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On Chromatic Functors and Stable
Partitions of Graphs

Ye Liu

Abstract. _e chromatic functor of a simple graph is a functorization of the chromatic polynomial.
M. Yoshinaga showed that two ûnite graphs have isomorphic chromatic functors if and only if they
have the same chromatic polynomial. _e key ingredient in the proof is the use of stable partitions
of graphs. _e latter is shown to be closely related to chromatic functors. In this note, we further
investigate some interesting properties of chromatic functors associated with simple graphs using
stable partitions. Our ûrst result is the determination of the group of natural automorphisms of the
chromatic functor, which is, in general, a larger group than the automorphism group of the graph.
_e second result is that the composition of the chromatic functor associated with a ûnite graph
restricted to the category FI of ûnite sets and injections with the free functor into the category of
complex vector spaces yields a consistent sequence of representations of symmetric groups that is
representation stable in the sense of Church–Farb.

1 Introduction and Definitions

In the theory of graph coloring, we restrict ourselves to simple graphs, which are
graphs with no loops or multiedges. By a graph G = (V , E), we always mean an
undirected simple graph G with vertex set V and edge set E ⊂ 2V . A regular (vertex)
S-coloring of G with color set S is amap c∶V → S such that c(v) /= c(u) if {v , u} ∈ E
is an edge of G. A (regular) coloring with color set [n] = {1, 2, . . . , n} is simply called
a (regular) n-coloring. A (simple) graph G is ûnite if V is ûnite.

_e chromatic polynomial of a ûnite graph G is the polynomial χ(G , t) ∈ Z[t]
satisfying

χ(G , n) = #{ c∶V → [n] ∣ c(v) /= c(u) if {v , u} ∈ E}
for all n > 0 (cf. [6]). _e chromatic functor associated with a graph G is introduced
in [8] as a functorization of χ(G , t).

Deûnition 1.1 (Chromatic functor) Let G be a graph; deûne the chromatic functor
associated with G

χ(G , ●)∶Setinj Ð→ Setinj

between the category of sets and injections by setting

χ(G , S) ∶= {c∶V → S ∣ c(v) /= c(u) if {v , u} ∈ E}
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for a set S and the injection
ι∗ ∶= χ(G , ι)∶ χ(G , S)Ð→ χ(G , T)

c z→ ι ○ c

induced by an injection ι∶ S → T .

_emain result of [8] is the following theorem.

_eorem 1.2 ([8]) Let G1 ,G2 be ûnite graphs; then the following are equivalent.
(i) χ(G1 , t) = χ(G2 , t);
(ii) χ(G1 , ●) ≃ χ(G2 , ●) as functors Setinj → Setinj.

_e key ingredient of the proof is the deûnition of a stable partition of a graph,
which we now describe.

Deûnition 1.3 (Stable partition) A stable partition Π = {π i /= ∅ ∣ i ∈ I} of a graph
G is a partition of the vertex setV such that if vertices v and u are in the same π i , then
{v , u} is not an edge of G.

Denote by St(G) the set of all stable partitions of G and Stκ(G) the set of stable
partitions of G with cardinality κ. _en

St(G) =⊔
κ
Stκ(G),

where κ runs over all cardinal numbers. Stable partitions are closely related to graph
colorings. Given a regular coloring c ∈ χ(G , S), there is a stable partition Πc associ-
ated with c, deûned as

Πc ∶= { c−1(s) ∣ s ∈ S , c−1(s) /= ∅} .
Every stable partition Π arises in this way; just let c∶V → Π be the map taking each
vertex to the member of Π containing it. _en Π = Πc . For Πc associated with
c ∈ χ(G , S), the map c̃∶Πc → S mapping c−1(s) to s is injective and can be regarded
as an S-coloring of the complete graph KΠc with vertex set Πc . _e map c ↦ c̃,
in fact, deûnes a natural isomorphism as in the next proposition, which reveals the
signiûcant relation between chromatic functors and stable partitions. It is also the key
to the proof of_eorem 1.2.

Proposition 1.4 ([8]) _emap

ΩG
S ∶ χ(G , S)Ð→ ⊔

Π∈St(G)
χ(KΠ , S)

c z→ c̃ ∈ χ(KΠc , S)
has an inversemap

(ΩG
S )−1∶ ⊔

Π∈St(G)
χ(KΠ , S)Ð→ χ(G , S)

χ(KΠc , S) ∋ c′ z→ c′ ○ c ∈ χ(G , S).
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Moreover, ΩG
S induces a natural isomorphism of functors

ΩG ∶ χ(G , ●) ∼ÐÐ→ ⊔
Π∈St(G)

χ(KΠ , ●),

where KΠ is the complete graph with vertex set Π.

In this note, we use this proposition to investigate two problems.
In Section 2, we determine the group structure of Aut(χ(G , ●)), that is, the group

of natural automorphisms of the chromatic functor χ(G , ●). We also compare this
group with the graph automorphism group Aut(G).

In Section 3, we focus on the chromatic functor χ(G , ●)∶FI→ FI associated with a
ûnite graph G restricted to the category FI of ûnite sets and injections. Consider the
composition of functors

FI
χ(G ,●)
ÐÐÐÐ→ FI

C[●]ÐÐ→ VectC ,
whereC[●] is the free functor taking a ûnite set S to the complex vector space spanned
by S. We show that the consistent sequence {C[χ(G , [n])]}n ofSn-representations
is representation stable in the sense of Church–Farb [3].

2 The Automorphism Group of Chromatic Functors

Let G be a graph. _e natural automorphisms of the chromatic functor

χ(G , ●)∶Setinj Ð→ Setinj

form a group Aut(χ(G , ●)). _is group structure is essentially determined by stable
partitions of G.
Before proving our main result, we recall the uniqueness of stable partitions

([8, Section 2.3]) and give amore explicit expression that implies our result.
Consider two families of sets X = {X i ∣ i ∈ I} and Y = {Yj ∣ j ∈ J}. An isomor-

phism from X to Y is a collection (α; α i)i∈I , where α∶ I → J and α i ∶X i → Yα(i) are
all bijections of sets. Denote by Isom(X,Y) the set of all isomorphisms fromX toY.
Let

FX = ⊔
i∈I
χ(KX i , ●), FY = ⊔

j∈J
χ(KYj , ●)

be functors Setinj → Setinj. Denote by Isom(FX , FY) the set of all natural isomor-
phisms from FX to FY. _e next proposition is a recollection of results in [8, Sec-
tion 2.3]. We rewrite the proof for convenience.

Proposition 2.1 _ere is a bijection, Isom(X,Y)→ Isom(FX , FY).

Proof If there exists an isomorphism (α; α i)i∈I ∈ Isom(X,Y), it determines a nat-
ural isomorphism f ∶ FX → FY whose component fS ∶ FX(S) → FY(S) at S ∈ Setinj
sends c ∈ χ(KX i , S) to c ○ α−1

i ∈ χ(KYα(i) , S).
Nowwe construct the inversemap. Given a natural isomorphism f ∶ FX → FY, the

bijection α∶ I → J is deûned by
FX(X i) ⊃ χ(KX i , X i) ∋ idX i z→ fX i (idX i ) ∈ χ(KYα(i) , X i) ⊂ FY(X i).
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Moreover, the component fS of f at S maps an injection c∶X i → S that is a coloring
c ∈ χ(KX i , S), to c∗( fX i (idX i )) ∈ χ(KYα(i) , S) by naturality of f :

χ(KX i , X i) χ(KYα(i) , X i)

χ(KX i , S) χ(KYα(i) , S).

c∗
fX i

fS

c∗

_e bijection α i ∶X i → Yα(i) is deûned as

f −1
Yα(i) ∶ χ(KYα(i) ,Yα(i))Ð→ χ(KX i ,Yα(i))

idYα(i) z→ α i ∶= f −1
Yα(i)(idYα(i)).

_is α i is indeed a bijection with inversemap fX i (idX i )∶Yα(i) → X i . _us, we obtain
an isomorphism (α; α i)i∈I ∈ Isom(X,Y).

It is routine to check that the twomaps constructed above are inverse to each other.

For our purpose, write Aut(X) for Isom(X,X) and Aut(FX) for Isom(FX , FX).
_ey are both groups under compositions. _e previous proposition immediately
implies the following result.

Corollary 2.2 _ere is a group isomorphism Aut(X)→ Aut(FX).

A direct analysis of how an automorphism ofXworks yields the following lemma.

Lemma 2.3 Let X = {X i ∣ i ∈ I} be a family of sets with index set I of arbitrary
cardinality. _en

Aut(X) ≅∏
κ
(Sκ ≀Snκ),

where nκ = #{i ∈ I ∣ #X i = κ} and κ runs over all cardinal numbers.

Proof We construct a group isomorphism Aut(X) → ∏κ(Sκ ≀ Snκ) as follows.
Let (α; α i) ∈ Aut(X), where α∶ I → I and α i ∶X i → Xα(i) are all bijections of sets.
If we write Iκ ∶= {i ∈ I ∣ #X i = κ}, then I = ⊔κ Iκ and nκ = #Iκ . Note that α∣Iκ
is a permutation of Iκ , that is, an element of Snκ . By ûxing an arbitrary bijection
[κ] → X i for each i ∈ Iκ , where [κ] is a standard set with cardinality κ, the bijection
α i ∶X i → Xα(i) corresponds to an element ofSκ . _is construction obviously deûnes
a group isomorphism.

We are now ready to prove the following theorem.

_eorem 2.4 Let G be a (possibly inûnite) graph and χ(G , ●)∶Setinj → Setinj the
chromatic functor associated with G. _en

Aut(χ(G , ●)) ≅∏
κ
(Sκ ≀Snκ),
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where nκ is the cardinality of Stκ(G) and κ runs over all cardinal numbers.

Proof By Proposition 1.4, we have the natural isomorphism of functors

χ(G , ●) ≃ ⊔
Π∈St(G)

χ(KΠ , ●) = FSt(G) ,

where we consider St(G) as a family of sets. _en the theorem follows from Corol-
lary 2.2 and Lemma 2.3 with X = St(G),

Aut(χ(G , ●)) ΨGÐÐ→ Aut(FSt(G))
ΞGÐÐ→ Aut(St(G)) ΘGÐÐ→∏

κ
(Sκ ≀Snκ),

where ΨG(F) = ΩG ○ F ○ (ΩG)−1 (see Proposition 1.4), ΞG is as in Corollary 2.2, and
ΘG is as in Lemma 2.3. All threemaps are group isomorphisms.

A graph automorphism φ ∈ Aut(G) induces a natural automorphism φ ∈
Aut(χ(G , ●)) as follows. _e component of φ at a set S is just precomposing with
φ−1,

φS(c) = c ○ φ−1∶V φ−1

ÐÐ→ V cÐÐ→ S ,

where c ○φ−1 is indeed a regular coloring, since φ maps edges to edges. _e naturality
follows from the equality

(σ ○ c) ○ φ−1 = σ ○ (c ○ φ−1),

for any injection σ ∶ S → T . _e map φ ↦ φ deûnes a group homomorphism
ΦG ∶Aut(G) → Aut(χ(G , ●)). Now we have the following sequence of group ho-
momorphisms

Aut(G) ΦGÐÐ→ Aut(χ(G , ●)) ΨGÐÐ→ Aut(FSt(G))
ΞGÐÐ→ Aut(St(G)) ΘGÐÐ→∏

κ
(Sκ ≀Snκ).

Lemma 2.5 Let φ ∈ Aut(G) and denote f ∶= ΨG(φ) ∈ Aut(FSt(G)), (α; αΠ) ∶=
ΞG( f ) ∈ Aut(St(G)), where α∶St(G) → St(G) and αΠ ∶Π → α(Π) are bijections.
_en α(Πc) = Πc○φ−1 , for Πc ∈ St(G) associated with c ∈ χ(G ,Πc) and Πc○φ−1 ∈
St(G) associated with c ○ φ−1 ∈ χ(G ,Πc). Furthermore,

αΠc ∶Πc Ð→ Πc○φ−1

π z→ φ(π),

where φ(π) = {φ(v) ∣ v ∈ π}.

Proof For Πc ∈ St(G) with c∶V → Πc , recall from Proposition 2.1 that α(Πc) is
deûned as

FSt(G)(Πc) ⊃ χ(KΠc ,Πc) ∋ idΠc z→ fΠc(idΠc) ∈ χ(Kα(Πc) ,Πc) ⊂ FSt(G)(Πc).
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By deûnition of ΨG , in fact, by the commutativity of the diagram

χ(G ,Πc) FSt(G)(Πc)

χ(G ,Πc) FSt(G)(Πc) ,

φΠc

ΩG
Πc

ΩG
Πc

fΠc

we obtain fΠc(idΠc) = c̃ ○ φ−1∶Πc○φ−1 → Πc . Hence α(Πc) = Πc○φ−1 . _e bijection
αΠc ∶Πc → Πc○φ−1 is the inverse of c̃ ○ φ−1. By deûnition of c̃ ○ φ−1 (see Section 1), we
have the commutative diagram

V V

Πc○φ−1 Πc .

proj
φ−1

c̃ ○ φ−1

c

If v ∈ V such that c(v) = π ∈ Πc , then φ(v) ∈ φ(π). _erefore, αΠc(π) = φ(π).

Proposition 2.6 Let G be a (possibly inûnite) graph. _en the group homomorphism
ΦG ∶Aut(G) → Aut(χ(G , ●)) is always injective. It is an isomorphism if and only if G
is a complete graph or the graph with two vertices and no edges.

Proof If φ,ψ ∈ Aut(G) have the same image φ = ψ ∈ Aut(χ(G , ●)), that is, for any
c ∈ χ(G , S), c ○ φ−1 = c ○ ψ−1, then we have c ○ φ−1(v) = c ○ ψ−1(v) for any v ∈ V . In
particular, let c be injective, we conclude φ = ψ. _is shows that ΦG is injective.

Now we suppose that G is the complete graph KV . It is known that Aut(G) =
SV ≅S#V . Since G has a unique stable partition V̂ = {{v} ∣ v ∈ V}, by_eorem 2.4,
Aut(χ(G , ●)) ≅S#V . Lemma 2.5 implies that the injective homomorphism ΦG must
be an isomorphism. IfG is the graphwith 2 vertices and no edges, it is easy to see that
Aut(G) ≅ Aut(χ(G , ●)) ≅S2. _e same conclusion follows.
Conversely,we ûrst suppose thatG is a ûnite but not complete graph and is not the

graph with two vertices and no edges. If n = #V , then n ≥ 3. _ere exists a pair of
vertices (v , u) such that {v , u} is not an edge. _en G may lose some symmetries of
Kn ; in other words,

∣Aut(G)∣ ≤ ∣Sn ∣ = n!.
On the other hand, G has fewer constrains of colorings than Kn . In terms of stable
partitions, Stn−1(G) is not empty, since v and u can be colored with the same color.
_en by _eorem 2.4,

∣Aut(χ(G , ●))∣ ≥ ∣Sn−1 ≀Snn−1 ∣ ⋅ ∣Sn ≀S1∣ = (n − 1)!nn−1nn−1!n!,

where nn−1 = #Stn−1(G) ≥ 1. _en
∣Aut(G)∣ ≤ n! < (n − 1)!nn−1nn−1!n! ≤ ∣Aut(χ(G , ●))∣,
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since n ≥ 3. _us, ΦG cannot be surjective.
Secondly, if G is an inûnite but not complete graph, then there is a pair of ver-

tices (v , u) such that {v , u} is not an edge. In this case, there are at least two stable
partitions of cardinality #V , one is V̂ = {{w} ∣ w ∈ V}, the other is

Π(v , u) = {{v , u}, {w} ∣ w ∈ V/{v , u}} .

If (α; αΠ) = ΞG(ΨG(φ)) ∈ Aut(St(G)) for some φ ∈ Aut(G), then by Lemma 2.5,
αV̂ maps each {w} ∈ V̂ to {φ(w)} ∈ V̂ . _is asserts that α(V̂) = V̂ . _us, (β; βΠ) ∈
Aut(St(G))with β(V̂) = Π(v , u) is not in the image of ΞG ○ΨG ○ΦG . _erefore,ΦG
cannot be surjective.

_is completes the proof.

3 Representation Stability

Representation stability is a phenomenon arising in various branches ofmathematics.
Loosely speaking, a sequence of representations Vn of a family of groups Gn is rep-
resentation stable if the growth of the irreducible decomposition of Vn with respect
to n “stabilizes” in some sense. Since Church and Farb ûrst introduced the idea in an
early version of [3], the subject has gainedmuch attention.

In this section, a�er a brief review of the deûnition of representation stability for
Sn-representations, we present a new example of representation stability concerning
chromatic functors of graphs. We refer the readers to their original paper [3] for de-
tails of this subject or to [4] for a shorter survey. For basic facts of combinatorics and
representation theory of symmetric groups, we refer to [7].

Deûnition 3.1 (Consistent sequenceofSn-representations) A sequence {Vn , ϕn}n≥1
of ûnite dimensional complex representations Vn of the symmetric groups Sn to-
gether with linear transformations ϕn ∶Vn → Vn+1 is said to be consistent if the dia-
gram

Vn Vn+1

Vn Vn+1

σ
ϕn

ϕn

σ

commutes for n ≥ 1 and σ ∈ Sn , where σ on the right is considered as an element of
Sn+1 via the usual group inclusion Sn ↪Sn+1.

Irreducible (complex) representations ofSn are classiûed by partitions {µ ∣ µ ⊢ n}
of the positive integer n. _e latter could also be identiûed with Young diagrams
with n boxes. For a partition (Young diagram) µ ⊢ n, denote by Vµ the irreducible
Sn-representation associated with µ. In the context of representation stability, for a
partition λ = (λ1 , . . . , λ l) ⊢ m and n ≥ m + λ1, let

λ[n] ∶= (n −m, λ1 , . . . , λ l) ⊢ n.
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We prefer to use V(λ)n ∶= Vλ[n] to denote the associated irreducibleSn-representa-
tion.

Deûnition 3.2 (Representation stability for Sn-representations) Let {Vn , ϕn}n be
a consistent sequence of Sn-representations. We say that the sequence {Vn , ϕn}n is
representation stable with stable range n ≥ N if there is a positive integer N such that
the following conditions hold for n ≥ N .
● (Injectivity) ϕn is injective.
● (Orbit-surjectivity) _eSn+1-orbit of the image of ϕn equals Vn+1.
● (Multiplicity stability) In the irreducible decomposition of Vn

Vn =⊕
λ
V(λ)⊕cn(λ)n ,

themultiplicity 0 ≤ cn(λ) <∞ is independent of n.

Known examples of consistent sequences that are representation stable include
● {H i(Conf n(M);C)}n . _e complex cohomology of the conûguration space of n
distinct points on a connected orientablemanifold M of ûnite type ([1]).

● {H i(Mn
g ;C)}n . _e complex cohomology of themoduli space ofRiemann surfaces

of genus g ≥ 2 with n marked points ([5]).
See [2] for more examples.

Our main result of this section is a new example of representation stability. Let
G = (V , E) be a ûnite graph; consider the following composition of functors

FI
χ(G ,●)
ÐÐÐÐ→ FI

C[●]ÐÐ→ VectC ,

where VectC is the category of complex vector spaces and C[●] is the free functor
taking a ûnite set S to the complex vector space spanned by S. For a positive integer n,
the vector spaceC[χ(G , [n])] has anSn-representation structure as the permutation
representation of the natural action ofSn on χ(G , [n]) permuting colors. Explicitly,
if c ∈ χ(G , [n]) is a (regular) n-coloring of G and σ ∈ Sn a permutation, then σc is
the n-coloring

V cÐÐ→ [n] σÐÐ→ [n].
Let ϕn ∶C[χ(G , [n])] → C[χ(G , [n + 1])] be the linear map sending a basis element
c to ιn ○ c∶V → [n] ↪ [n + 1], where ιn ∶ [n] ↪ [n + 1] is the usual inclusion. _e
sequence {C[χ(G , [n])]}n≥1 is a consistent sequence ofSn-representations.

_eorem 3.3 Let G = (V , E) be a ûnite graph. _en the sequence {C[χ(G , [n])]}n

is representation stable for n ≥ 2#V .

Our strategy for the proof is to use Proposition 1.4 to reduce the problem to the
case of complete graphs. By Proposition 1.4, we have the following isomorphism of
functors:

χ(G , ●) ≃ ⊔
1≤k≤#V

χ(Kk , ●)⊔nk
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where Kk denotes the complete graph on k vertices and nk = #Stk(G). _is yields the
following isomorphism of functors

(3.1) C[χ(G , ●)] ≃ ⊕
1≤k≤#V

C[χ(Kk , ●)]⊕nk .

_e question now reduces to the case of complete graphs. Note that the Sn-repre-
sentation C[χ(Kk , [n])] is obviously isomorphic to the permutation representation
of theSn-action on the set

Conf k([n]) ∶= {(i1 , . . . , ik) ∣ i j ∈ [n], i j /= i j′ if j /= j′}

given by σ(i1 , . . . , ik) = (σ(i1), . . . , σ(ik)) for σ ∈Sn .
Recall that a semistandard Young tableau (SSYT) is an assignment of one posi-

tive integer to each box of a Young diagram (called its shape) such that each row is
non-strictly increasing and each column is strictly increasing. _e type of an SSYT is
the tuple (m1 ,m2 , . . . ), where m i is the times number i appears in this SSYT. For a
Young diagram µ and a tuple α of nonnegative integers, the Kostka number Kµ ,α is
the number of SSYTs of shape µ and of type α (see [7, Section 7.10]).

Lemma 3.4 For n ≥ k, the irreducible decomposition of the permutation representa-
tion C[Conf k([n])] is

C[Conf k([n])] = ⊕
µ⊢n

V⊕Kµ ,α(n ,k)
µ ,

where α(n, k) = (n − k,
k

³¹¹¹¹¹¹·¹¹¹¹¹¹µ
1, . . . , 1).

Proof Consider the Young subgroup Sα(n ,k) of Sn associated with the partition
α(n, k) ⊢ n. _at is the subgroup consisting of permutations that permute the ûrst
n− k numbers and ûx the others. _enSα(n ,k) is the stabilizer of (n− k + 1, . . . , n) ∈
Conf k([n]). One observes that

C[Conf k([n])] = IndSn
Sα(n ,k)

C,

where the right-hand side is the induced representation of the trivial Sα(n ,k)-repre-
sentation. _en Young’s rule ([7, Proposition 7.18.7]) gives

IndSn
Sα(n ,k)

C = ⊕
µ⊢n

V⊕Kµ ,α(n ,k)
µ .

_eorem 3.5 _e sequence {C[χ(Kk , [n])]}n is representation stable for n ≥ 2k.

Proof It is easy to check that ϕn ∶C[χ(Kk , [n])]→ C[χ(Kk , [n+1])] is injective and
that theSn+1-orbit of the image of ϕn equals C[χ(Kk , [n + 1])] for n ≥ 2k. It suõces
to show that in the irreducible decomposition

C[χ(Kk , [n])] =⊕
λ
V(λ)⊕cn(λ)n ,
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the multiplicity cn(λ) is independent of n if n ≥ 2k. By Lemma 3.4, for ûxed k and
n ≥ k,

C[χ(Kk , [n])] = ⊕
µ⊢n

V⊕Kµ ,α(n ,k)
µ .

Consider an SSYT T of type α(n, k); the 1’s have to occupy the ûrst n−k (or 1 if n = k)
boxes in the ûrst row. We only need to arrange the k boxes labeled by 2, . . . , k+1. First
we have

1 ⋅ ⋅ ⋅ 1 2 3 ⋅ ⋅ ⋅ k+1,

which contributes to one copy of the trivial representation V(0)n . We can also move
m of the k boxes labeled by 2, . . . , k + 1 to lower rows and form a λ ⊢ m, which
contributes to one copy of V(λ)n . _erefore, themultiplicity

cn(λ) = Kλ[n],α(n ,k) .

It is remarkable to note that for a ûxed λ, this number is constant once n is large
enough, since the only change occurs in the ûrst row when n increases. _e extreme
case is

1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ k+1

,

which contributes to one copy of V(k)n , and the appearance of this copy requires
n − k ≥ k. _is gives the stable range n ≥ 2k.

Proof of_eorem 3.3 _e injectivity and orbit surjectivity of ϕn are easily veriûed.
By the isomorphism (3.1), we obtain

C[χ(G , [n])] ≃ ⊕
1≤k≤#V

C[χ(Kk , [n])]⊕nk

≃ ⊕
1≤k≤#V

( ⊕
λ[n]⊢n

V(λ)⊕Kλ[n],α(n ,k)
n )

⊕nk

= ⊕
λ[n]⊢n

V(λ)⊕∑1≤k≤#V nkKλ[n],α(n ,k)
n .

_eorem 3.5 asserts that for a ûxed λ, the number Kλ[n],α(n ,k) is constant for n ≥ 2k.
_erefore, for a ûxed λ, themultiplicity

∑
1≤k≤#V

nkKλ[n],α(n ,k)

is constant for n ≥ 2#V . _is shows that the sequence {C[χ(G , [n])]}n is represen-
tation stable for n ≥ 2#V .
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