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Abstract

We make several conjectures, and prove some results, pertaining to conjugacy classes of a given size in
finite groups, especially in p-groups and 2-groups.

2000 Mathematics subject classification: 20D15, 20E45.

Keywords and phrases: conjugacy classes, p-groups, 2-groups.

Let G be a finite group, with conjugacy classes have sizes n1 = 1< n2 < · · ·< nk .
Thus the classes of size n1 consist of the central elements, and we refer to classes of
size n2 and to their elements as minimal classes and minimal elements. Ito initiated
the study of groups with a small value of k. His main results are as follows.

(1) If k = 2, then G = H × K , where H is abelian and K is a p-group [7].
(2) If k = 3, then G is soluble [8] (simplifications of the proof and further results are

given in [17] and [2]).
(3) If k = 4, and G is simple, then G ∼= P SL(2, 2n) [9].
(4) If k = 5, and G is simple, then G ∼= P SL(2, q), where q > 5 is odd [10].
(5) Some results on the case k = 6 are obtained in [11].

It should be noted that these results pre-date the classification of the finite simple
groups, and possibly were motivated by the quest for that classification. In contrast,
here we are interested in soluble groups, and in particular in p-groups. Result (1)
shows that if k = 2, that is if all noncentral classes have the same size, we may
assume that G is a p-group. For such groups it was proved in [7] that G contains
a normal abelian subgroup N such that G/N has exponent p. This was generalized
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in [15], where it was shown that each p-group G contains a normal abelian subgroup
D(G) such that G/D(G) has exponent dividing pk−1 (for p = 2, we can obtain an
exponent that divides 2k−2; the definition of D(G) is given below). The case k = 2
was further improved by Isaacs [5], who showed that a p-group G with k = 2 satisfies
exp(G/Z(G))= p (here Z(G) is the centre of G); this was reproved in [14] and [18],
with each author being ignorant at the time of the previous proofs. Reference [18]
also contains a result by Heineken that if G is metabelian, then it has nilpotence class
3 at most. A breakthrough was achieved by Ishikawa, who proved that a p-group in
which k = 2 is of class 3 at most [4]. This bound is the best possible, except for p = 2,
where Isaacs’ result shows that the relevant groups are extensions of the centre by a
group of exponent 2 and, since groups of exponent 2 are abelian, it follows that G is
of class 2. Motivated by Ishikawa’s result and by analogous results and conjectures
regarding character degrees (for these, see for example the introduction to [13]), the
present author made in [15] the following conjecture.

CONJECTURE A. There exist functions f (s) and g(p) such that, if G is a finite
p-group, and the numbers k, ni are as above, then the subgroup H of G generated
by the classes of sizes n1, . . . , ns has derived length dl(H) at most f (s), and the
subgroup M(G) generated by the minimal elements has nilpotence class cl(M(G)) at
most g(p).

Note that we ask for a bound on the nilpotence class only for s = 2; this is because
there are p-groups of arbitrary class containing an abelian maximal subgroup, and
such groups satisfy k = 3. Thus we cannot bound the class of H if s > 2.

We note two more, successively weaker, conjectures.

CONJECTURE B. If the p-group G is generated by the classes of sizes n1, . . . , ns ,
then dl(G)≤ f (s), for some function of s.

This is implied by Conjecture A, but is not equivalent to it, because if H is generated
by the classes of the first s sizes, then the class sizes in H will usually be different from
the class sizes in G of the elements of H .

CONJECTURE C. The derived length of a p-group G with k class sizes is bounded by
a function f (k) of k.

A variation on all three conjectures is obtained by allowing the functions f (s) to
depend also on p.

Thus Ishikawa’s theorem establishes the case k = 2 of Conjecture C. However, it
is easy to see that a minor variation on his argument actually shows that if G is
generated by its minimal elements, then its class is at most 3, and thus the case s = 2 of
Conjecture B is established. This is stated explicitly in [1], where the argument of [4]
is streamlined. Finally, the case s = 2 of Conjecture A, that is the second part of the
conjecture, was proved in [16], where we showed that cl(M(G))≤ 3. This is the best
possible for odd primes, but for p = 2 it was already shown in [15] that cl(M(G))≤ 2.
The only other known cases of the conjectures are that if k = 3 and p = 2 then G is
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metabelian [15, Corollary 2], and if k = 3 and p = 3 then dl(G)≤ 4 [16, Corollary
10]. These follow easily from the bounds for cl(M(G)). The latter result was given
a shorter proof by Isaacs [6], who showed that it holds also in some wider families
of groups than p-groups, for example supersoluble groups. Here we first apply the
method of [16] and [6] to show the following result.

THEOREM 1. Let G be a finite group. Suppose that the subgroup M(G) generated
by the minimal elements is soluble, and contains a normal subgroup N with abelian
Sylow subgroups such that M(G)/N is supersoluble. Then M(G) is nilpotent, of
class 3 at most.

Then we make another modest contribution towards a proof of the conjectures,
establishing for p = 2 the case s = 3 of Conjecture A and the case k = 4 of
Conjecture C. Let us call the classes of size n3, and their elements, almost minimal.
Recall that in a 2-group G we have G2

=8(G), where G2 is the subgroup generated
by all squares in G and 8(G) is the Frattini subgroup.

THEOREM 2. Let G be a finite 2-group, and let H be the subgroup which is generated
by the minimal and almost minimal classes. Then cl(H ∩ G2)≤ 3 and dl(H)≤ 3.

COROLLARY 3. Let G be a 2-group in which k = 4. Then dl(G)≤ 3.

COROLLARY 4. Let G be a 2-group with k ≥ 4 class sizes. Then cl(G2k−3
)≤ 3.

The last corollary should be compared with the earlier quoted results from [15]
and [16], according to which, with the same notation, G2k−2

is abelian, while if G is a
p-group with k class sizes and p is odd, then G pk−2

has class 3 at most and G pk−1
is

abelian.
We pass now to the proofs. Zi (G) denotes the i th term of the upper central series

of G.

LEMMA A. Let A be a normal abelian subgroup of G, let a ∈ A, and let x ∈ G be a
noncentral element. Then the number of conjugates of [a, x] is less than the number
of conjugates of x.

For p-groups, this lemma is in [16, Theorem 1]. The general result is proved in [6].

PROOF OF THEOREM 1. Use the notation of the theorem, and let A be the Fitting
subgroup of N , its maximal nilpotent normal subgroup. Since the Sylow subgroups
of N are abelian, A is also abelian. Let a ∈ A, and let x be a minimal element of G.
Then Lemma A shows that [x, a] ∈ Z(G). Since elements like x generate M(G), we
have [A, M(G)] ≤ Z(G), and thus [A, M(G)] ≤ Z(M(G)) and A ≤ Z2(M(G)), and
also A ≤ Z2(N ). But if A 6= N , and K/A is a nilpotent normal subgroup of N/A, then
from A ≤ Z2(N ) it follows that K is also nilpotent, contradicting the maximality of A.
Thus A = N , and N ≤ Z2(M(G)). Therefore, M(G) is also supersoluble, and Isaacs’
result applies. 2
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Next, recall that the centralizer equality subgroup D(G) of a p-group G is
generated by all elements x such that CG(x)= CG(x p).

LEMMA B. Let G be a 2-group, and let x be a minimal element satisfying x2
∈ Z(G).

Then x ∈ Z2(G).

See [15, Proposition 6].

LEMMA C. In a p-group G, D(G) is abelian.

This is the first claim of [15, Theorem 7].

PROOF OF THEOREM 2. Let x be a minimal element of G, and let q be the largest
power of 2 such that CG(xq)= CG(x). Then xq is a minimal element whose
square is central. By Lemma B, xq

∈ Z2(G). It follows that, for each u ∈ G,
the subgroup 〈u, xq

〉 has class at most 2, implying [u2, xq
] = [u, (xq)2] = 1, and

thus CG(x)= CG(xq)≥ G2, and [M(G), G2
] = 1 (this reproves that cl(M(G))≤ 2).

Write K = H ∩ G2, and let A be maximal among the normal abelian subgroups of G
that are contained in K . By Lemma A, [A, H ] ≤ M(G), and thus [A, K ] ≤ Z(K ) and
A ≤ Z2(K ). Therefore, K ′ ≤ CK (Z2(K ))≤ CK (A)= A, that is, K ′ ≤ Z2(K ) and
cl(K )≤ 3. Our claims follow, since H2

≤ K , and H/H2, of exponent 2, is abelian.

PROOF OF COROLLARY 3. Write again K = G2
∩ H , and let D = D(G). Since D

is abelian, we have, by Lemma A, [D, H ] ≤ M(G). We saw in the previous proof
that M(G) centralizes G2, and thus [D, K , K ] ≤ [D, H, G2

] = 1. Since D itself is
abelian, it follows that D ≤ Z2(DK ), and since cl(K )≤ 3, any commutator of weight
4 in the elements of D and K is trivial, that is, cl(DK )≤ 3. Let x /∈ D, then x2 has
fewer conjugates than x , and since k = 4, it follows that x2 is central, minimal, or
almost minimal, anyway x2

∈ H , and therefore x2
∈ K . Thus G/DK has exponent 2,

and therefore it is abelian, and dl(G)≤ 3.

PROOF OF COROLLARY 4. Let x ∈ G. Then either one of the elements x, x2, . . . ,

x2k−3
belongs to D, or x2k−3

has at most n3 conjugates. In either case x2k−3
∈ DK ,

and thus cl(G2k−3
)≤ cl(DK )≤ 3.

In [12, Theorem 13], it is shown that for p ≥ 5 the free groups of rank at least 3
in the variety of groups of exponent p and class 4 have four class sizes, and the proof
shows that these groups have derived length 3. However, we do not have examples
of 2-groups, or 3-groups, with these values for k and dl(G). Other examples for
large primes can be obtained from Blackburn’s construction of exceptional p-groups
of maximal class [3, III.14.24]. These groups are constructed for a prime p ≥ 5 and an
integer r such that 6≤ 2r ≤ p + 1. They have order p2r , class 2r − 1, contain an extra
special maximal subgroup E , and satisfy CG(Z2(G))= H , where H is a maximal
subgroup different from E . If x ∈ E − Z2(G), then CG(x)≤ E . It follows that the
class sizes of G are 1, p, p2, p2r−3, p2r−2. Let K be a maximal subgroup different
from both E and H . Then the class sizes in K are 1, p, p2, p2r−3, and K ′ = γ3(G)
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has order p2r−3 and is not abelian, provided that 2r ≥ 8, and then dl(K )= 3. Note
that the proviso 2r ≥ 8 forces p ≥ 7.
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