains free semigroups of all finite ranks.

PROOF: The base group B of W is the direct product B — YlheH^^> w^ere
each Bh is a copy of G. Denote the image of an element j £ G in Bj by j / , . Fix
any g £ G\{e} and any element of infinite order h € H\{e}. Consider elements
*i = (h2,9h) and x2 = (h2,ght).
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The product of elements (a,bq)(c, dh), where b,d £ G, a, c, q, h £ H, is equal to
(ac,bqcdh). Therefore, for any i1,i2,... ,in £ {1,2}, the product y = x^Xi, • • • Xin is
equal to (h2n,gklgk7 ••• gkn), where kj = h*' and tj =ij+2(n-j) for j - 1 ,2, . . . ,n .
Since the numbers < i , . . . , t n are pairwise distinct, all elements gkl, • • • > <7fcn belong to
different components of the direct product B. Therefore, the sequence i i , . . . ,in is
uniquely determined by the resulting product y. Thus Xi and x-i generate a free
semigroup of rank two. The latter contains free subsemigroups of all finite ranks. U

LEMMA 3 . 9 . If a group G contains a cyclic subgroup of finite index, then it is
cyclic-by-finite.

PROOF: Let H be the cyclic subgroup of G. Given that H is of finite index in G,
the core HQ also has a finite index in G [18, 1.6.9]. Obviously, HG is a cyclic normal
subgroup of G. u

LEMMA 3 . 1 0 . Let G possess an infinite cyclic subgroup H such that G/H is
infinite cyclic. Then G has a subgroup isomorphic to the free Abelian group of rank
two.

PROOF: Let gH generate the cyclic group G/H. Since the automorphism group
of H is of order two, g2 £ CG(H). It follows that (g2,H) is isomorphic to the free
Abelian group of rank two. D

LEMMA 3 . 1 1 . A finite-by-cyclic group is cyclic-by-finite.

PROOF: Let N be finite and G/N cyclic, generated by hN. Then (h) = H is an

infinite cyclic subgroup of G. Since G = \J hmN, we get G = \J Hx. Thus \G : H\
m=l iCTV

is finite. The result follows by Lemma 3.9. U

LEMMA 3 . 1 2 . A finitely generated FC-group has no section isomorphic to the
free group of rank two if and only if it is cyclic-by-finite.

PROOF: By [20], Corollary 1.5, G is finite over its centre (see also [18, 14.5.10]).
Denote by C the centre of G. Since C has finite index in G, it follows that C is
finitely generated [18, 4.2.10]. Therefore it is the direct product of finitely many cyclic
groups [18, 4.2.10]. Given that G has no section isomorphic to the free Abelian group
of rank two, we see that C is cyclic-by-finite. Therefore G contains a cyclic subgroup
of finite index. Lemma 3.9 completes the proof. u

LEMMA 3 . 1 3 . If an FC-group G has no section isomorphic to Z x Z, then it is
an extension of a locally finite group by a cyclic group.

PROOF: Consider the set T of all periodic elements of G. By [18, 14.5.9] T is a
normal locally finite subgroup of G, and the quotient group G/T is an Abelian torsion-
free group. Given that G has no sections isomorphic to Z x Z, the same can be said
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of G/T. Therefore G/T is cyclic. D

LEMMA 3 . 1 4 . Let G •= (a, b) be a. group without sections isomorphic to N x N .
Suppose that the normal closure T of a in G is an FC-group. Then G is cyclic-by-

iinite.

PROOF: Let F be the set of all elements of finite order in T. By Lemma 3.13 F

is locally finite and T/F is cyclic.

First, assume that a is of infinite order. Then T/F is infinite cyclic. Suppose that
G/T is infinite. Since F is normal in G, we can factor it out and get a torsion free
cyclic-by-cyclic group. By Lemma 3.10 it has a section isomorphic to N x N, which is
also a section of G. This contradiction shows that G/T is finite. Then T is finitely
generated by [18, 1.6.11]. Lemma 3.12 tells us that T is cyclic-by-finite. By Lemma
3.9, the same can be said of G. Thus, if a is of infinite order, then G is cyclic-by-finite.

Now, we assume that a is of finite order. Then a £ F, and so T = F is locally
finite. Let A be the normal closure of a in T. It is finite, because T is a locally finite
and normal group by [18, 14.5.8]. We proceed by induction on \A\.

The case where \A\ = 1 is trivial, since then a is equal to the identity of G, and
G is cyclic. Assume that |.A| > 1.

First, consider the case where an element x of A belongs to the FC-centre of G.

Then the the normal closure N of x in G is finite. By the induction assumption G/N

is cyclic-by-finite. Lemma 3.9 implies that G is cyclic-by-finite.

Second, consider the case where no element of A is contained in the FC-centre of
G. Let B = (b). If CB{V) ^ 1 for some y £ A, then bk commutes with y for some
k, and then yG = y T U y T i U . . . U y™*'1 is finite, that is, y is in the FC-centre of G.

Therefore, in this case Cs(y) = 1 for all y £ A, and B is infinite.

Let now D be some subgroup of A that is minimal normal in T. Take any positive
integer k. Since the intersection of D and any of its conjugates is again normal, by
the minimality of D it follows that D fl b~kDbk equals D or 1. In the former case,
however, we get a contradiction. Indeed, some element of B normalises D, and so the
normaliser of D in G has finite index. Since D is finite, the centraliser of D has a
finite index in G. Therefore B is contained in the FC-centre of G, a contradiction.
Thus D fl b~kDbk = 1 for all k. It is well-known and easily verifed that if two normal
subgroups have trivial intersection then they commute. Therefore [D,b~kDbk] = 1.

Choose an element d of prime order p in D, and put di — b~tdbt; i £ Z. Then the
group M = (di; i £ Z) is Abelian of prime exponent p. We view M as a jB-module
over the field of order p. If the system {<£,•; i £ Z} is not linearly independent then
there exists a positive integer j such that

dj £ (* ; 0 ^ i s$ j - 1) = V
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Then V is a finite 5-submodule. This gives a contradiction because CB^A) — 1-
Therefore the system {di; i 6 Z} is linearly independent. Hence the group' M is the
direct product of (d{) 's. These cyclic groups are naturally indexed by the elements
from B, and B acts on M as in the wreath product (d) I B. Thus the group MB is
isomorphic to the wreath product (d) I B. This contradicts Lemma 3.8 and completes
the proof. u

LEMMA 3 . 1 5 . Let G be a finitely generated FC-soluble group without sections

isomorphic to N x N. Tien G is cyclic-by-finite.

PROOF: Let 1 = To ^ T = Ti ^ . . . < T* = G be the normal series of smallest
length in G such that Ti/Ti-i is an FC-group for i = 1 ,2 , . . . . We use induction on
k. If k = 1 then G is a finitely generated .FC-group and so Lemma 3.12 tells us that
G is cych'c-by-finite.

Let now k ^ 2. By the inductive assumption G/T is cyclic-by-finite. Let C be a
cyclic subgroup in G such that TC/T is of finite index in G/T. Then TC is finitely
generated as it has finite index in a finitely generated group. If TC/T is finite then T

is of finite index in G and therefore is finitely generated. By Lemma 3.12 and Lemma
3.9 G is cyclic-by-finite.

Thus assume that TC/T is infinite. Since TC is finitely generated, there exist
finitely many elements ti,t2,. • • ,tr £ T such that G = (ti,ti,... ,tr,C). By Lemma
3.14 each of subgroups (i,-,C) is cyclic-by-finite. It follows that each U centralises a
subgroup of finite index in C. Let D be the intersection of the centralisers of all U 's
in C. Then D is of finite index in C and D ^ Z{TC). If T is not periodic then the
subgroup Z(T)D possesses a subgroup isomorphic to Z x Z [20, Theorem 1.7]. Assume
that T is periodic. Then so is TC/D. Evidently TC/D is locally finite and therefore
it is finite. It follows that D has finite index in G, and by Lemma 3.9 the proof is
complete. D

PROOF OF THEOREM 2.1: Clearly, all the conditions (i) to (iv) hold in G if and

only if they are valid in all finitely generated subgroups of G. Therefore it suffices to

prove the theorem for a finitely generated group G.

Proposition 3.1 and Lemma 3.3 show that (i) implies (iv). The implication

(iii)=> (ii) is obvious. The equivalence of (i) and (ii) for linear groups was proved in [8].

It is known that if a group S of linear growth is generated by a finite set X, then

there exists a finite subset F of S such that every element of S can be written in the

form uvnw with u,v,w € JP and n G N (see [4] or [10], the proof of Theorem 3, or

[14], the proof of Lemma 2.4). It easily follows that every group of linear growth is

repetitive. Thus (ii) implies (i).

It remains to prove the implication (iv)=$>(iii). U G is FC-soluble, then Lemma
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3.15 proves the claim. If G is linear, then [19, Corollary 1] tells us that either G
is soluble-by-finite or it contains a free subgroup. It follows that G has a soluble
normal subgroup N of finite index. Applying Lemma 3.15 to N, we see that G is
cycic—by-finite again. This proves the result. D

PROOF OF COROLLARY 2.2: If a semigroup is repetitive, then, as above, it has no
sections isomorphic to the free commutative semigroup.

Conversly, assume that S has no such sections. For proving that 5 is repetitive,
it suffices to consider the case where 5 has zero, since we can adjoin a zero to 5 .
Every algebraic linear semigroup with zero has a finite ideal chain with nilpotent of
completely 0-simple factors [17, Remark 3.29]. These factors are isomorphic to Rees
matrix semigroups [3, Section 3.2]. Obviously, every nilpotent semigroup is repetitive.
Therefore, Lemmas 3.4, 3.7 and Theorem 2.1 complete the proof. D
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