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Summary

There is limited experimental information about the genetic basis of micro-environmental variance
(VE) (developmental stability) and environmental correlations. This study, by using a population of
maize recombinant inbred lines (RIL) and simple sequence repeat (SSR) polymorphic markers, aims
at the following: firstly, to quantify the genetic component of the VE or developmental stability for
four traits in maize and the environmental correlation between these traits, and secondly, to identify
quantitative trait loci (QTLs) that influence these quantities. We found that, when estimating
variances and correlations and testing their homogeneity, estimates and tests are needed that are not
highly dependent on normality assumptions. There was significant variation among the RILs in VE

and in the environmental correlation for some of the traits, implying genetic heterogeneity in the VE

and environmental correlations. The genetic coefficient of variation of the environmental variance
(GCVVE

) was estimated to be 20%, which is lower than estimates obtained for other species. A few
genomic regions involved in the stability of one trait or two traits were detected, and these did not
have an important influence on the mean of the trait. One region that could be associated with the
environmental correlations between traits was also detected.

1. Introduction

Phenotypic stability is the genotype’s tendency to
exhibit a constant phenotypic expression in different
environments (Lynch &Walsh, 1998). The stability or
sensitivity of each genotype to macro-environmental
changes can be estimated as the variance of the geno-
type over the set of macro-environments where it
was grown and the stability of each genotype to micro-
environmental change can be estimated as the vari-
ance of the genotype within each macro-environment
(developmental stability). Differences among geno-
types in stability will be exhibited as heterogeneity
among genotypes in micro- or macro-environmental
variance. It is likely that the genetic factors contribu-
ting to stability to macro- and to micro-environmental
changes may not be the same factors as those
which influence the stability to micro-environmental

changes, although little work has been done on the
subject.

Evidence for the existence of genetic heterogeneity
of micro-environmental variance (VE) can come from
selection experiments, for theory predicts that en-
vironmental variance would decrease with stabilizing
selection and increase with disruptive selection
(Mulder et al., 2007). Accordingly, Kaufman et al.
(1977) observed a decrease in VE with stabilizing
selection and Scharloo et al. (1972) observed an in-
crease with disruptive selection. Some experiments
using directional selection by truncation have shown
that phenotypic variance increased with the genera-
tions of selection (Clayton & Robertson, 1957;
Mackay et al., 1994). One explanation for these data
is that there is genetic variance in VE because more
variable genotypes are more likely to have extreme
phenotypes and thus to be selected when selection
intensity is high (Hill & Zhang, 2004).

Genetic differences in VE have been quantified in
analyses of field data in domestic animals by Van
Vleck (1968) and Clay et al. (1979) in dairy cattle,
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SanCristobal-Gaudy et al. (2001) in sheep, Sorensen
& Waagepetersen (2003) and Ibáñez-Escriche et al.
(2008) in pigs and Rowe et al. (2006) in chicken. Other
authors have found genetic heterogeneity of VE in
model species including mice (Gutierrez et al., 2006)
and Drosophila melanogaster (Whitlock & Fowler,
1999; Mackay & Lyman, 2005) and in the snail Helix
aspersa (Ros et al., 2004).

Although some of the previous analyses of field
data and selection experiments show evidence for
genetic heterogeneity in VE, estimates could be due
to or biased by statistical artefacts, e.g. confounding
of genetic and environmental effects on variance or
violation of the infinitesimal model assumption
(Mulder et al., 2007).

In plant breeding, there is a vast body of literature
documenting research on the statistical modelling
of genotypermacro-environment interaction and
on assessing stability in the context of multi-
environment trials (Cotes et al., 2006). However,
until recently researchers have not paid attention to
the heterogeneity of VE or the error variance, and
then only with the objective of reducing the error
of estimating genotypermacro-environment inter-
action variances (Edwards & Jannink, 2006). The
heterogeneity of VE or the error variance due to
genetic causes does, however, give useful information
about the genetic component of the developmental
stability.

At the molecular level, there is limited experimen-
tal information about the genetic basis of VE. In
D. melanogaster, genetic determinants for differences
in the mean and variance of bristle number and yield
of progeny have been located to one or more chro-
mosomes (Caligari & Mather, 1975). In an inter-
specific cross between Lycopersicon esculentun and
Lycopersicon pimpinellifolium, marker-associated ef-
fects on variance were found for several traits using six
morphological and four electrophoretic markers
(Weller et al., 1988). In Arabidopsis thaliana, Stratton
(1998) has found two QTLs affecting flowering time
and rosette leaf number and with significant effects
on the linear and quadratic components of the re-
action norm function. Mackay & Lyman (2005)
have found that molecular polymorphisms at Dopa
decarboxylase (Ddc) are associated with variation in
environmental variance in abdominal bristle number
of D. melanogaster.

Experimental data on the distribution of QTLs
affecting environmental variance or environmental
stability, particularly the VE or stability (develop-
mental stability) along the genome, or the effects of
such QTLs are, therefore, needed. Such information
could, for example, be helpful in understanding how
levels of phenotypic variance evolve to take the values
they do (Zhang & Hill, 2005). Also, in livestock and
plant breeding, information about QTLs affecting VE

is useful because the uniformity of end product is an
important topic.

The availability of thousands of polymorphic
molecular markers and the development of appropri-
ate statistical tools enable the use of QTL mapping
experiments to identify many genomic regions affect-
ing the mean of different traits in many plant and
animal species. As far as we know, however, this
technology has had little or no application in locating
genomic regions or QTLs affecting VE and the en-
vironmental correlation between traits. Therefore,
the present study, using a population of maize re-
combinant inbred lines (RIL) and simple sequence
repeat (SSR) polymorphic markers, aims at the fol-
lowing:

1. To quantify the genetic component of the VE or
developmental stability for four traits in maize
and the environmental correlation between these
traits.

2. To identify and quantify the effects of QTLs on the
VE of these traits and on the environmental corre-
lations between them.

2. Material and methods

(i) Experimental material, phenotypic evaluation
and marker loci

A total of 129 unselected F6 lines were developed from
the cross EP42rEP39 by single-seed descent. Line
EP42 was obtained from a local open pollinated var-
iety from North-Western Spain (humid Spain),
whereas EP39 was obtained from the race ‘Fino’
from Central Spain (dry Spain). The RILs were mul-
tiplied the same year and in the same location to have
homogeneous seed. The 129 RILs were grown in a
randomized complete block design with five repli-
cations in Pontevedra (humid Spain) in 2006. Each
plot consisted of one row, with 13 plants per plot of
the same line distributed in 13 hills. The distance be-
tween rows was 0.80 m and between plants 0.21 m for
a planting density of approximately 60 000 plants/ha.
The average number of plants that survived per RIL
was 49.5, ranging from 12 to 65. The following data
were taken on individual plants : plant and ear height,
tassel length and days to pollen first shedding.

DNA of ten plants picked at random from each
RIL was extracted according to Liu &Whittier (1994)
with modifications. SSR amplifications were per-
formed as described by Butron et al. (2003). SSR
products were separated after amplification by elec-
trophoresis using 1rTBE on a 6% non-denaturing
acrylamide gel (approximately 250 V for 3 h) (Wang
et al., 2003). A total of 85 SSR polymorphic primer
pairs distributed along the genome were genotyped in
the RILs (locations tabulated in the Appendix).
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(ii) Statistical analysis

In this paper, we use the term ‘micro-environment’ to
refer to the environment of a single plant growing at
the same time and nearly at the same place as another
plant, specifically that of plants in the same row.

(a) Basic analysis assuming homogeneity of
variances and environmental correlations (model 1)

Under the first model, the phenotype (P) of a plant is
the sum of the effects due to the genotypic value or
RIL (G), the replication or block (R), the interaction
between genotype and replication (I) and a random
error (e). The model may be written as

Pijk=m+Gi+Rj+Iij+eijk,

i=1, 129, j=1, 5, and k=1, nij ; where m is the overall
mean and is a fixed effect, the other effects are random
with mean zero and variances VG, VR, VI and VE,
respectively, and nij is the number of plants in RIL i
and replication j.

The variance components associated with each
source of variation were estimated by restricted
maximum likelihood (REML) using the VARCOMP
procedure of SAS (SAS Institute, 2003).

The residual variance, VE, estimates the variation
between plants within the same row. VE is mainly
micro-environmental variability, but also includes
any genetic variability remaining after four genera-
tions of selfing due to segregation within the F6 fam-
ilies (which is, on average, 1/16 of the genetic variance
in the F2 generation assuming no epistasis). Under
model 1, VE is assumed to be the same for all geno-
types and thus that there is no genetic heterogeneity
of micro-environmental variability and also that the
remaining genetic variance is identical for all families
as predicted from the infinitesimal genetic model.

The estimated additive variance (VA) of plant
height and ear height is 6 and 14 times the dominance
variance (VD), respectively, in maize open-pollinated
populations, whereas the estimated dominance vari-
ance for days to first flowering is 0 (Table 5.1 in
Hallauer & Miranda, 1988). Although there is no in-
formation available about the genetic variance of
tassel length, we assume that its components are
similar to those for plant height and therefore that VD

is much lower than VA. Under continuous selfing and
assuming no selection, the expected value of the gen-
etic variance between F6 lines is 1.875VA+0.0586VD,
where VA and VD refer to the F2 generation (Kearsey
& Pooni, 1996). Therefore, because the dominance
variance is expected to be low in the F2 generation and
is greatly reduced by the F6, the contribution of VD to
the variance between F6 families is assumed to be
negligible. Therefore, we estimated the additive vari-
ance (V̂A) in the F2 generation as V̂G=1�875, where V̂G

is the estimated variance component between RILs of
the F6 generation. The contribution of VD to the
variance within families was assumed to be negligible
and the residual genetic variance within families
(V̂GW) was therefore estimated as V̂A=16.

The error sum of squares and error cross products
obtained from the multivariate REML were used
to calculate the residual correlation between traits.
These correlation coefficients are mainly environmen-
tal correlations, averaged over all genotypes because
there is assumed to be little genetic variance within
lines.

(b) Estimation of heterogeneity of environmental
variances and correlations between RILs (model 2)

Under the infinitesimal model, the residual genetic
variability is the same for all RIL, and therefore
heterogeneity in the residual variance between the
RILs is due only to variation inVE. In our experiment,
the blocks were relatively homogeneous, although
due to their size some environmental heterogeneity
could exist within them. However, because we had five
blocks and the RILs were randomized within each
block, we assumed that the environmental effects
were on average similar for all RILs. Therefore any
differences in residual variance between the RILs can
be ascribed to differences between them in sensitivity
to the micro-environmental conditions.

We had a variable number of plants per row be-
cause some of the plants did not grow. The difference
in the number of plants could induce an environ-
mental bias affecting the error variance. To examine
the effect of the number of plants on the residual
variance, we carried out a linear regression of the re-
sidual variance of the combination RILrreplication
against the number of plants surviving and also a
linear regression of the pooled residual variance of
each RIL against the number of plants surviving per
RIL. The variation in the residual variance explained
by the variation in the number of plants was negligible
(r2f0.02) and therefore we conclude that the differ-
ences in residual variance between the RIL could not
be due to differences between them in the number of
surviving plants.

To test whether the residual variances of the RILs
differ significantly, a random one-fold nested multi-
variate analysis of variance (ANOVA) was under-
taken on each of the 129 RIL and VEi (the residual
variance of RIL i) was estimated from the mean
squares. The sources of variation were replications
and plants within replication and the mean squares
corresponding to these sources of variation were
designated s21i and s22i, respectively, such that s22i is an
estimate of VEi. A test of homogeneity of the residual
variances of the RILs was made using the criterion

due to Barlett, M= g129
i=1di

� �
ln s̄

2
2xg129

i=1di ln s
2
2i (Steel
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et al., 1997), where s̄
2
2=g129

i=1dis
2
2i

.
g129

i=1di. Bartlett’s
test statisticM is chi-square distributed under the null
hypothesis of homogeneous VEi if observations are
normally distributed. However, instead of assuming
that M is chi-square distributed under the null hypo-
thesis which requires the normality assumption, we
estimated the distribution of M under the null hypo-
thesis using a randomization procedure which does
not require such an assumption. The values of the
residual variances and its degrees of freedom were
randomly allocated to the RILs within each repli-
cation, and pooled residual variances together with its
degrees of freedom were calculated for each RIL. We
randomized the residual variances together with their
degrees of freedom to take into account the imbalance
of the experiment. Using the pooled residual vari-
ances and the degrees of freedom,M was calculated as
previously described and the value was recorded. This
random sampling was repeated 1000 times to obtain
the distribution of M under the null hypothesis of
homogeneity of variances as a basis for testing the
significance of the observed M.

To quantify the genetic heterogeneity in the en-
vironmental variance, the variances of the plants
within each row (s2ij), that is, the residual variances for
each combination of RILrreplication, were esti-
mated. We assumed that the residual variance (VE) of
each RILrreplication is the sum of an average re-
sidual variance, a deviation due to a RIL effect, a
replication effect and a random effect. The model may
be written as

s2ij=mVE
+GVEi+RVEj+eVEij,

i=1, 129, j=1, 5, where mVE
is the average residual

variance and GVEi is a random effect with mean 0 and
variance VVE

. The sources of variation, namely RIL,
replication and the interaction RILrreplication (er-
ror), were estimated by REML using the VARCOMP
procedure of SAS (SAS Institute, 2003). We under-
took the analysis using both untransformed residual
variances obtained for each RILrreplication combi-
nation and natural logarithms of those values. The
untransformed values were used to show most clearly
the magnitude of the variances ; and the log trans-
formed values to obtain more homogeneous errors.

In the analysis of the untransformed variances,
the variance component associated with RILs (V̂VE

)
was used to estimate the variance among the residual
variances of the RILs, V̂E (model 1, Table 2) to
estimate the mean of the residual variance of the

RILs ( m̂VE
, and CVVE

was estimated as
ffiffiffiffiffiffiffiffi
V̂VE

q
=m̂VE

. In

the analysis of the log transformed variances, which

measure variation in squared coefficient of variation

(Rowe et al., 2006), CVVE
was estimated directly as

the square root of V̂VE
the variance component asso-

ciated with RILs. Assuming additivity such that the

expected genetic variance in the environmental vari-
ance increased with generations of inbreeding to 1.875
times that in the F2, the genetic coefficient of variation
for environmental variance (GCVVE

) was estimated as
CVVE

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 875

p
.

To examine the influence of the imbalance of
numbers of plants on the estimates, we repeated the
same analysis twice: with only those rows with
6 plants or more and with only those rows with
9 plants or more. In both cases, we found similar es-
timates to those obtained when we used the whole
dataset, indicating that the impact of the imbalance is
not important.

For each RIL, the error sum of squares and cross
products between pairs of traits obtained from
the multivariate ANOVA were used to calculate
the coefficient of correlation between all pairs of traits
as s2xyi=

p
(s22xi s

2
2yi). For each pair of traits, we tested

the homogeneity of the correlation coefficients for
within replicate components of the RILs by com-
puting, for each RIL, the transformation Zi=
0�5 ln [(1+ri)=(1xri)] which is approximately nor-
mally distributed with variance 1=(dix1), where di are
the error degrees of freedom from the multivariate
ANOVA (Steel et al., 1997). The test criterion

is C=C=g129
i=1 (ZixZ̄w)=(1

� ffiffiffiffiffiffiffiffiffiffiffi
dix1

p
)

� �2
, where Z̄w=

g129
i=1(dix1)Zi

.
g129

i=1(dix1): This criterion is dis-

tributed as chi-square with 128 degrees of freedom if
the Zi are homogeneous and normally distributed;
but to allow for non-normality, the distribution of the
test criterion (C) was estimated by a randomization
procedure equivalent to that for the test of homo-
geneity of variances.

(c) Location of QTLs related to environmental
variances and correlations (model 3)

The aim with model 3 is to locate QTLs that have
some effect on the environmental variance and/or the
environmental correlation and quantify their effects.
At each marker, approximately one-half of the RILs
are homozygous for the allele from EP39 (allele A)
and the other half homozygous for the allele from
EP42 (allele B). At each marker, model 1 was applied
separately to each of the two sets of RILs, and from
each, within replication variance and the environ-
mental correlations between pairs of traits were esti-
mated. Therefore, at each marker, we estimated VE

for the RILs with the allele A and VE for the RILs
with allele B. The larger of these values was divided by
the smaller to obtain an F statistic. The probability of
a value equal to or higher than the observed F was
obtained by a permutation procedure (Churchill &
Doerge, 1994), rather than by relying on normality of
observations. The permutation procedure was also
used because the markers are linked and the tests
involving linked markers are not independent. The
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phenotypes of RILs were randomly shuffled over
genotypes, keeping the genotypes constant, gener-
ating a sample with the original marker information
but with trait values randomly assigned over geno-
types. We calculated the F value for each marker and
recorded the maximum value of F over all markers,
and repeated the process 1000 times. Thus, we ob-
tained a distribution of this F statistic that allows
us to estimate the experimentwise probability of the
observed values.

For each marker, the error sums of squares and
cross products between pairs of traits obtained from
the multivariate ANOVA were used to calculate
the coefficient of correlation between all pairs of traits
as s2xyi=

p
(s22xi s

2
2yi) for the RILs with allele A and

the same for those with allele B. To test the hypothesis
that the two estimated correlations are from the
same population, they were transformed to Z
values as above, and a test criterion T=(ZAxZB)
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(dfAx1)x1=(dfBx1)

p
was calculated. The pro-

bability of a value equal to or higher than the ob-
served T was obtained by a permutation procedure
equivalent to that above.

(d) Location of QTLs associated with the mean of
the traits (model 4)

Detecting QTLs associated with the mean of the traits
was undertaken by a Single Factor ANOVA (Soller
et al., 1976). Each marker locus was subjected to
ANOVA with the following sources of variation:
replication, allele, replicationrallele, RIL (allele)
and RIL (allele)rreplication and the error due to
individual plants. Replication, replicationrallele,
RIL (allele) and RIL (allele)rreplication were con-
sidered random factors, whereas allele was considered
fixed.

The ANOVA, including the F statistics to test the
allele effects, was computed with the Mixed procedure
of SAS (SAS Institute, 2003) based on principles of
generalized least squares to estimate and test fixed
effects (Littell et al., 2002). A permutation test similar
to that used for the variances and correlations was
used to estimate the experimentwise threshold.

3. Results

The mean, S.D. and extreme values of the traits in the
population of RILs are shown in Table 1.

(i) Basic analysis assuming homogeneity of variances
and environmental correlations (model 1)

The estimates of variance components are shown in
Table 2. For all traits, the estimated variance V̂G was
significantly higher than 0 (F test, P<0.05, data not
shown), but the predicted genetic variances within
RILs are nevertheless negligible compared with the
magnitudes of V̂E (Table 2).

The environmental correlations were positive be-
tween plant height, ear height and tassel length and
negative between each of these and days to flowering
(Table 3). The magnitudes of the genetic correlations
were similar to those of the environmental correla-
tions, except for the correlations of plant and ear
height with days to pollen shed.

(ii) Estimation of heterogeneity of environmental
variances and correlations between RILs (model 2)

For plant height, ear height, tassel length and days to
pollen shedding, the correlation coefficients between
the number of heterozygous markers, as indicative of
residual genetic variance, and the VE of the RILs
werex0.05, 0.21,x0.02 andx0.08, respectively (not
statistically significant at P=0.05).

For each of the four traits, the estimate of residual
variance (V̂E) varied widely between the RILs (Fig. 1).
In agreement with this visual observation, the hypo-
thesis of homogeneity of variances was rejected for
all traits (P<0.01, randomization test, Table 4). The
estimated GCVVE

were similar when obtained with
transformed and untransformed variances and ranged
from 0.14 to 0.25 (Table 4).

Table 1. Mean, S.D., maximum and minimum
values for plant height, ear height, tassel length and
days to pollen shed

Mean
value

S.D.
value Minimum Maximum

Plant height (cm) 130.3 28.07 20 231
Ear height (cm) 44.84 13.30 5 102
Tassel length (cm) 43.56 9.288 6 80
Day to pollen
shed (days)

60.22 4.302 48 81

Table 2. Estimates of variance components
associated with replication (VR), genotypes or RILs
(VG), replicationrgenotypes interaction (VI) and
error (VE). The predicted additive genetic (VA=VG/
1.875) and residual genetic variance within RILs
(VA/16) are also shown

Plant
height
(cm2)

Ear
height
(cm2)

Tassel
length
(cm2)

Pollen
shed
(cm2)

VG 152.7 59.61 16.10 8.160
VR 144.8 14.89 4.713 0.1346
VI 220.0 35.68 21.09 3.339
VE 298.5 68.03 44.79 7.540

Predicted genetic variances
VA 81.44 31.79 8.587 4.352
Within
RILs

5.09 1.99 0.540 0.272
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The environmental correlations also varied widely
between the RILs (supplementary Figure FS1). They
departed significantly from homogeneity (P<0.05)
for ear height with tassel length and with days to
flowering (Table 5).

(iii) Location of QTLs related to environmental
variances and correlations (model 3)

For each marker, the mean and the estimated residual
variance (V̂E) of the RILs that carry the allele from
EP39 (A) and those that carry the allele from EP42
(B) are shown in supplementary Table TS1.

QTLs associated with the micro-environmental
stability were detected at a significance level of 4, 8, 8
and 13% for days to flowering, plant height, ear
height and tassel length, respectively (Fig. 2). The
QTLs detected for plant and ear height were located

in the same region (chromosome 10), but those for
tassel length and days to flowering were located on
different chromosomes. To quantify the difference
between variances, for the significant markers we
generated the difference in residual variance between
alleles as a percentage of the average residual vari-
ance. This ratio was close to 30% for umc1113
(for plant and ear height) and umc1394 (for tassel
length), and to 40% for bnlg1346 (for days to
flowering).

A weakly significantly (P<0.10) QTL associated
with the environmental correlation between ear
height and days to pollen shed was detected on chro-
mosome 3 (Fig. 3). For markers umc2101 and
umc1394 at this region, the difference in the coefficient
of correlation between alleles was 0.12, which is
50% of the average environmental correlation. No
QTLs were detected for the other pairs of traits.
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Fig. 1. Residual variance of the 129 RILs for plant height, ear height, tassel length and days to flowering.

Table 3. Estimates of genetic correlations (rG) and environmental correlations (rE) (¡S.E.) between pairs of
traits

Ear height Tassel length Days to pollen shed

rG rE rG rE rG rE

Plant height 0.77¡0.06 0.65¡0.01 0.48¡0.08 0.76¡0.01 0.23¡0.09 x0.44¡0.01
Ear height 0.10¡0.09 0.38¡0.01 0.37¡0.08 x0.24¡0.01
Tassel length x0.44¡0.08 x0.50¡0.01
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(iv) Location of QTLs associated with the mean of
the traits (model 4)

At least one putative QTL related to the mean traits
was detected at a significance level of 10% or lower
for ear height, tassel length and days to flowering.
Those QTLs are located on chromosomes 2, 3 and 8
(Fig. 4). The QTLs associated with the mean and with
theVE of the traits are not located in the same regions.
Each QTL explains between about 2 and 4% of the
total variation, except the one for ear height on
chromosome 3 that explains 6%.

4. Discussion

In this study, we have used an analysis of RILs of
maize to investigate the presence of genetic variation in
the magnitude of the environmental variance (VE) and
in the correlation between traits and to identify QTLs
that influence these quantities. We have shown that
there is considerable genetic variance inVE, in support
of studies in other species. We have also shown, we
believe for the first time, evidence of genetic variation
in the environmental correlation between traits and of
QTLs affecting the magnitudes of the environmental
variance and the environmental correlation.

(i) The effect of non-normality on significance and
estimates

We first review some statistical aspects important in
the analysis. When tests assuming normality were

used for testing the homogeneity of variances and
correlations, both among RILs and for QTL detec-
tion, the significance levels were much lower than
those obtained from randomization tests. For ex-
ample, for the comparison of variances for umc1113
and plant height and for bnlg1346 and days to
flowering, the observed F ratios were 1.363 and 1.512,
respectively, and the probability of a higher value ac-
cording to F tables is 10x12 or less after Bonferroni’s
correction. The probabilities according to the per-
mutation test were 0.078 and 0.037, respectively. In
contrast, for the comparison of means the significance
levels of the tests were relatively similar. For example,
for days to pollen shed and markers umc1512,
umc1774 and umc1725, the probabilities with the
normality test were, respectively, 0.90, 0.12 and 0.34,
whereas with the permutation test, they were 0.90,
0.05 and 0.26, respectively.

Tests of heterogeneity of variance such as Barlett’s
are more sensitive to non-normality than is the use of
F test for comparing means in the ANOVA, such that
the tests of homogeneity of variances may detect non-
normality rather than heterogeneity of variance (Steel
et al., 1997; Manly, 2007). Our results suggest the
need to use permutation or other non-parametric
methods for testing homogeneity of variances and
correlations because they require fewer model as-
sumptions and provide protection against failures of
such assumptions (Churchill & Doerge, 1994).

To consider the effect of non-normality on esti-
mates of variation in VE, we used Monte Carlo si-
mulations to generate samples from 130 generalized
Lambda distributions (Fan et al., 2001), with different
values of variances, but with a fixed value of GCVVE

,
for example 0.22. We generated 5 samples of 13 in-
dividuals from each of the 130 populations, a similar
structure to that of our experiment, and obtained the
sampling distribution of GCVVE

estimated both by
the procedure described in the Material and Methods
(method M) and by the procedure used by Rowe et al.
(2006) (method N). In our method M, an ANOVA of
the residual variances is used to estimate their sam-
pling variance. In method N, the observations for
each RIL are assumed to be normally distributed such

Table 4. Variance of the residual variance of the RILs (V̂VE
), coefficient of variation of the residual variance

(CVVE
) and GCVVE

calculated with the untransformed values, GCVVE
calculated with the transformed

values (GCVVE
t), and observed value of the test criterion M= g129

i=1di

� �
ln s̄

2
2xg129

i=1di ln s
2
2i for testing

the homogeneity of the residual variances and probability of obtaining by chance a value of M equal to or
higher than observed in randomizations

V̂VE
CVVE

GCVVE
GCVVE

t M

Plant height 8909 0.316 0.231 0.237 585 (P<0.01)
Ear height 368.8 0.282 0.206 0.186 475 (P<0.01)
Tassel length 73.56 0.191 0.140 0.147 442 (P<0.01)
Days to flowering 6.561 0.340 0.248 0.209 828 (P<0.01)

Table 5. Test criterion C=g129
i=1[(ZixZ̄w)=

(1
� ffiffiffiffiffiffiffiffiffiffiffi

dix1
p

)]2 for testing the homogeneity of
the environmental correlations and probability
of obtaining by chance a value of M equal to or
higher than observed in randomizations (within
brackets)

Ear height Tassel length
Days to
flowering

Plant height 244 (0.07) 241 (0.26) 308 (0.07)
Ear height 260 (<0.01) 251 (0.04)
Tassel length 244 (0.11)
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that an estimate of variance is proportional to a
chi-square variate. The variance between RILs in
within line variance is then compared against the
pooled error and will be biased by non-normality of
the observations such that the chi-square assumption
fails.

We found using simulation that the estimate of
GCVVE

using method M is unbiased and unaffected
by departures from normality while that using meth-
od N is biased upwards, increasingly as the distri-
bution becomes skewed or more kurtotic than the
normal. For example, when the original distributions
have skew x0.35 and kurtosis 0.60 (similar to the
average values per replicationrRIL found in our
data) and the true value of GCVVE

was 0.22, the esti-
mates from the averages of 1000 simulations using
methods M and N were 0.22 and 0.30, respectively. In
general, other authors who used different estimation
procedures from that of Rowe et al. (2006) also as-
sume normally distributed errors (conditional on
genotype), so it would be worthwhile to check the ef-
fect of departures from normality in their estimates
(e.g. SanCristobal-Gaudy et al., 2001; Sorensen &
Waagepetersen, 2003).

(ii) Magnitude of environmental variances and
correlations

The analysis using model 1 shows that there is sub-
stantial genetic variance among the means of the
RILs. As these were highly inbred, however, the gen-
etic variance within RILs is predicted to be sufficiently
small that the residual variance (VE) is due mainly
to micro-environmental factors. The environmental
correlations among the vegetative traits, plant height,
ear height and tassel length, were all positive, in-
dicating similar environmental influences. The corre-
lations between these vegetative traits and time to
pollen shed were negative, indicating that any stress
that affected the growth of the plant and therefore
reduced its size also increased the time that the stres-
sed plant spent in the vegetative phase.

(iii) Genetic variance in environmental variances and
correlations

The evident variation in VE between the RILs is an
indication of genetic heterogeneity of the VE, that is,
EP39 and EP42 have different alleles at loci affecting
VE. This conforms with the results of other authors
for different species, particularly, those for bristle
number in D. melanogaster (Whitlock & Fowler,
1999; Mackay & Lyman, 2005). The variation in the
environmental correlation coefficients for some of the
traits among RILs indicates that there is also a genetic
component to the environmental correlations. The
magnitude of GCVVE

of about 20% indicates that
there is substantial opportunity for genetic change in
the residual variance or, equivalently, the uniformity
of vegetative traits of maize.

The estimated magnitudes of GCVVE
of about 20%

are lower than those obtained by other authors, which
range from 30 to 50% approximately (for a review,
see Table 9 in Mulder et al., 2007). However, as
already noted, departures from normality could have
caused upward bias in some of the estimates. Thus,
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when we estimated GCVVE
from our data with the

method of Rowe et al. (2006), we also obtained values
around 30%.

(iv) QTL analyses

QTLs associated with the trait means were observed,
as expected from previous analyses in maize. Of these
QTLs, those for flowering time at bins 8.05 and 9.06
are located within or close to a consensus region of
major effect (Chardon et al., 2004).

In accordance with the genetic heterogeneity of VE

found among the RILs, QTLs associated with VE

were found for all traits. Except for plant and ear
height, the QTLs for different traits were detected in
different regions. Furthermore, the sign of the differ-
ence in the variance for alleles A and B generally
varied between traits. We detected several genomic
regions involved in the stability of one trait, or two in
the case of plant and ear height which have a strong
genetic relationship, but did not find any involved in
the developmental stability of several traits. This re-
sult is in agreement with the very small correlation of
the fluctuating asymmetry of different traits found by
many authors (see Whitlock, 1996), although
Whitlock & Fowler (1999) found a weak correlation
of environmental variance across some traits.

The QTLs associated with VE and means were
not detected in the same regions. This indicates the
presence of genomic regions specifically involved in
developmental stability but without an important

function on the mean of the trait. If genetic hetero-
geneity between RILs and QTLs for developmental
stability were detected for all the traits that we ana-
lysed, it is not unreasonable to think that genes asso-
ciated with developmental stability could exist for
several of the traits. Thus, a comprehensive under-
standing of the genetic architecture of any quantitat-
ive trait would include knowledge not only of QTLs
or genes associated with means, but also with the
stability of the trait.

From a practical perspective, some of the QTLs
from VE could be incorporated into breeding pro-
grammes with the aim of improving homogeneity of
market product or lessening environmental sensi-
tivity. For example, in some special types of maize
such as sweet corn, the homogeneity of flowering time
is crucial to the final quality of the product. Notably,
alleles at the significant (P<0.05) QTL for flowering
time at bin 5.07 differed in residual variance by 40%,
although the estimated size of the effect could be
biased upwards due to the Beavis effect (Beavis, 1994).

For the environmental correlation between ear
height and days to pollen shed, genetic heterogeneity
between RILs was detected and, in accordance
with that, a QTL associated with this environmental
correlation was located on chromosome 3. In that
region, no QTLs related to either the mean or the
variance of ear height and days to pollen shed
were detected, suggesting that this region could be
specifically involved in environmental correlations.
For some combinations of traits, we detected genetic
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heterogeneity, but not genomic regions associated
with the environmental correlations, suggesting the
presence of genes with effects too small to detect in
our experiment.

In conclusion: firstly, for all traits there is a genetic
basis for the differences between the means, the de-
velopmental stability (VE) and the environmental
correlations between traits ; secondly, genomic re-
gions associated with developmental stability and
environmental correlations were detected and they
were not located in the genomic regions associated
with the mean of the traits ; thirdly, for estimating
variances and correlations and testing their homo-
geneity, methods that are not highly dependent on
model assumptions, such as normality, are necessary.
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Appendix. SSR loci used to genotype the inbred lines

Markera Location

bnlg1014 1.01
umc1071 1.01
umc1222 1.01
umc1403 1.03
phi001 1.03
phi109275 1.03
bnlg2295 1.04
umc1395 1.05
umc1335 1.065
umc1147 1.07
umc1446 1.08
umc1512 1.09
umc1774 1.10
umc1725 1.11
umc1797 1.12
umc1165 2.01
umc1265 2.02
umc1555 2.03
phi083 2.04
umc1065 2.05
bnlg1396 2.06
phi127 2.08

Markera Location

bnlg1520 2.09
umc2101 3.00
umc1394 3.01
umc1458 3.02
phi036 3.04
phi029 3.04
umc1174 3.05
umc1539 3.05
bnlg197 3.06
umc1148 3.07
phi046 3.08
bnlg1754 3.09
phi072 4.01
bnlg1318 4.01
umc1288 4.02
phi021 4.03
umc1963 4.04
umc1142 4.05
umc1329 4.06
umc1847 4.07
umc1667 4.08
umc1573 4.09

Markera Location

umc1738 4.10
umc1097 5.00
phi024 5.01
bnlg1660 5.02
phi113 5.03
umc1591 5.04
umc1019 5.06
bnlg1346 5.07
umc1225 5.08
bnlg161 6.00
phi077 6.01
umc1857 6.04
bnlg1154 6.05
umc1424 6.06
umc1653 6.07
umc2059 6.08
umc1545 7.00
phi112 7.01
umc1134 7.03
phi114 7.03
umc1295 7.04
umc1154 7.05

Markera Location

umc2190 7.06
umc1984 8.03
umc1858 8.04
bnlg1812 8.05
umc1055 8.07
phi015 8.08
umc1384 8.08
phi028 9.01
umc1131 9.02
phi065 9.03
umc1492 9.04
bnlg1884 9.04
umc1366 9.06
umc1505 9.07
umc1380 10.00
umc1115 10.04
umc1113 10.04
bnlg1028 10.06
umc1084 10.07

a Marker details can be obtained from the maize database at http://www.maizegdb.org.
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