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THE CLASSIFICATION OF FACTORS IS NOT SMOOTH 

E. J. WOODS 

1. Introduction. There is a natural Borel structure on the set F of all 
factors on a separable Hilbert space [3]. Let .F denote the algebraic isomorphism 
classes in F together with the quotient Borel structure. Now that various 
non-denumerable families of mutually non-isomorphic factors are known to 
exist [1; 6; 8; 10; 11; 12; 13], the most obvious question to be resolved is 
whether or not F is smooth (i.e. is there a countable family of Borel sets 
which separate points). We answer this question negatively by an explicit 
construction. To each infinite sequence [ak] of zeroes and ones we associate 
a factor M{ak\ which is given as an infinite tensor product of type I2 factors. 
Using techniques given by Araki and Woods [1], we prove that M{ak} and 
M{bk} are isomorphic if and only if ak = bk except for at most a finite number 
of indices k. It then follows from a straightforward Borel argument that F is 
not smooth. 

Section 2 contains some definitions and known properties of ITPFI factors 
(factors constructible as infinite tensor products of type / factors). In Section 3 
we prove our main result. Section 4 contains some concluding remarks. 

We shall use the following notation. If i f is a Hilbert space then B(H) 
denotes the set of all bounded linear operators on H. The statement "ak = bk 

(a.a.)" means that the equality holds except for at most a finite number of 
indices k. If the von Neumann algebras M and N are algebraically isomorphic 
we write M ~ N. We assume that the reader is familiar with the standard 
notation and terminology for von Neumann algebras. 

Acknowledgement. I would like to thank O. A. Nielsen for some useful 
discussions. 

2. ITPFI factors. For the sake of completeness we recall some definitions 
and results pertaining to ITPFI factors (see [1] for a more complete dis­
cussion). Let H = 0S=i (Hnj fire) be the infinite tensor product of the Hilbert 
spaces Hn which contains the product vector (x) flw, £ln £ Hn, 0 < II||£2n|| < oo. 
Let irn be the canonical mapping from B(Hn) to B(H) defined by wnS = 
{®m^n lm) ® -S where S G B(Hn) and \m is the identity operator on Hm. 
Given ®(Hn, 12n) and type I factors Mn C B(Hn) we define the factor 

®(Mn> Q») = {7fnMn; n = 1, 2, . . . } " 

Any factor constructible in this manner is called an ITPFI factor. By the 
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eigenvalue list of a vector 12 relative to a type I factor M we mean the list 
(Aii A2, . . .) of eigenvalues of the nonnegative trace class operator p in M 
defined by 

Trace PA = (Ato,$),A 6 M 

ordered such that Xi ^ X2 ^ . . . ^ 0. We denote it by Sp(12/ikf). Sp(12/ikf) 
gives a complete set of unitary invariants for the pair (M, 12). 

In the remainder of this paper dim Hn = 4 and Mn is a type I 2 factor. Let 
O ^ x ^ l , A = (1 + x)"1. We define factors Rx = <g)(ikf„, Q») where 
Sp(12w/M"w) = (A, 1 — A) independent of n. For any factor M we define the 
algebraic invariant p (M) as the set of all 0 ^ x rg 1 such that Rx ~ Rx ® ikf. 
For the examples we shall consider in Section 3 the following notation is 
convenient. 

Definition 2.1. Given 0 ^ h < h < • • • , h —» °°, and nonnegative integers 
iVi, N2,..., let 

Xra = (1 + erl*)-\ N1 + . . . + iV,_x < n S Nx + . . . + N, 

We denote the factor ®{Mn, fin) where Sp(£2n/.Mn) = (X„, 1 — Xn) by 

The proof of Theorem 3.3 is based on the following result [1, Lemma 11.7]. 

LEMMA 2.2. Let 0 < 6 < co, M = M[/y, Nj]. For each j choose an integer pj 

such that \bj\ is a minimum where 

àj = Pfi — h> 

Then e~e Ç p (M) if and only if 

oo 

X) iV/~%2<oo. 
3=1 

3. A family of factors. Let G denote the Borel space of all sequences 
a = {ak}, ak = 0, 1 with the product Borel structure, A the Borel subset of 
sequences a such that ak = 0(a.a.). Using the binary decimal expansion we 
can identify G with the unit interval on the real line with the usual Borel 
structure, and A with the binary rationals. G is a compact group under addition 
mod 1. We define an equivalence relation on G by a ~ b if and only if 
a — b 6 A (i.e., ak = ^^(a.a.)). We give G = G/A the quotient Borel structure. 
By Theorem 7.2 of [7], G is not countably separated. We will construct a 
Borel map M from G into F such that M (a) ~ M(b) if and only if a ~ b, and 
which is a Borel isomorphism of G onto MG. It will then follow that there is a 
one-to-one Borel map M from G into F> which implies that F is not countably 
separated. 
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Definition 3.1. For each a G G we define a factor M (a) as follows. We define 
a sequence of integers mkl Nk. Let m± = 3. Given mkl choose Nk, mk+ï such 
that 

(3.1) Nk è (m, + l)2e™*! > TV, - 1 

(3.2) (m*+i + 1 ) ! > [(mk + l ) !]3 

and w ^ i is odd. Let H = ®(i7w, Œw) where dim Hn — 4. We define \n, 
n = 1, 2, . . . as follows: 
Let 

k i k 

(3.3) X #i < n < £ ^ 
3=1 j=l 

and let 

(3.4) (1 + e~m*l)~l if a* = 1 
1 if a* = 0. 

Choose a type I2 factor Mn(a) on each Hn such that Sp(Qn/M"w(a)) = 
(Xni 1 — \n). We now define 

(3.5) M (a) = ®(Mw(a),12j. 

We remark that ikf (a) is type Iœ if a 6 A, otherwise M (a) is type III (see 
[1, Lemma 2.14]). 

LEMMA 3.2. The map M is Borel. 

Proof. By the Corollary to Theorem 2 of [3] it is sufficient to show that 
there is a sequence of operators Tk(a) Ç M (a) such that 

{Tk(a);k = 1 , 2 , . . . } " = M (a) 

for each a, and the maps a —-> (x, Tk(a)y) are Borel for all & = 1, 2, . . . and 
all x,y G H. Note that any type I2 factor is generated by 4 partial isometries, 
and that each Mn(a) depends on only one coordinate ak where k is determined 
by (3.3). Thus each Mn(a) is generated by 4 operators Tnm(ak), m = 1, 2, 3, 4. 
Clearly the maps 

a -> ak —> (x, Tnm(ak)y), m = 1, 2, 3, 4 

are Borel for all x, y G H. Since Tnm(a) for all w, m generate M (a), the map Af 
is Borel. 

THEOREM 3.3. M (a) ~ M(b) if and only if a ~ b. 

Proof. If ak = 6*(a.a.) then Sp(flw/M„(a)) = Sp(Qn/Mn(ft))(a.a.) and 
Jlf (a) ~ M(6) (use Lemma 2.13 of [1]). 

li a n^b then there is a sequence &i < &2 < . . . such that either akj = 0, 
bkj = 1 or akj = 1, bkj = 0 for all j . Without loss of generality we can take 
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akj = 0, bkj = 1 , 7 = 1 , 2 , . . . . Let 

(3.6) 6 = m fl[ [1 - (nj/nj^)}-1 

i - i 
where 

(3.7) nj= (mkj + 1)! 

It follows from (3.2) that the infinite product in (3.6) converges. For any 
j = 1, 2, . . . we have 

(3.8) 0 = „.<2.-i(l + e.) 

where 
0 i = 1 

(3.9) (2, = n Kn+i/n.) - 1], j = 2, 3 , . . . 
5 = 1 

(3.10) 1 + t, = ft [1 - (ns/ns+1)]-\ 
S=j 

We will use Lemma 2.2 to prove that e~6 £ p(M(a)), e -0 g p(M(b)). In order 
to do this we note that by construction we can write 

M(a) = M[mkl,akNk] ®P(a), M(b) = M[mkl,bkNk] ® P ( 6 ) 

where P{CL), P(b) are tensor products of type 12 factors where the eigenvalue 
lists are all (1,0), and hence P(a ) , P(b) are type I (use Lemma 2.14 of [1]). 
It follows from Lemmas 11.4 and 11.5 of [1] thatp '(M(a)) = p'(M[mk\, akNk]), 
p'(M(b)) = p'(M[rnk\, bkNk]) where p'(M) = p(M) H [0, 1). Thus we need 
estimates on 
(3.11) dk = inf \pe - mk\\ 

p 

where the infimum is taken over integers p. 
Case 1. fe # (fei, k2, . . .), k > k\\ Such a & need not exist but if it does there 

is an integer s such that 

(3.12) ks < k < k8+i. 

Let 

(3.13) p = Qsmk\/(mk8 + 1)!. 

Note that p is an integer. Equations (3.7), (3.8) with j = s and equations 
(3.11), (3.13) give 

(3.14) ôk S \pS - mk\\ = mkles. 

We now derive an estimate on es. It follows from the power series for 
log(l + x) that if 0 < x ^ J we have 

(3.15) - | x < log(l - x) < -x 
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and 

(3.16) \x < log(l + x) < x. 

Equations (3.10) and (3.15) give 

oo 

log(l + e,) = - X) l o g[ ! - (»i/«i+i)l 
(3.17) 

00 

Equations (3.2), (3.7), (3.12) give 

(3.18) ns/ns+1 < [(mk + l)!]"2 

and for t > 0, 

(3.19) ns+t/ns+t+1 < [(mka+t + l)!]"2 

< 2- ' [ (w t + I)!]"2. 

From (3.17)-(3.19) we have 

oo 

(3.20) log(l + «,) < *[(«* + I)!]"2 £ 2~l < Z\mk\T\ 
(-0 

and from (3.16) and (3.20) it follows that 

(3.21) es < 4[w,!]-2. 

By (3.14), (3.21) 

(3.22) 8k < 4/m*!, 

and from (3.1), (3.22) we obtain 

(3.23) W*e-~*V < 16[(«* + l ) 2 + e-M*!][w*!]-2. 

Equations (3.2) and (3.23) yield 

££{fc l , / C 2 . . . . } 

It follows that 

(3.24) £ a,iV^-mfc!5,2 < oo 

and thus e~d 6 p^ fw*! , akNk]) by Lemma 2.2. 
Case 2. k = kj for some j : Let 

(3.25) r = Qj/(mk+ 1). 

By construction mk + 1 is even. It follows from (3.2), (3.7) and (3.9) that 
ns+i/ns is always even and thus Qs is always odd. Hence r is not an integer, 
and the integer p giving the infimum for 8k satisfies 

(3.26) \P ~r\^ (mk + l ) " 1 
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Equations (3.7), (3.8), (3.25) give 

(3.27) \rd - mk\\ = m*!e>. 

The same argument used to derive (3.21) yields that 

(3.28) e, < 4[m,!]-2. 

Equations (3.11), (3.26-28) give 

(3.29) Ôk = \pe - mt\\ *\(p- r)0\ - \rd - mk\\ 
> 6(mk + l ) - 1 - 4/m,!, 

and from (3.1) and (3.29) we obtain 

(3.30) Nke-m"'-Ôk
2 > 02 - 86(mk + 1)/»»! + 16(w* + \Y(mk\)-\ 

Since mk—>co (see (3.2)) it follows that 

(3.31) Z bkNke~mh\2 ^ f ) Nkje~m%; = oo 
3=1 

and thus e~d Q p(M[mkl,bkNk]) by Lemma 2.2. Since p is an algebraic 
invariant we have M (a) oo M(b). 

THEOREM 3.4. F is not countably separated. 

Proof. Let IIG, n ^ be the quotient maps from G —» G, F —* F. Since M is a 
one-to-one Borel function from the standard Borel space G into the standard 
Borel space F, its range M G is a Borel subset of F and M is a Borel isomorphism 
of G onto JkTG [7, Theorem 3.2]. Since M respects the equivalence relations 
(Theorem 3.3), it defines a map M from G into ^ such that MUG = JIFM. 
We now prove that M is a Borel map from G onto MG with its relative Borel 
structure in F. A Borel set in MG is of the form X Pi MG where X is Borel 
in F. Then UF~HX) H JkfG is Borel in MG, and M-^U^iX) D MG) is 
Borel in G. But M " 1 ^ H MG) = n ^ M - ^ n r 1 ^ ) H MG)) which is Borel 
in G. Thus M is Borel. Now F countably separated would imply that MG is 
countably separated which would imply that G is countably separated (since 
M is Borel). But since G is not countably separated [7, Theorem 7.2], the 
theorem follows. 

4. Concluding remarks. Our result is analogous to the fact, first proved by 
Glimm [5], that a separable locally compact group is type / if and only if it 
has a smooth dual. Actually Glimm proved the stronger result that the dual is 
not metrically smooth (i.e. not metrically countably separated) if the group 
is not type / . (A Borel space X is called metrically countably separated if, 
given any finite Borel measure /x, there is a /x-null Borel set N such that 
X — N is countably separated.) Since our method of proof involves an explicit 
construction quite similar to that used by Glimm, one might expect that it 
could be used to show that F is not metrically countably separated. In fact, 
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Nielsen [9] has extended the argument of Theorem 3.4 to yield the existence 
of a von Neumann algebra which is not "centrally smooth" (see [4]). This 
implies that F is not metrically countably separated. 

Of course we have only shown that the classification of ITPFI factors is 
not smooth. It remains open whether the classification of type II factors, 
non-hyperfinite type III factors etc. is smooth or not. While present techniques 
seem inadequate to decide this, it seems likely that the answer is no. 
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