
J. Austral. Math. Soc. 73(2002), 11-25

MATRIX-VARIATE KUMMER-BETA DISTRIBUTION
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Abstract

This paper proposes matrix variate generalization of Kummer-Beta family of distributions which has been
studied recently by Ng and Kotz. This distribution is an extension of Beta distribution. Its characteristic
function has been derived and it is shown that the distribution is orthogonally invariant. Some results on
distribution of random quadratic forms have also been derived.
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1. Introduction

Armero and Bayarri [1, 2] derived Kummer distribution as a posterior distribution
of certain basic parameters in a Bayesian analysis of M/Af/oo queuing system. A
random variable X is said to have Kummer distribution if its probability density
function (p.d.f.) is of the form

/ (x\a, P, y, 8) = c(o, p, y, 8)xa-1 (1 + 8x)~Y e~^x,

where x > 0, a > 0, P > 0, 8 > 0 and — oo < y < oo. The normalizing constant is

JoJo
= 8~T(a)U(a, a + l-y, p / S ) ,

where U(a, b, z) is one of the two Kummer's functions (a confluent hypergeometric
function). For y = 0, the above distribution reduces to a Gamma distribution with
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shape parameter a and scale parameter p. For a = v{/2, P = 0, y = (vi + v2)/2
and 5 = 1, Kummer distribution reduces to /-"-distribution with (vu v2) degrees of
freedom.

Recently, following Armero and Bayarri [1, 2], Ng and Kotz [11] proposed and
studied two families of Kummer-Gamma and Kummer-Beta distributions. The random
variable U with the p.d.f.

(1.1) K(a, P,X)ua~l(l -u)p-le~ku, 0 < u < 1,

where a > 0, P > 0, —oo < X < oo and

{K(a,p,X)}-1 =

where \F\ is the confluent hypergeometric function, is said to have Kummer-Beta
distribution with parameters (a, p, X). Independently, Gordy [7] has also defined
Kummer-Beta distribution in relation to the problem of common value auction. This
distribution is an extension of Beta distribution, and for a < 1 (and certain values of
the parameter X) yields bimodal distribution on finite range.

In this article we propose and study matrix variate generalization of (1.1). In
Section 2, we give some well-known results and definitions. We define the matrix
variate Kummer-Beta distribution in Section 3. Several of its properties including
characteristic function, marginal distribution, moments are derived in Section 4.

2. Preliminaries

We begin with a brief review of some definitions and notations. We adhere to
standard notations. See, for example, Constantine [4], Davis [5, 6] and Chikuse [3].
Throughout, K, X, <p and p are partitions of the non-negative integers k, l,f = k+l and
r respectively. The zonal polynomial of the symmetric p x p matrix X corresponding
to the partition K will be denoted by CK(X). Davis [5, 6] has defined and studied
a class of polynomials C^{X, Y) of p x p symmetric matrix arguments X and Y,
which are invariant under the transformation^, Y) -> (HXH',HYH'),H e O(p).
The following results pertaining to invariant polynomials will be used in subsequent
sections:

where 9*/ = C;k(Ip, Ip)/Q(Ip). Further,

(2.2) c;\x, /,) = C C * y
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and

(2.3)

where <p e K • k denotes that irreducible representation of Gl(p, R), the group of
p x p real invertible matrices, indexed by 2</>, appears in the decomposition of the
tensor product 2K <g> 2k of the irreducible representations indexed by 2K and 2k. The
integrals involving invariant polynomials are

(2.4) f det(/?)'~(p+I)/2 det(7 - RY'^^C/iR, 1 -R)dR
JO<R<1

rp(t,K)rp(u,k) k

= 9 c ( / )

(2.5) f det(/?)'-°'+1)/2 det(7 - RT'^^C^iAR, BR) dR

and

(2.6) f detiR)'-^"'2 det(7 - i?)"-('+I)/2CjA(A/?A', B) dR

In expressions (2.4), (2.5) and (2.6), Fp(a, p) is defined by Tp{a, p) = {a)pTp{a),

p

rp(a, p) = np{p-X)IA Y\ T{a + rj - (j - l)/2], Re(a) > (p -

where p = ( r , , . . . , rp), r{ > • • • > / > > 0, rx -\ h rp = r. Note that Tp(a, 0)
Tp(a), which is multivariate gamma function given by

rp(a) = 7t^-1)/4l\r[a - (j - l)/2], Re(a) > (p -

The generalized hypergeometric functions of one matrix and two matrices are
defined by
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and
00

, . . . , Or, D\, . . . , Ds, A , / ) =

respectively, where a,, i = 1, . . . , r\ bj,j = 1, . . . , s, are arbitrary complex numbers,
X (p xp) and Y (p x p) are complex symmetric matrices and £ ^ denotes summation
over all partitions K. Conditions for convergence of these series are available in the
literature. From (2.7) it follows that

*=o K
 K- *=o

and

* = 0 K KD>K K-

The integral representation of the confluent hypergeometric function ] Ft is given by

(2.8) , F, (a; b; X) = ^ / etr(RX) det(/?)a/ etr(RX) det(/?)a^+1)/2

p(a)rp(b-a) J R i

xde t ( / p -R)b-a-^+l)/2dR,

where Re(a) > (p — l)/2, Re(b — a) > (p — l)/2. Next, we give definitions of
matrix variate Gamma and Beta distributions (Gupta and Nagar [9]).

DEFINITION 2.1. A random symmetric positive definite matrix W is said to follow
a matrix variate Gamma distribution, denoted as W ~ Gp(a, C), if its p.d.f. is

{rp(a)det(C)-ar1etr(-CW0det(WT-(/'+1)/2, W > 0,

where a > (p —1)/2 and C is ap x p symmetric positive definite non-random matrix.

DEFINITION 2.2. A p x p random symmetric positive definite matrix X is said
to have a matrix variate Beta type I distribution with parameters (a,b), denoted as
X ~ B'p(a, b), if its p.d.f. is given by

det(/p - x)"-^1"2, 0 < X < Ip,

where a > (p — l)/2, b > (p - l)/2, and fip(a, b) is the multivariate beta function
given by

BJa,b) = -Fp rp(a
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DEFINITION 2.3. A p x p random symmetric positive definite matrix Y is said to
have a matrix variate Beta type II distribution with parameters (a, b), denoted as
Y ~ B'p'(a, b), if its p.d.f. is given by

{Pp(a, b)}-1 detdT~<p+1)/2det(/, + Y)^a+b), Y > 0,

where a > (p — l)/2, b > (p — l)/2, and fip(a, b) is the multivariate beta function.

3. Matrix variate Kummer-Beta distribution

The corresponding matrix variate generalization of (1.1) is defined as follows:

DEFINITION 3.1. A p x p random symmetric positive definite matrix U is said to
have a matrix variate Kummer-Beta distribution with parameters or, fi and A, denoted
as U ~ KBP (a, fl, A), if its p.d.f. is given by

(3.1) AT(a, j3, A)eti(-AU)det(U)"-(J>+l)/2det(Ip - L0^(p+1)/2, 0 < U

where a > (p — l)/2, ft > (p — l)/2, A (p x p) is symmetric and K(a, 0, A) is the
normalizing constant.

The normalizing constant in (3.1) is given as

(3.2) [K(a, p, A)}"1 = f eti(-AU)det(U)a-ip+1)/2det(Ip - U)^^2 dU
Jo<u<i,,

where i F\ is the confluent hypergeometric function of matrix argument.
It may be noted here that for A = 0, Kummer-Beta distribution reduces to a Beta

type I distribution.
By means of a bilinear transformation of the random matrix U, a generalized matrix

variate Kummer-Beta distribution is generated as given in the following theorem.

THEOREM 3.1. Let U ~ KBp(a, /}, A). Then for given p x p symmetric matrices
* > 0 and Q ( > ^ ) , the random matrix X (p x p) defined by

(3.3) X = (Q - * ) 1

has the p.d.f.

(3.4) C(a, I , 0 , ft, « ) etr(-0X) det(X -
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where V<X<Q.,@ = (Q.- Vy1/2A(Q - * ) " 1 / 2 and

C(a, 0, 0 , Q, *) = K(a, P, (Q - *)1/20(fi - *)1/2)etr(0vI>)

x det(n - M,y("+v+(p+w.

PROOF. The Jacobian of the transformation (3.3) is J(U -» X) = det(J2 -
yy(p+W2 H e n c e ^ p-(j.f. of U is transformed to the p.d.f. of X given by (3.4). •

DEFINITION 3.2. A p x p random symmetric positive definite matrix X is said to
have a generalized matrix variate Kummer-Beta distribution with parameters a, P, ©;
Q, * denoted by X ~ GKBp(a, 0, @, £2, * ) , if its p.d.f. is given by

(3.5) C(a, 0, 0 , £2, * ) e t r ( - e Z ) det(X - ^ ) ° - ( P + 1 ) / 2 det(J2 -

vl/ < X < ft, where

C(a, fi, 0 , « , * ) = * ( « , ^, (fi - * ) 1 / 2 0 ( f i - * ) l / 2 ) etr(©*)

x det(n - * ) - («+»+<P+ ' ) / 2 .

When * = 0 and £1 = Ip, the above definition yields the standard Kummer-Beta
distribution. Further if X ~ GKBp(a, p , 0 , fi, * ) , then (J2 - vp ) - 1 / 2 ^ - * ) ( « -

a, /J, (£2 -

4. Properties

In this section we study some properties of the random matrix distributed as matrix
variate Kummer-Beta.

THEOREM 4.1. Let U ~ KBp{a, P, A) and A (p x p) be a constant nonsingular
matrix. ThenAUA' ~ GKBp(a, p , (A'^'AA'1, AA', 0).

PROOF. In the p.d.f. (3.1) of U, making the transformation X = AUA' with
Jacobian J(U -* X) = det(AA')~lp+l)/2, the density of X is obtained as

K(a, P,

x det(A:)a-(p+1)/2 det(AA' - X ) ^ ( p + 1 ) / 2 , 0 < X < AA',

which is the desired result. •

In the next theorem, it is shown that the matrix variate Kummer-Beta distribution
is orthogonally invariant.
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THEOREM 4.2. Let U ~ KBp(a, p, XIp), and H (p x p) be an orthogonal matrix
whose elements are either constants or random variables distributed independent
of U. Then, the distribution of U is invariant under the transformation U -> H UH',
and is independent of H in the latter case.

PROOF. First, let H be a constant orthogonal matrix. Then, from Theorem 4.1,
HUH' ~ KBp(a, P, klp) since HH' = Ip. If, however, H is a random orthogonal
matrix, then the conditional distribution of H UH' \ H ~ KBp(a, p, XIP). Since this
distribution does not depend on H, H UH' ~ KBP(a, p, XIP). O

The characteristic functions of U is now obtained in the following theorem.

THEOREM 4.3. Let U ~ KBp(a, fi, A). Then the characteristic function of U =
(uy), that is, the joint characteristic function ofuu, ui2,... , upp is

where Z = Z' (p x p) = ((1 + Sy )zy /2) and 1 = J^l.

PROOF. By definition,

= K(a,p,A)[
Jo<u<i

K(a,p,A)
K(a,p,A-iZ) ,F,(o;a + /8;-A)

The last equality follows from (3.2). D

It may be noted here that if X ~ GKBp(a, P,®,Q,W), then the characteristic
function of X can be obtained from Theorem 4.3. Since X = (& -

+ * , where U ~ KBp(a, p, (Q - *)1 / 26(£2 - * ) 1 / 2 ) , we have

4>X(Z) = E[etr(iZX)] =

= etr(iZ*)£[etr{<(£2 -

= i
6

THEOREM 4.4. / / U ~ ATBp(a, /S, A), fften Ip- U^ KBP(P, a, - A ) .
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Let tf = ( g; g2
2), t/n ( ? x 9 ) and U22A = U22-U2l Uj £/12. If U ~ AT/?, (a, 0, 0),

then £/„ and £/22., are independent, Un ~ 5^(a, /?) and f/22I ~ B'P-q(
a — <7/2> P)-

Further, ifA = (A
o" A°a), A n (qxq), A22 = 0, then also Un and U22.i are independent,

f/u ~ ^ ( a , £, A n ) and C/221 ~ S/_,(or - ?/2, £). But if A22 ^ 0, then Uu and
t/22i are not independent. For this consider U ~ KBp{a, p, Ip). From the partition
of U, we have

(4.1) det(£/) = det(f/n)det([/221),

(4.2) det(/, - U) = det(/, - f/u) det(/,_, - f/22., - C/211^'(/, - f/,,)'1 f/12)

and

(4.3) tr(tf) = tr([/n) + tr(f/221) + tr(f/21 C/-' t/12).

Now making the transformation

Uu = Un, X= U2l U~1/2 and U22., = U22 - f/21 £/"' Ui2 = f/22 - ^ Z '

with Jacobian J(UU, U22, Un -* Un, U22.i,X) = det(f/n)^"9)/2 and substituting
(4.1)-(4.3) in the density of U, we get the joint density of Uu, U2ii, and X as

K(a, P, /p)det(f/n)a~(*+I)/2det(/, - Uu

x det(Ip_q - (/„_, - U22lT
iX(lq -

x teL{Ip_q - ^ . . / -^ '^expf- t rCt / , , ) - tr(t/221) -

Now making the transformation Y = {Ip-q — U22l)~
1/2X(Iq — f/u)~

1/2 with Jacobian
J(X -+ Y) = det(//,_, - [/221)»

/2det(/g - f/,,)^"^72 and integrating Y we get the
joint density of Uu and U22.t as

(4.4) AT(a, 0, Ip)det(Uu)a-(*+l)/2det(Iq -

x det(/p_, -

where

, 5) =

f
J0<Z<l<l

det(Ip_q-YYy-(j'+l)/2
0Fo(-Y'AYB)dY, p-q<q;

YY'=Z

p-q>q,
Y'Y=Z

with A = / ,_, - f/221 and B = / , - f/n. Since^(A, B) = g(A, HBH'), H e 0(^),
integrating / / in g(A, HBH') we obtain, for p — q < q,

I
S(A ' ' ",B)= f f dtt(l

J0<Z-cl,-a JYY'=Z
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= n / ^ / det(Z)(9-"+'-1)/2 det(/p_, -

1 p-qVll*-) JO<Z<IP-,

x0F<*\-AZ,B)dZ

,(fi - g/2)
*p-q\P)

Substituting g(A, B) in (4.4) we get the joint density of Un and t/22.1 as

(4.5) K(a, P, Ip)e
l-«u")] det(C/n)a-(»+1)/2 det(/, - Un)

x «

x / ^ " ' ,F\q\ql2;P;-{lp_q - £/22,), / , - I/,,).

Clearly f/n and U22-\ are not independent. The marginal densities of (/n and U22.x can
be obtained by using results on invariant polynomials and hypergeometric functions.
For q > p — q, expanding

;P;-A,L-Un) =

and using Cr(l/n)Q(Z, - I/,,) = E ^ ^ ' ^ W n , 7, - Un) we have

(4.6) e l - ^ ' ^ F ^ ^ / ^ ^ j - A , 7, - £/„)

Substituting (4.6) in (4.5) and integrating t/n using (2.4) we obtain

0<Uu<I,

*=0 (=0 K k K - V P A ' - ^

) - ^ " / 2 det(7, -
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Finally, the marginal density of f/221 is derived as
•7r«0'

Jt=O 1=0

Next, we derive moments of some functions of the random matrix U distributed as
matrix variate Kummer-Beta.

THEOREM 4.5. Let U ~ KBp(a, P, A), then

(i) E[det(£/)A] = - "
h)rp(a

h) ,F,(a;a + 0,-A)
Re(A) > -a + (p - l)/2;

fin(n)

Re(A) > -P + (p - l)/2,
where i Fi is f/i« confluent hypergeometric function of matrix argument.

PROOF, (i) From the density (3.1) we have, for Re(/i) > -a + (p - l)/2,

E[dtt(U)H] = K(a, p, A) f etr(-A I/) det(£/)or+'"~<;'+l>/2 det(/p - U)fi-("+1)/2 dU
Jo<u<ip

K(a, p, A)
•(a + h,p,A)

rp(a)rp(a +P + h) iFifaa + fa-A)
(ii) Similar to the proof of (i). •

From the density of U,

(4.7) E[CK(AU)] = K(a,p,A) I CK(AU)etr(-AU)
Jo<u<ip

xdct(U)a-^+l)/2 dct(Ip - U)p-ip+l)l2dU.

Expanding etr(—A U) in zonal polynomials and using results on invariant polynomials,
we get

f-lV
(4.8) CK{

1=0 X
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/ =0 X ' 0e«--X

Now substituting (4.8) in (4.7) and integrating U using (2.5), we obtain

°° ( - 1 ) ' x f

i=o x / ! 0«.x * Jo<u<ip

x det(/p - ^-^+ 1 ) / 2c;A(Af/ , AU)dU

Similarly,

E[C,(7, - U)}

= K(a, p, A) etr(-A)
1=0 X

7f £ ^ ' /" det(7, -
0e*X J0<X<Ip

where the last two steps have been obtained by using (2.5) and (2.2) respectively.
In the rest of the section we will derive density functions of certain random quadratic

forms.

THEOREM 4.6. Let X ~ B'p(a, b) and U ~ KBp(a, p, A) be independent. Then
the density of Z = Ui/2X(Ul/2)' is given by, for 0 < Z < Ip,

rp(a + b)rp(a ±£]_[iFi(o.a + o. A)}-! d e t ( z r

™ W " + " " l " r/5-^—C^(A(7P - Z), lp - Z).

PROOF. The joint density of X and U is

(4.9) [pp(a, b)}-lK(a, p. A) det(X)a-(p+l)/2det(7, - X)*-^+l)/2etr(-ALO

0 < [ / < / „ , 0 < r < /„.
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Making the transformation Z = Ul/2X(Ul/2)' with the Jacobian J(X, U-* Z,U) =
det(f/)~(/>+1)/2 in (4.9) we get the joint density of Z and U as

etr(-Ato

a) det(f/-Z)6-°'+1)/2 det(/p - L0"-(p+1)/2, 0<Z<U<Ip.

Now to obtain the marginal density of Z, we need to integrate U in (4.10). Collecting
terms containing U and using the substitution W = (/p - Z)~1/2(IP - U)(IP - Z)~1/2

with the Jacobian J(U -> W) = det(/p - Z)^^12, we get

(4.11) / etr(-A[/)det(L0"(a+''"")det(f/-Z)i'-0'+1)/2det(/p-L0^(p+1)/2df/
J
/ etr(-

Jo<z<u<ip

= etr(-A)det(/p-Z)6 +"- ( p + 1 ) / 2 [ etr{(Ip-Z)1/2A(Ip-Z)1/2W}

x det( H0^-^+1)/2 det(/p - W0*-°'+l)/2 det(/p - (Ip - Z) W)-(a+b-a) d W.

Expanding etr{(/p - Z)1/2A(/P - Z)1/2 W] and det(/p - (Ip - Z) W)-(a+l"a) in series
involving zonal polynomials and using (2.3), we obtain

(4.12) etr{(/, - Z)1/2A(/P - Z)1/2 W] det(/p - (/„ - Z) W)-ia+"-a)
/P - Z) W] det(/p

t=0 K /=0 X

where A = A1/2(/p - Z)1/2. Substituting (4.12) in (4.11) and integrating W using
(2.6), we obtain

(4.13) f etr(-AU)det(U)-ia+b-a)det(U-Z)b-(p+l)/2det(Ip-U)fi-(p+l)/2dU

E E E E ̂ (a= etr(-A)det(/p - Z ) ^ E E E E ^
k=0 K 1=0 k

x E °l'X I detiW)^*1"2det(Ip -
06* A J0<W<lp

x C;k(AWA',Ip-Z)dW

= etr(-A) det(/p - Z ) ^
*=0 «: /=0 X

Integrating U in (4.10) using (4.13), and simplifying the resulting expression using
Kummer's relation we get the desired result. •
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In above theorem if we take a = a + b, then

* = 0 K 1=0

00

k=0 K ib+ftlkl • " '

and the density of Z reduces to

T.(nA-hA- R\
-UFi(fi;a + b + 0;A)Y

x det(/p - Z)'*l'-<p+l)/2
lFltf;b + P;{IP - Z)A), 0 < Z < /p.

Furthermore, for A = 0, Z ~ B'p(a, b + fi), a result derived by Rao [12] in the
univariate case and Javier and Gupta [10] (also see Gupta and Nagar [8, 9]) in the
matrix variate case.

THEOREM 4.7. Let V ~ B'p'(a, b) and U ~ KBp(a, fi, A) be independent. Then
the density of 2 = Ul/2VUU1 is given by

etr(-A) det(Z)a"^+1)/2 det(/p + zy(a+b)

), Z>0.
*=o /=o K

PROOF. The joint density of U and V is given by

t,P,A)

x det( V)fl-^+1)/2 det(/p + V)-<°+6», 0 < U < Ip, V > 0.

Transforming Z = f/1/2 VC/1/2 with 7(V -> Z) = det(t/)~(p+1)/2 in above, we get the
joint density of U and Z as

K{a,p, A) e t t ( _ A C / ) d e t ( t / ) «+*- (P+ i ) /2 d e t ( / | > _ ^ / . - ( P + D / 2

)8(a, 6)
x det(Z)fl-(;'+1)/2det([/+ Z)-(fl+6), 0 < U < Ip, Z > 0.

Now, writing det(t/ + Z) = det(/p + Z) det(/p - (/, + Z)-'(/P - U)) and integrating
out [/, the density of Z is obtained as

' P' A) det(/p + Z)-<a+i) f etr(-A U)
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x det(/, - U)l>-(p+l)/2det(Ip - (Ip + Zyl(Ip - U)y(a+b)dU

-o+1»2 det(7, + Z)-<'+» I etr(A Y)
JO<Y<IP

x det(/, - y)"+*-<p+1)/2det(10/'~(p+1)/2det(/l, - (/, + ZyxYy(a+b) dY

' P' A )

p(a, b)
etr(-A) det(Z)a-^+1)/2 det(7

.

t=0 /=0

x det(/p - y)"+*-°'+1)/2c;ii(Ay, (/, + Z)-1 K) jy , z > o,

where the last step has been obtained by expanding etr(AJO and det(/p — (Ip +
Z)"1y)~(a+6) in series involving zonal polynomials and subsequently using (2.3).
Finally, integration of Y above using (2.5) yields the density of Y. •

THEOREM 4.8. Let S(p x p) and U{p x p) be independent, S ~ Gp(m, Ip) and
U ~ KBp{a, P, Ip). Define Z = U'll2SlJ-il2.Then the density ofZ is given by

(Z)

Z > 0.

PROOF. Use of the transformation Z = U~l/2SU-l/2 with the Jacobian 7(5
Z) = det( £/)(/'+1)/2 yields the joint density of Z and U as

+ Z) U) det(Z)"-^+1>/2 det(£/r+m-</>+1)/2 det(/p -

where 0 < U < Ip, Z > 0. The result follows from the definition of the confluent
hypergeometric function. •
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