
TWO FINITENESS THEOREMS IN THE MINKOWSKI THEORY OF
REDUCTION

P. W. AITCHISON

(Received 16 March 1970; revised 16 December 1970)

Communicated by E. S. Barnes

1. Introduction

Minkowski proved two important finiteness theorems concerning the reduction
theory of positive definite quadratic forms (see [6], p. 285 or [7], §8 and §10).
A positive definite quadratic form in n variables may be considered as an ellipsoid
in n-dimensional Euclidean space, R", and then the two results can be investi-
gated more generally by replacing the ellipsoid by any symmetric convex body
in R". We show here that when n ^ 3 the two finiteness theorems hold only in
the case of the ellipsoid. This is equivalent to showing that Minkowski's results
do not hold in a general Minkowski space, namely in a euclidean space where
the unit ball is a general symmetric convex body instead of the sphere or ellipsoid.

We denote points and vectors in R" as a, ftx, etcetera, and in particular 0 is
the origin, and u denotes a unit vector always. An n-dimensional convex body
K is a closed, bounded, and convex subset of a euclidean space, which contains
exactly n linearly independent points. In this case, K is symmetric means K
is a symmetric set about 0; gK, for a real number g, is the set {g x |xeX},
and other concepts associated with K such as support plane, width, thickness,
boundary, and interior, are as defined in [2] for example, except that "sup-
porting" is used there instead of "support". The distance function F of a convex
body K is defined by K = {x | F(x) ^ 1}, see [5] or [3], and has the following
properties:

interior of K = {x \ x(F) < 1};
boundary of K = {x\F(x) = 1};
gK = {x\F(x) S g}; F(t,x) = tF(x) if t> 0 (homogeneity);
F(x + y) ^ F(x) + F(y) (convexity);
K is symmetric if and only if F(x) = F(— x) for all x;
F(x) = 0 if and only if x = 0 (boundedness).

A support plane or support line of K is regular if it intersects X i n a single
point.
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2. The Finiteness Theorems

A latticeL inR"is a set {S7= iZia»| Z/is aninteger} with basis {aua2, ••-,«„}
where a1 ;a2 , ••-,«„ are linearly independent. The basis {a1,---,an} of Lis called
a K-reduced basis of L, for an n-dimensional convex body K, if for each j with
1 ^ j ^ n we have for integers pt

whenever g.c.d. (pJt-;Pn) = 1 (see [7], p. 267, or [5]).
It can easily be shown that when K is an ellipsoid, a K-reducd basis of L

corresponds to a reduced positive definite quadratic form in n variables (reduced
in the Minkowski sense), and two fc-reduced bases of the same lattic corre-
spond to two equivalent quadratic forms.

Minkowski's finiteness theorems may now be stated as in (I) and (II) (see
[6] and [7] for more details).

(I). Let K be a symmetric n-dimensional ellipsoid in R" with distance
function F. There is a finite set P of n-tuples of integers, so that if au---,an

are linearly independent points satisfying for j = 1, ••-,«,

whenever peP and g.c.d. (pj,---,pn)
 = 1> tnen {ai>"">an} t s a K-reduced basis.

In other words, if the coefficients of a positive definite quadratic form satisfy
a certain finite set of linear inequalities then that quadratic form is reduced in
the Minkowski sense.

(II). Let K be an n-dimensional ellipsoid in R". Considering all K-reduced
bases of all n-dimensional lattices in R", there are only finitely many different
integral unimodular transformations which transform a K-reduced basis again
into a K-reduced basis.

In other words, there are only finitely many integral unimodular transfor-
mations which can transform a given reduced positive definite quadratic form
into an equivalent such form.

One naturally wonders whether the above results on ellipsoids can be gen-
eralized to arbitrary convex bodies. For n = 2, this question was investigated
by Minkowski, who proved the first and probably also the second of the fol-
lowing two results. (See [8], p. 193.)

(III). Let K be a symmetric two-dimensional convex body in R2 with
distance function F. If at and a2 are linearly independent, then {al,a2} is
a K-reduced basis if and only if
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and
F(a2) ^f(«i)-

(IV). Let K be a symmetric two-dimensional convex body in R2 with
distance function F. There are finitely many integral unimodular transfor-
mations which transform a K-reduced basis again into a K-reduced basis if,
and only if, every support line of K is regular.

However, for n ^ 3 the situation is quite different. Most of the present
paper is devoted to the proofs of the theorems (V) and (VI) below, which show
that for n ^ 3 the converses of (I) and (II) hold.

(V). For n k 3 let K be an n-dimensional, symmetric convex body which
has the distance function F. Suppose there is a finite set P of n-tuples of integers
satisfying: ifau---,an are linearly independent points satisfying, for j = 1,••-,«,

(A) F(aj)^F(piai + -+pnan)

whenever peP and g.c.d. (£,•,•••,/>„) = 1, then {au---,an} is a K-reduced basis.
Then K is an ellipsoid.

(VI). For n 7t 3 let K be an n-'dimensional, symmetric convex body in R".
If all K-reduced bases of all n-dimensional lattices in R" are considered, then
suppose there be only finitely many integral unimodular transformations
which transform a K-reduced basis again into a K-reduced basis. Then K is
an ellipsoid.

In §3 I give a characterization of the ellipsoid which is needed for the proofs
of theorems (IV), (V), (VI). As 1 have been unable to find proofs of theorem (IV)
in the literature, I give a proof of it in §4. In the remainder of the paper I prove
(V) and (VI).

3. A characterisation of the ellipsoid

We require some properties of the ellipsoid for the proofs to follow. We
define the width of a convex body K in the direction u to be the distance between
the two support planes of K perpendicular to u. Two n-dimensional convex
bodies Kt and K2 in R" are called equivalent if the ratio of the width of Kt in
the direction u to that of K2 is constant as u varies in R". We need the following
two results, both of which are proved in [1]. (Result (VII) is Theorem 1 of [1],
and (VIII) is contained in Lemma 1 of [1].)

https://doi.org/10.1017/S1446788700010818 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010818


[4] Minkowsi theory of reduction 339

(VII) Let K be a 3-dimensional symmetric convex body in R3 with all its
support planes regular. Suppose there exists a constant h such that 0 < h < 1,
and h has the following property. The 2-dimensional convex bodies W^C^K
and W2 r\X are equivalent for all pairs of parallel planes Wt and W2 which
both intersect the interior ofK but not the interior ofhK. Then K is an ellipsoid.

(VIII). Let Kx and K2 be 2-dimensional convex bodies lying in parallel
planes. Suppose that whenever there is a vector u parallel to the plane of Kx

and K2 such that all four support lines parallel to u of Kl and K2 are regular,
then the following property holds. The chord joining the (unique) points of
intersection with Kt of the two support lines of K1 parallel to u, is parallel
to the corresponding chord of K2. Then K1 is equivalent to K2.

Finally we need the result of (IX) to deal with the difficult cases in (V) and
(VI) when there are non-regular support planes.

(IX). Let K be a 3-dimensional symmetric convex body in R3 such that
no support plane of K intersects K in just a segment. Suppose that for each
regular support plane T of K there is a constant h = h(T) {depending on T)
such that 0 < h < 1 and h has the following property. If Wo is the plane through
0 parallel to Tthen Wo C\K and W (~\K are equivalent for every plane W which
is parallel to T and intersects the interior of K but not that of hK. Then all
support planes of K are regular.

PROOF OF (IX). By hypothesis a support p'ane of AT can intersect AT in a single
point or a plane face but not a segment. Let D and D' be the intersections of two
parallel support planes, Tand T', with K, and assume that D (and so by sym-
metry D') is a plane face. The aim of the proof is to show that for any vector
a parallel to the plane of D, there is a plane face of K parallel to a and different
from D and D'. This property is then shown to result in a contradiction.

Let a be any vector parallel to the plane of D. Let U be one of the sym-
metric pair of support planes of K which are parallel to the plane containing
Lx and L2, where Lt and L2 are support lines of D and D' parallel to a and not
symmetric about 0. There are two cases: (i) U intersects both D and D'; (ii) U
does not intersect D or £>'. (U cannot intersect just one of D and D', because
the intersection of D say and U would lie in Ly, in which case U would also
contain L2 which intersects D'.)

In case (i), U C\K must contain a segment on the boundary of K (joining
a point of D and a point of £>'), and so by the hypothesis it must contain a plane
face of K parallel to a and different from D and D'.

In case (ii), the plane Uo parallel to U, through 0, clearly intersects the
relative interiors of D and D'. We can choose a plane U^ parallel to U and suf-
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ficiently close to U such that U1 does not intersect D or D' or the interior of hK
(h is the constant h(U) of the hypothesis). Then by hypothesis UlC\K and
Uo n K are equivalent. The boundary of Uo O K contains a straight segment
parallel to a in its intersection with D, and a property of equivalence (see [1],
Lemma 2) shows that the boundary of Ut n K also contains a segment parallel
to a. Hence there must be a plane face of K parallel to a and distinct from D
and D' which contains this segment.

In both (i) and (ii) we conclude that there is a plane face of K parallel to a
and distinct from D and D'. However, there are uncountably many such plane
faces corresponding to the mutually non-parallel vectors a which are parallel to the
plane T. Any two such plane faces must be distinct since the only plane faces
of K parallel to two such vectors are D and D'. Yet a convex body cannot have
uncountably many plane faces. This contradicts the assumption that D was a
plane face of K. Hence all support planes of K are regular.

4. Proof of Theorem IV

First let every support line of K be regular and {al,a2} be any K-reduced
basis of a lattice L, so that F(a2) ^ F(a^ by the definition of X-reduced basis.
If {b1,b2} is any other basis of L, then each of bt and b2 has the form ptai + p2a2

where p± and p2 are integers satisfying g.c.d. (pl,p2) = 1. If {bub2} is also
X-reduced, then Fib,) = >X«i)> and F(b2) = F(a2) (a proof of this is contained
in [7]; see in particular pp. 278-286). In the first part of the proof we use the
above facts to show that fex and b2 must be one of a finite set of linear combi-
nations of a1 and a2, thus showing that there are only finitely many integral
unimodular transformations from a X-reduced basis of L to another K-reduced
basis of L (regardless of the choice of L.) .

Using the convexity, homogeneity and symmetry of F, together with the
reduction conditions in (III) we obtain when p^ > 0 and p2 > 0:

(1) for pt> p2, F(± pia1 + p2a2) ^ plF(± at + a2) - (p^ -p2)F(a2)

^ P2F(a2);

(2) for Pi = p2,F(±plal + p2a2) = p1F(±a1 + a2);

(3) for pt<p2, F(± p1a1 + p2a2) ^ p2F(±al+ a2) - (p2 -

In addition, for px < p2 we find using the convexity, homogeneity and symmetry
of F, together with the reduction conditions, that

(4) F(±pla1+p2a2) ^

From (1), it follows that F(± p^^ + p2a2) > F(a2) unless both p2 = 1 and
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F(± <Ji + a2) = F(a2). From (2), we find that F(+ p1al + p2a2) > F(a2) unless
pt = p2 = 1. From (4), F(± p^L + p2a2) > F(a2) unless both p2 — p1 + 1
and Fiaj) = F(a2), and, from (3), F(±p1al + p2a2) > Fiaj unless px = 1;
hence in this case if F{± p^a^ + p2a2) ^ F(a2) we must have p1 = I, p2 = 2.

If + p^ax + p2a2 is to be part of a fe-reduced basis, we need only consider
cases where pY > 0 and p2 > 0, because of the symmetry of JF and the fact that
pt = 0, or p2 — 0 can only yield ± a2 or ± a^. It follows from these results
and the facts mentioned at the beginning of the proof that the only possible
candidates for a X-reduced basis of L are

+ «i + «2 > ± «i ± 2a2, + « i , + «2 a n d

+ piai ± a2, where pt ^ 2 .

In the last case we also found that F(a2) = F(± a, + a2), and since we also
have F(a2) = F(± p ^ j + a2) (for appropriate choice of signs), there are three
linearly dependent points on the boundary of K. This means that K has a non-
regular support line, so this last case must be excluded. We are now left with
only a finite number of possibilities for points of other X-reduced bases, namely

± a1 ± a2, ±aL + 2a2, ± at, ± a2.

There can only be finitely many transformations between bases composed from
these points, regardless of the choice of al and a2. This completes the first part
of the proof.

Now let us assume that K has a non-regular support line so there is a segment
S joining a and b on the boundary of K. Choose a sequence of lattices Lm with
respective bases {a™,a™} as follows:

«T = -^(6-a>> a" = «•

We now show using the result (III) that {a™, a™} is a K-reduced basis for all m
sufficiently large. We have first of all

F(a) ^^F(b- a)

for all m sufficiently large, say m ^ m0. Hence by the homogeneity of F, we
have when m ^ m0

Secondly by the convexity, homogeneity and symmetry of F, we have
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Since F(a) = F(b) = F(a™) = 1, we therefore find for all m,

Finally, since S lies on the boundary of K and a'"+ a™eS, we have

Hence, the three conditions of (III) are satisfied and {a™, a™} is a X-reduced
basis of Lm when m ^ m0.

Similarly, {a™,b} is a K-reduced basis of Lm when m±im0. The trans-
formation from the basis {a™ a™} to the basis {a™, b] has the matrix

Lo I J
Infinitely many of these transformations are different for m ^ m0. Hence, when
the boundary of K contains a segment, there are infinitely many integral uni-
modular transformations which transform a X-reduced basis into a X-reduced
basis of the same lattice.

5. Proof of Theorem V for n = 3 ; regular support planes

The method of proof in this case is to construct a sequence of lattice bases
related to K. We show that unless K satisfies conditions which characterize it
as an ellipsoid, some of the lattice bases satisfy all of the finite set of inequalities
of the hypothesis, yet are not X-reduced.

Let u be such that the support plane U with outer normal u is regular, let
Uo be the plane parallel to U containing 0, and let Do = U0C\K. We now
define a real-valued function j such that if V is the support plane perpendicular
to « of the convex body (j(u)K), then V is "considerably smaller" than
Do. Let h > 0, be such that: if V r\K is the support plane of hK with outer
normal u then the diameter of V n K is equal to 1/4 of the thickness of Do.
This condition can be satisfied since the diameter of U' r\K must approach
zero continuously as h -> 1. This follows because first of all U' is a continuous
function of h in terms of the usual metric on convex bodies (see [2], p. 133)
(this continuity property can be proved using the boundedness of K and the
continuity of F), and secondly because the diameter, as can easily be shown,
is a continuous function of U'. Now define

j(u) = max(/i, | ) , so j(u) < 1.

Because of the convexity and symmetry of K, the diameter of U' (as defined
above) decreases monotonically as h increases. Hence if Ut is any plane parallel
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to U, not intersecting the interior of j(u)K, then the diameter of (Ul OX) is
less than or equal to \ of the thickness of Do.

Let Ui be any plane parallel to U not intersecting the interior of ;(«) K
and let Dt = UlC\K. Let Vy and V2 be two distinct parallel support lines of
Do (in Uo) at the points fex and b2. Let Wt and W2 be distinct support lines of Dt

(in Ux) at c£ and c2, which are both parallel to V1 and F2 and similarly situated
with respect to DL and D o . (See Diagram 1.)

Diagram 1

If the vector b1-b2h parallel to the vector cY-c2 for every choice of Vu V2,
W^ and W2 when all four are regular support lines, then Do and Dt are equiv-
alent by (VIII). It is this result we will eventually obtain.

Assume that for some choice of Vu V2, Wl and W2, all regular, the vector
bt - b2 is not parallel to cx - c2. We now choose a sequence of lattices Lm with
respective bases {a™,a™,a™}. Notice that b1 = -b2, and any result concerning
the plane Uv also applies to the plane (-1)17!, by the symmetry of K.

Let c3 be the point on W2 such that the vector ct — c3 is parallel to the
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vector bl — h2. By assumption c3 5̂  c2 and by the regularity of W2, c3

We define (independently of m)

a j = k(c3 - C l)

where k is chosen (independently of m) to satisfy:

(i) i < k < 1; (ii) ct + a ™ £ K. Condition (ii) may be satisfied by choosing
k sufficiently close to 1, since c3 $K and ct + a™ = kc3 + Cj(l — k) -* c3 a
k -» 1. Define a™ = c t (again independent of m) and

We will now show that all of the finite number of the inequalities (A) of the
hypothesis are satisfied by the linearly independent points a™, a™ and a™ when
m is large. First consider a™. Every point of Lm, which is not a multiple of a™
lies on a line parallel to V1, though one of the points />2

a2l+P3a3l where
the integers p3 and p2 are not both zero. Since a™ and a2 are defined independently
of m, these lines have a minimum distance from 0 independent of m. Hence
for some q > 0

whenever p2 and p3 are not both zero. On the other hand,

F(a'?) = —F(c3 - c2) -> 0 as m -* 00 .

Hence, there is an m0 so that the inequalities (A) hold for a", when m 2; m0 ,
namely:

for all integers Pi,p2,p3, whenever m ^ m0.
Consider now the inequalities (A) for a™. We have

— Cj) J < | c 3 - c 1 | , since /c < 1.

By our assumption on the widths of Do and Dt,

h - C x I ^ i l ^ - M = i | 6 2 | -
Hence F(«J) ^ i F ( 6 2 ) , and since f(ft2) = 1,

It follows that we need only investigate points X f = t p,a™ in \K. However
does not intersect the interior of j(u)K where j(u) ^ | , so F(a) > \ ^ F(
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when a e D j . Hence we can restrict our attention to Do. We consider points
(Pia7 + a"i)> since p3 — 0 in Uo, and the inequalities (A) only apply to a2 when
g.c.d. (p2,p3) = 1 • We know, by the choice of c3 , that for some q > 0

By similarity, q(pva"{ + a") e V2. Since F(a) = 1 when a e V2,

and so

We have shown that the inequalities (A) hold for a™ and for all m, namely:
whenever g.c.d. (p2, p3) = 1,

We now consider the inequalities (A) for a™. In this case the conditions p3 = 1,
together with F(a™) = 1, restricts our attention to the interior of Dt. Let W
be the line through a" + a3 parallel to Wt. All points of Lm n l/j lie on lines
parallel to Wt through the points

«3 + />2«2 = c1+p2k(e3-e1).

When p2 = 0, this line is ^ through cv; when p2 = 1, it is W through
«2 + a™ J a n d when p2 == 1/fc (not an integer), it is W2 through c3 . Since fFx

and W2 are support lines of Dt and by the construction of k, (1/fc) < 2 , the
only such line which intersects the interior of Dx is W. Therefore we need con-
sider only points of (W C\K). Since a™ + a™<£K, let c4 be the nearest point
of (W nK) to a"2 + 83. The distance between successive lattice points on W is
| a™ | , so the number of lattice points between a2 + a™ and c4 is at least
|aj + aj-c4| m|aj + aj-c4| . . .
! 1 i !- = —!—1 :—- =\mt say. f is independent of m since

| «Tl k\c3-c2\
a™ and a 3" are independent of m, and also t > 0. Hence, all lattice points of Lm

in I f f i D , must be of the form

Pi«7+«2 + «3> w h e r e I Pi I ^ mt-

We have shown therefore that
F(aJ) £ F(Pla™ + p2a

m
2 + a^)

for all integers px and p2, except when p2 = 1 and j px j ^ mf.
Collecting all the results we have shown that for each m with m 2; m0 and

f o r ; = 1,2,3,
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whenever g.c.d. (pj,---,Pn) = 1. except when p2 = p3 = 1 and \pt\ ^ mt. By
choosing m large enough, say m ^ m, S; m0, we can ensure that none of the
p , for which the above inequalities fail, lie in the finite set P of the hypothesis.
Hence for m 2: m1, the basis {a"',«", a™} satisfies all of the finite set of the in-
equalities (A). However {a^a^.a™} is not K-reduced for m ^ Wj, since the
point

— ma™+ a2
m+ a-T = c± + kic^ — cO for \ < k < 1

\ies in the interior of K so that

This violates the reduction conditions. Hence we have a contradiction, and

so the initial assumption that the vector b1 — b2, is not parallel to cl — c2 must

be false. As previously indicated, this leads us to the conclusion that Do is equiv-

alent to £>!. We have shown, for each initial choice of the regular support plane

U, Mt Dti and D{ are equivalent whenever U1 does not intersect the interior
of j(u)K.

If all support planes of K are regular, then j(u) is defined for all u, and
j(u) < 1. The supremum, h say, of j(u) on the closed set of unit vectors satisfies
h < 1. For otherwise, there would be a subsequence {«,} of unit vectors so that
j(Ui) -»• 1 as i -* oo and ;'(«,) > § for all ;. If [/,- is the support plane of j(ui)K
and Df = Utr\K, then the sequence {Dt} has a convergent subsequence, accord-
ing to the Blaschke Selection Theorem (see [2], p. 134), with a plane limit set D,
and then the plane W of D must be a support plane of K. Yet each of the Dt

must have a diameter no less tnan £ of the minimum thickness of any section
of K through 0. Hence D must have a positive diameter, which is impossible,
because W is regular. Hence 7(11) is bounded above by some constant h with
h < 1, and this h satisfies the hypothesis of (VII), and so K is an ellipsoid.

This completes the theorem for n = 3 , when all support planes of K are
regular.

6. Completion of proof of Theorem V for n = 3

We have to show that every support plane of K is regular, in which case
the theorem follows as in §5. We proved in §5 (even when some support planes
of K are non-regular) that if u is the outer normal of a regular support plane
of K and Wu Wo are planes perpendicular to u so that Wo contains 0 and Wt

intersects the interior of K but not the interior of j(u)K, then (W0C\K) and
(Wi n K) are equivalent. Hence we can apply Theorem (IX) to K to show that
all of its support planes are regular, provided no support plane intersects K
in just a segment.
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Assume that a support plane T with outer normal u intersects K in just a
segment S joining dx and d2 (dt ^ d2). Let L/;, i = 2,3, ••• be planes parallel
to 71 at a perpendicular distance of J/i from T. We next define points and lines
related to each [/, in the same way as we defined points and lines related to f/j
at the beginning of this proof. Let Uo be the plane parallel to T with 0 e Uo,
Do = U0C\K, and, Vt and V2 be parallel support lines of Do (in Uo). For
each i, let Z); = Ut C\K, and let Wu and W2i be support lines of Dt parallel
to Vx and V2 and respectively, similarly situated about Dt. Let d and d; be the
respective perpendicular distances between, Vx and V2, and W1; and W2i. If Vi
is parallel to the vector dx — d2 then clearly dt -> 0 as i -> oo . Hence if we choose
Fx sufficiently close in direction to dx — d2 yet not parallel to it, then we can
find an i0 so that d; ^ \d if i > i0. We now take this to be the case and further
assume that Wu, W2i, Vx and V2 are all regular, which we can do since at most
countably many support lines of D; are not regular. Let {ci;} = W ^ n D j ,
{c2i} = W^rtDi, {bx} = Vi n£)0 , and {b2} = V2nD0. Finally in addition to
the above conditions, we can clearly assume that bt — b2 is not parallel to d1—d2.
Vx and V2 are now fixed. Note that Ut Olnt(fK) is empty when i is sufficiently
large, say i > it ^ j 0 . In this case Dt, with i > it, now satisfies conditions by
which we can show (with7"(H) = f) that cu — c2i is parallel to bt — b2 in exactly
the same way as we previously showed that the vector cx — c2 in Dt (in the previous
notation) is parallel to bx — b2 in Do. (Even though j(u) here does not satisfy
the complete condition satisfied by j(u) in the previous proof, the condition
dt ^ \d is sufficient to follow through the proof for the particular choice of
Vt and V2.)

We now show that the condition that clf — c2i is parallel to bt — b2 leads
to a contradiction. The sequence {cu} clearly has a limit point d in the segment S
and we show that d = dx or d2. Project all of the sets in question from 0 onto T,
and denote the projected sets by an asterisk. Then clearly D f 2 l ) * 2 - 2 S ,
and c*j -> d as i -* oo . Now W*t cannot intersect the interior of S since Df 3 S
and consequently d = dt or d2, say d = dt. Similarly c2i-> d2 as i -*• co.
Hence the direction of the vector cu — c2i approaches that of dt — d2 as i -*• co,
yet cu — c2i is parallel to bt — b2 for i > it and bt — b2, is not parallel to dx — d2.
This is a contradiction. Hence T C\K is not just a segment.

Now we can apply (IX) to show all support planes of K are regular. Hence
we can prove K is an ellipsoid as in §5 and the proof of Theorem V is complete
for the case n = 3.

6. Proof of Theorem V for all n

For n > 3 we proceed by induction on n. Assume that the theorem is true
for dimension (n —1) and that K is an n-dimensional convex body satisfying
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the hypothesis. Let U be any hyperplane through 0, and let J = K n U. Clearly
U can be identified with R"'1 so that / is an ( n - 1 ) - dimensional convex
body. Let

We now show that J satisfies the hypothesis of this theorem with P replaced
by P'. Let au--,an_l be linearly independent points in U satisfying for
j = 1, • • • , « - 1,

whenever (pu •-,pn_l)eP' and g.c.d. (pj,-,Pn-i) = 1. We must show that
au •••,0n-i is a J-reduced basis. Choose a hyperplane V in R", parallel to U,
which does not intersect the set F(x) :§ F(ai) for xeR", and i = 1, •••,n — 1 .

Define an e V by

= min
aeV

By the construction of V, none of the planes parallel to V, through points pan,

for an integer p, can intersect the sets F(x) ^ F(a , ) , for i = l , - - , n — 1 . Hence,

for 7 = 1, ---, n ,

(2) ir(«J)

for all (pu •••,pn) with pn 5̂  0. From equations (1) and (2) we find, for; = 1, ••-,«,

F(aj) ^F(piai + ---+pnan)

for all p e P , with g.c.d. (pp ••-,pn) = 1 . Since K satisfies the hypothesis of this

theorem, it follows that {au---,an} is a K-reduced basis. Hence we have, in par-

ticular, by the definition of a K-reduced basis, for j = 1, ••-,« — 1 ,

whenever g.c.d. (pJ,---,pn_1) = 1. This shows that {a1,---,an_1} is a /-reduced
basis.

We have now shown that J satisfies the hypothesis of this theorem, and so
by the induction hypothesis, J is an ellipsoid. This result is true for each choice
of the hyperplane U through 0, so every section of K through 0 is an ellipsoid.
It follows from a well-known result, see [4], p. 91, that K is an ellipsoid. Hence
the theorem follows for all n by the induction principle.

7. Proof of Theorem VI

The proof of this theorem is very similar to the proof of (V) and many of
the details of this proof are referred to the proof of (V). We first consider the
case where n = 3 .
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Let U be a regular support plane of K and let Uo, j(u), U1 Do, Du Wu

W2, Vu V2, bu b2, cu c2 and c3 be defined as in (V) (see Diagram 2). We assume
that, as in (V), for some choice of Vu V2, Wt and W2, all regular, we have c2 -^ c3.
We now define a sequence of lattices Lm with respective bases {a™, a™, a™}.

Diagram 2

Define

m

The only difference between the situation here and that of (V) is that the line W
defined in (V) has now become W2. Hence we can show, as in (V). (But without
the exceptional points on the line W), that for m ^ m0 and for j = 1,2,3,

p2a
m

2

whenever g.c.d. (pj,---,p3) = 1. Hence {a™,a™,a™} is a .K-reduced basis of Lm

when m^m0. However, c2eLm, since c2 = ma™ + a2
n + a™, and it is easily
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shown that {a™, a™, c2} is also a basis of Lm. Yet F(c2) = F ( O = 1, so « , a2, c2}
is also a JC-reduced basis of Lm, for m ^ m0. The transformation from the basis
{a7,«2,«r} t o the basis K . a ™ , ^ } has the matrix

f l 0 m-i

0 1 1

10 0 1

Hence infinitely many of these transformations are different for m ^ m0. This
contradicts the hypothesis, so in fact we must have c2 = c3. As in (V) we deduce
Do and Dl are equivalent, and that K is an ellipsoid provided no support plane
intersects K in a segment.

Assume therefore that the support plane U of K intersects K in a segment
S from dt to d2. We define Uo, Do, Vt, V2, bt and b2 with Ft and V2 regular,
as in the first part of this proof. We define a sequence of lattices Lm with
respective bases {a™,a™,a™}. Define

< = ^-(d2 ~ dy), a? = b2, and a? = dx.

It is easy to show, as in the first part of the proof of this theorem, that for some m0,
{a™,a™,a™} is a K-reduced basis of Lm for m^m0. Similarly {a"a2,d2} is a
K-reduced basis of Lm for m 2: m0, and d2 = ma™+ a™. The transformation
from the basis {a^a^a"} to the basis {a™,a2,d2} has the matrix

r 1 0 m -,

0 1 0

(- 0 0 1 J

Infinitely many of these transformations are different for m ^ m0. This contra-
dicts the hypothesis. Hence t/ cannot intersect K in a segment. As previously
noted, this result together with the preceding results leads us to the conclusion
that K is an ellipsoid. This completes the discussion of the three-dimensional
case.

We now prove the theorem for n > 3 by an induction proof. Assume that
the theorem holds for dimension (n — 1), and let K be an n-dimensional convex
body satisfying the hypothesis of the theorem. Let U be a hyperplane through 0
and let J = U <~\K. We now show that the (n —l)-dimensional convex body J
satisfies the hypothesis of this theorem.
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Let {<*!,•••,«„-!} and {b1,---,bn-1} be any two ./-reduced bases of some
lattice L. Let the unimodular transformation from the first basis to the second
one have coefficients fu. We choose a hyperplane V in R" which is parallel to
U and does not intersect the sets F(x) ^ F(an_v) and F(x) ^ Fib^j) for xeR"
and define an by

F(an) = mm F(a).
aeV

Then, as in the previous proof of (V), {a1,---,aB} and {61,---,6B_1,aB} are both
K-reduced bases of the same lattice. The transformation from the first basis to
the second has the matrix

f / i i • • • / i B - i (

fn-1,1 "'fn.n

L 0 ••• 0

However, since K satisfies the hypothesis of this theorem, there can only be
finitely many of these transformations which are different. Hence only finitely
many of the original transformations with the coefficients ftJ are different. There-
fore J satisfies the hypothesis of this theorem, and so J must be an ellipsoid
by the induction hypothesis. It follows as in (V) that K is an ellipsoid, and so
the theorem is proved for all n by the induction principle.
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