JFP 30, e5, 69 pages, 2020. (© The Author(s) 2020. Published by Cambridge University Press 1
doi:10.1017/80956796820000040

Effect handlers via generalised continuations

DANIEL HILLERSTROM

Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh EHS 9YL, UK
(e-mail: daniel .hillerstrom@ed.ac.uk)

SAM LINDLEY
Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh EHS 9YL, UK
Department of Computing, Imperial College London, London SW7 2BU, UK
(e-mail: sam.lindley@ed.ac.uk)

ROBERT ATKEY

Mathematically Structured Programming Group, University of Strathclyde,
Glasgow G1 1XQ, UK
(e-mail: robert.atkey@strath.ac.uk)

Abstract

Plotkin and Pretnar’s effect handlers offer a versatile abstraction for modular programming with
user-defined effects. This paper focuses on foundations for implementing effect handlers, for the
three different kinds of effect handlers that have been proposed in the literature: deep, shallow,
and parameterised. Traditional deep handlers are defined by folds over computation trees and are the
original construct proposed by Plotkin and Pretnar. Shallow handlers are defined by case splits (rather
than folds) over computation trees. Parameterised handlers are deep handlers extended with a state
value that is threaded through the folds over computation trees. We formulate the extensions both
directly and via encodings in terms of deep handlers and illustrate how the direct implementations
avoid the generation of unnecessary closures. We give two distinct foundational implementations
of all the kinds of handlers we consider: a continuation-passing style (CPS) transformation and a
CEK-style abstract machine. In both cases, the key ingredient is a generalisation of the notion of
continuation to accommodate stacks of effect handlers. We obtain our CPS translation through a
series of refinements as follows. We begin with a first-order CPS translation into untyped lambda
calculus which manages a stack of continuations and handlers as a curried sequence of arguments.
We then refine the initial CPS translation by uncurrying it to yield a properly tail-recursive translation
and then moving towards more and more intensional representations of continuations in order to
support different kinds of effect handlers. Finally, we make the translation higher order in order
to contract administrative redexes at translation time. Our abstract machine design then uses the
same generalised continuation representation as the CPS translation. We have implemented both
the abstract machine and the CPS transformation (plus extensions) as backends for the Links web
programming language.

1 Introduction

Effect handlers provide a modular and structured interface for programming with
delimited control. They subsume contemporary control idioms, such as async/await and
generators and iterators directly. The aforementioned control idioms provide a restricted

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040
https://orcid.org/0000-0003-4730-9315
mailto:daniel.hillerstrom@ed.ac.uk
mailto:sam.lindley@ed.ac.uk
mailto:robert.atkey@strath.ac.uk
https://doi.org/10.1017/S0956796820000040

2 D. Hillerstrom et al.

form of delimited control (James & Sabry, 2011). In fact, general delimited control
operators such as shift/reset turn out to be instances of effect handlers (Forster ez al., 2017,
2019; Pirdg et al., 2019). In contrast to many control abstractions, effect handlers have
a strong mathematical foundation (Plotkin & Power, 2001; Plotkin & Pretnar, 2013), yet
their practical relevance is inescapable as they have been applied across a wide spectrum
of diverse programming disciplines, including asynchronous programming (Dolan
et al., 2017; Leijen, 2017b), concurrent programming (Dolan ef al., 2015), probabilistic
programming (Bingham et al., 2018), meta programming (Yallop, 2017), and modular
program construction (Kammar et al., 2013).

Effect handlers come in two flavours deep and shallow. Deep handlers are defined by
folds (specifically catamorphisms Meijer et al., 1991) over computation trees, whereas
shallow handlers are defined as case splits. Catamorphisms are attractive because they are
semantically well behaved and provide appropriate structure for efficient implementations
using optimisations, such as fusion (Wu & Schrijvers, 2015). However, they are not always
convenient for implementing other structural recursion schemes, such as mutual recursion.
Most existing accounts of effect handlers use deep handlers.

Effect handlers enjoy rather simple static and dynamic semantics, providing the basis
for many feasible implementation strategies. For instance, Kammar et al. (2013) imple-
ment effect handlers as libraries by making various use of free monads, continuation
monads, and delimited continuations. By contrast, Multicore OCaml (Dolan et al., 2015)
uses a form of segmented stacks (Bruggeman et al., 1996) to provide an efficient native
implementation. Explicit stack manipulation is appealing when one has complete control
over the design of the backend. Similarly, delimited continuations are appealing when
the backend has support for delimited continuations (Kammar et al., 2013; Kiselyov
& Sivaramakrishnan, 2016). In this paper, we study two foundational implementation
strategies:

1. We translate effect handlers from a rich source lambda calculus into a plain lambda
calculus. Specifically, we study continuation-passing style (CPS) transformations
for effect handlers. The benefit of CPS is that we require no primitives in the tar-
get language to support effect handlers, meaning CPS is a good fit for targeting
backends where one has little or no control of runtime. CPS is also an established
intermediate representation used by compilers (Kranz et al., 1986; Appel, 1992;
Kennedy, 2007), which makes it a realistic compilation target, and it provides a
general framework for implementing control flow, making it a good fit for imple-
menting control operators such as effect handlers. The key to implementing a CPS
transformation for effect handlers is to generalise the notion of continuation to
model a stack of effect handlers combined with their associated local continuations.

2. We study an abstract machine with simultaneous support for deep and shallow
handlers which is based on the CEK (Control, Environment, Kontinuation) machine
of Felleisen & Friedman (1987). As with the CPS transform, we generalise the
usual notion of continuation to a stack of effect handlers combined with their local
continuations in order to construct a machine that supports effect handlers.

Both implementation strategies form the basis for our implementation of effect handlers
in Links (Hillerstrdm, 2015). Links is a single-source, tierless, strict ML-like functional

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 3

web programming language with Hindley—Milner type inference and a type-and-effect
system based on row polymorphism (Cooper ef al., 2006). The compiler slices a given
source program into three parts: a part that compiles to JavaScript using a CPS transform
to run on the client (in a web browser), and a second part that runs on the server, which is
implemented as an abstract machine, and the third part which comprises database queries
that are compiled directly to SQL and executed on a database.

The main contributions of this paper are as follows:

e a tutorial on modular effectful programming with effect handlers (Section 2) that
demonstrates the three kinds of effect handlers we study in this paper: deep, shallow,
and parameterised;

e a fine-grain call-by-value calculus A" of deep and shallow handlers with an evalua-
tion context-based small step operational semantics, which captures the core aspects
of our implementation of effect handlers in Links including a row-based effect type
system (Section 3);

e encodings back and forth between deep and shallow handlers along with simulations
up to suitable notions of administrative reduction (Section 4);

e a higher-order CPS transformation for AT along with a detailed proof that the CPS
transformation implements the operational semantics (Section 5);

e an abstract machine for A that implements the operational semantics, based on ideas
developed in the CPS translation (Section 6); and

e an extension of A" with parameterised handlers, along with a proof that
parameterised handlers can be implemented by a local translation into deep handlers
(Section 7).

Section 8 describes our implementation of effect handlers in Links, Section 9 discusses
related work, and Section 10 concludes.

Relation to Prior Publications. This paper combines and streamlines the main results
of three previously published papers (Hillerstrom & Lindley, 2016; Hillerstrom et al.,
2017; Hillerstrom & Lindley, 2018). We have improved the CPS translations described by
Hillerstrom et al. (2017) and Hillerstrom & Lindley (2018) to remove all administrative
reductions and fixed a minor bug in the implementation of shallow handlers (Section 5).
The abstract machine described by Hillerstrom & Lindley (2016) has been extended to
also implement shallow handlers. This paper also provides additional examples of the use
of effect handlers (Section 2), more detailed discussion of the design decisions in effect
handler calculi, includes detailed proofs for the complex higher-order CPS translation, and
describes the necessary extensions to support parameterised handlers (Section 7).

2 Modular effectful programming with effect handlers

In this section, we give a high-level introduction to programming with effect handlers by
example. We demonstrate the usefulness of effect handlers as a practical programming
abstraction by iteratively developing a modular implementation of the mathematical game
Nim (Bouton, 1901). Starting with a fixed abstract model of the game, we show how effect
handlers let us obtain different instantiations with ease.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

4 D. Hillerstrom et al.

We consider a variation of Nim in which two players, Alice and Bob, take turns to
remove between one or three sticks from a heap starting with » sticks. Whoever takes the
last stick wins the game. We implement the game in AT, our calculus with effect handlers,
formally presented in Section 3, although we allow ourselves a fair amount of syntactic
sugar to make the examples more readable (in particular, we use direct style rather than
the fine-grain call-by-value discipline of AT).

2.1 Abstract operations and an abstract game model

We model the Nim game as two mutually recursive functions aliceTurn and bobTurn.
The two players are also represented as values of a (polymorphic) type variant with two
constructors each denoting either Alice or Bob: Player = [Alice | Bob]. We implement the
aliceTurn function as follows:

aliceTurn : Int — Player!{Move : (Player, Int) — Int, &}
aliceTurn n £ if n < 0 then Bob
else let m <— do Move (Alice, n) in
bobTurn (n — m)

Besides some peculiarities in the tail of the type signature and the do-construct, the above
program ought to look familiar to a functional programmer. The signature states that
aliceTurn is a function that takes an integer as input and produces a value of type Player as
output. As a side effect of computing the output value, the function may perform an effect-
ful operation Move, which is parameterised by a pair consisting of a Player and an integer,
and whose result is an integer. The right-hand side of the bang (!) is the effect signature
of the function. In our calculus, effect signatures are represented as rows (Remy, 1993), so
we will also refer to them as effect rows. The presence of Move indicates that the function
is permitted to perform the Move operation with the specified types. The row is terminated
with an effect variable ¢, which can be instantiated with additional operations. As a result,
the function aliceTurn may be invoked in a larger effect context that permits more effects
than it requires.

In the definition of aliceTurn, the parameter # is the current number of sticks on the
heap. When it is her turn, Alice first checks whether there are any sticks left on the heap, if
it is empty, then she declares Bob the winner. Otherwise, she performs her move. The do-
construct is the introduction form for effectful operations. The label Move is an abstract
operation symbol with no predefined semantics. The operation is invoked with a pair con-
taining the label Alice and the current heap state n. The returned value of the operation is
another integer (as evident from the effect signature). This integer is intended to denote the
number of sticks that the Alice decides to take from the heap. After Alice takes the sticks
from the heap, the turn passes to Bob. The bobTurn function is the same, but swaps Alices
and Bobs:

bobTurn : Int — Player!{Move : (Player, Int) — Int, £}
bobTurn n < if n < 0 then Alice
else let m < do Move (Bob,) in
aliceTurn (n — m)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 5

We define an auxiliary function game for configuring a new game with #n sticks on the
heap.

game : Int — () — Player!{Move : (Player, Int) — Int, &}
game n E () .aliceTurn n

By convention, Alice starts every game. Given an initial number of sticks, the game func-
tion returns a suspended computation that starts the game when forced. Without the lambda
abstraction to suspend computation, running aliceTurn n as is would cause the evaluation
relation (~) on terms to eventually get stuck in some evaluation context &”:

aliceTurn n~~" &[do Move (Alice,n)], n> 0.

Evaluation gets stuck in this configuration because we have not yet provided an instantia-
tion of Move. It is an abstract operation. Thus, we say that game, aliceTurn, and bobTurn
are abstract computations. In the following sections, we will consider several possible
interpretations of Move that enable us to instantiate the game with support for alternative
strategies, monitoring of cheating players, and exploration of alternative plays of the game.
By separating effect operations from their semantics, such different interpretations can be
programmed in a modular way.

Syntactic Sugar (effect variables). The reader might have observed that the first arrow
in the signature for game lacks an effect row. The actual type of game is

Int — ({) — Player!{Move : (Player, Int) — Int, £})!{¢'},

where ¢’ is a distinct effect variable from ¢. The application game n for some number 7
does not cause any effects and it is pure. The presence of the effect variable means that it
is parametric in the actual effect context that it is used in. Had game been given the type

Int — ({) — Player!{Move : (Player, Int) — Int, })!,

then it could only be invoked in a pure context. By convention, we omit effect annotations
when the effect row is a singleton row with an effect variable that is only mentioned once
in the whole signature.

2.2 Deep handlers and assigning strategies to players

Abstract operations, like Move, have no predefined semantics. The programmer provides
them with semantics by writing an effect handler. When an abstract operation is invoked,
the current continuation is captured and passed to the effect handler. The captured con-
tinuation is then exposed to the programmer as a first-class function that can be invoked
multiple times, discarded, or stored for later use. By choosing how the continuation of
an abstract operation is resumed, the programmer has freedom to choose the particu-
lar semantics of the abstract operations. Henceforth, we will use the term resumption to
describe the captured continuation in order to differentiate it from the notion of (gen-
eralised) continuation we use in our CPS translations (Section 5) and abstract machine
(Section 6).

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

6 D. Hillerstrom et al.

In our setting, we can use effect handlers to encode particular strategies for Alice and
Bob. For example, consider the perfect strategy defined by ps E n.max 1 (mod n 4), where
n is the number of sticks left in the heap. We can assign both players the perfect strategy
via a handler as follows:

ps_vs_ps:({) — a!{Move: (Player, Int) — Int, £}) — a!{e}
ps_vs_psm = handle m () with

return x =X

Move (_, n) resume +— resume (ps n)

The function ps_vs_ ps (an abbreviation for perfect-strategy-vs-perfect-strategy) embod-
ies the handler. The signature of ps vs_ps tells us that the function takes as input a
(suspended) computation that may perform the Move operation and ultimately return a
value of type a. The type of the value returned by ps_vs ps is the same as the return
type of its input computation. However, the Move operation has been removed from its
effect signature. This signifies that the Move operations invoked by the argument have
been instantiated with a concrete interpretation; they have been handled.

Syntactic Sugar (presence polymorphism). Formally, the type signature of ps_vs psis
(() = a!{Move : (Player, Int) — Int, ¢}) — a!{Move: 0, ¢}, where the return type explic-
itly mentions the Move operation. The convention we adopt is to allow such presence-
polymorphic operations to be omitted from type signatures when they can be inferred from
the rest of the signature.! Here, we see that & appears in an effect row containing the Move
operation; omitting the Move operation in the other effect row in the signature denotes that
Move is associated with a fresh presence variable.

The definition of ps_vs_ps uses the handle M with A construct to instantiate the Move
operation. The handle construct is the elimination form for effectful operations. It runs a
computation M and interprets its effectful operations according to the handler definition
H. Any handler definition consists of a return clause and a collection of operation clauses.
The return clause defines how to handle the final return value of the input computation. In
this example, we simply return the final value returned by the computation. The operation
cases define how to interpret operations that may occur in the computation. The left-hand
side of an operation case matches on the particular label of an operation (in our instance
Move) and the value that it carries. In addition, the left-hand side also provides a name for
the resumption. By convention, we call it resume. The right-hand side of an operation case
defines the dynamic semantics of the operation. Here, we interpret Move, regardless of the
player, as playing the perfect strategy by invoking the resumption resume with the value
determined by ps n. The application of resume transfers control back to the invocation site
of Move and substitutes its argument for the whole operation invocation term.

Using this handler, we can compute the winner of a single game, for instance:

ps_vs ps(game 7)~" Alice and ps_vs ps (game 8) ~" Bob.

The handler handles a/l invocations of Move. This can be seen by examining the type of the
resumption resume: Int — a!{e}. The type is determined by the enclosing handler and the

! This syntactic sugar is also available in our concrete implementation in Links.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 7

signature of the operation. The input type is the return type of the operation Move, and the
return type is the body type of the handler. Similarly, the effect signature is the same as its
enclosing handler. This reveals that resume handles any subsequent occurrences of Move.
It handles those operations by implicitly re-wrapping the handler around the remainder of
the computation (i.e., the computation following the operation invocation), until the return
clause is invoked by the computation finishing.

The following sketched reduction sequence illustrates how the handler is re-wrapped
by giving the interesting steps of the computation ps_vs ps (game 7). We let Hps s ps
denote the handler definition. o

ps_vs_ps(game 7)
~»* (definition of ps_vs_ ps)
handle (game 7) () with Hs s ps
~~* (definition of game 7 with & =let m < [] in bobTurn(7 — m))
handle &[do Move (Alice, 7)] with Hps vs ps
~T (Move clause definition) -
(resume (ps 7))[Ax.handle &[x] with Hps s ps/resume]

The handler forces evaluation of the suspended game computation. After some amount
of standard reduction steps, the redex is do Move (Alice, 7). At this point, control gets
transferred to the handler, specifically the Move clause within the handler definition. The
resumption resume is substituted for a lambda abstraction, whose body contains the same
handler enclosing the remainder of the evaluation context &. As a consequence, any subse-
quent invocation of Move gets handled in the same manner. This handling idiom is known
as deep handlers. This behaviour is analogous to how folds (catamorphisms) in functional
programming work. Evaluation continues by invoking the resumption with 3.

~»T (resuming with ps 7 = 3)
handle £[3] with Hp s s
~~T (definition of bobTurn(4) with & = let m < []in aliceTurn(4 — m))
handle &'[do Move (Bob, 4)] with Hys s ps
~T (Move clause definition) -
(resume (ps 4))[1x.handle &”[x] with Hps s ps/resume]
~1 (resuming with ps 4 = 1) -
handle &'[1] with Hps vs ps
~~T (definition of aliceTurn(3) with & =letm < [] in bobTurn(3 — m))
handle &”[do Move (Alice, 3)] with Hps s ps
~T (Move clause definition) -
(resume (ps 3))[Ax.handle & [x] with Hys s ps/resume])
~*+ (resuming with ps 3 = 3) -
handle &”[3] with Hys vs ps
~~T (bobTurn(0) = Alice)
handle Alice with Hys vs ps
~~* (definition of the return clause)
Alice

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

8 D. Hillerstrom et al.

An alternative to deep handlers is shallow handlers, which do not wrap its handler
around the remaining evaluation context &. Instead, it is up to the programmer to decide
how to handle further operations. We present and give examples of shallow handlers in
Section 2.6.

We can assign the players different strategies by pattern matching on the player identi-
fiers. For example, we can assign Bob a cheating strategy such as taking all the remaining
sticks on the heap, thereby winning in a single move. The following handler, ps_vs_cs,
assigns the perfect strategy to Alice and the cheating strategy to Bob.

ps_vs_cs:({) = a!{Move: (Player, Int) — Int, ¢}) — a!{e}
ps_vs_csm < handle m () with
return x =X
Move (Alice, n) resume > resume (ps n)
Move (Bob, n) resume — resume n

Using this handler, Bob wins whenever n > 4. In Section 2.4, we will show how to
handle cheaters in a modular fashion using another effect handler.

2.3 Multi-shot resumptions and computing game data

The handlers ps_vs_ps and ps_vs_cs compute the winner of a single game under fixed
strategies for the players by invoking their respective resumption exactly once per opera-
tion invocation. However, by invoking the resumption multiple times, we can compute the
outcomes of all possible legal strategies for a single game. As a concrete example, we will
demonstrate how to compute the game tree of a particular game. We define a type of game
tree inductively as:

GameTree = [Take : (Player, List (Int, GameTree)) | Winner : Player].

Each path from the root of a game tree to one of its leaves induces a particular sequence
of moves. The interior nodes are given by Take constructors, which carry with them infor-
mation about whose turn it was, and all the possible moves (and outcomes) that the player
can possibly commit to. The leaves of a game tree are of the form Winner p, where p is the
winning player resulting from that path through the tree. The following handler computes
the game tree for any given game.

gameTree : ({) — Player!{Move : (Player, Int) — Int, £}) — GameTree!{s}
gameTree m = handle m () with
return x — Winner x
Move (p, n) resume +—> let moves < legalMoves n in
let subgames <— map resume moves in
let subtrees < zip moves subgames in
Take (p, subtrees)

The return clause wraps the winning player x with a Winner constructor. The operation
case computes every subgame by invoking the resumption resume with every possible
legal move. The result of every subgame is reified as a subtree in the game tree. In order

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 9

Alice
/) \
Bob Bob Alice wins
1

1/\2

Alice Bob wins Bob wins

1

Alice wins

Fig. 1. Game tree generated by gameTree (game 3).

to compute the subgames and subtree, we make use of standard list functions map and
zip for transforming a list and point-wise joining two lists, respectively. The auxiliary
function legalMoves ensures that the resumption resume is only applied to legal moves.
For Nim, we define it using another standard list operator filter: legalMoves = An filter
(<n) [1,2,3]. Figure 1 visualises the result computed by gameTree (game 7). Without
modifying the underlying game model, we have been able to compute data about particular
games by simply reinterpreting the abstract operation Move.

2.4 Effect forwarding and cheat detection

Thus far, we have considered a single operation Move, but in general a computation will
have more operations. We could define a monolithic handler that interprets every operation
that may occur in a given computation. A more modular alternative is to define a collec-
tion of fine-grained, specialised handlers that each handle a particular operation and then
compose them together to fully interpret a computation. Composed handlers can cooperate
to interpret an abstract computation. Each handler operates on a particular subset of the
abstract operations, leaving the remainder for other handlers.

We will demonstrate how to implement a cheat detection mechanism for the game by
composing handlers. The idea is to signal cheating via an abstract operation Cheat. The
operation Cheat is parameterised by the identifier of the player that was caught cheating.
The return type of the operation is the empty type Zero, which we define as the empty
variant type Zero = [1. We define a convenient function that raises the signal.

cheat : Player — «!{Cheat : Player — Zero, ¢}
cheat p = case (do Cheat p) { }

We eliminate values of type Zero using an empty case construct. This allows us to
ascribe a polymorphic return type to cheat. From the point of view of the computation, an
invocation of Cheat will never return. Correspondingly, since there are no values of type
Zero, it is not possible for a handler to invoke the resumption to continue execution after
Cheat is invoked. Thus, the operation Cheat acts like an exception, and an interpretation
of Cheat in an effect handler amounts to implementing an exception handler. A potential

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

10 D. Hillerstrom et al.

implementation of such a handler handles cheating players by assigning victory to the
opponent player, who wins by default:

defaultVictory : ({) — Player!{Cheat : Player — Zero, ¢}) — ({) — Player!{e})
defaultVictory m £ A().handle m () with

return x =X

Cheat Alice _ +— Bob

Cheat Bob _ + Alice

Next, we implement a handler that monitors a given game and raises Cheat if any player
is caught cheating:

monitor: ({) = a!{Cheat: Player — Zero, Move : (Player, Int) — Int, £})
— ({) = a!{Cheat : Player — Zero, Move : (Player, Int) — Int, £})
monitor m = A().handle m () with
return x =X
Move (p, n) resume — letn’ < do Move (p, n) in
if n' € legalMoves n then resume n’
else cheat p

The return clause forwards on the result of the computation. The interesting case is the
operation case. To handle Move (p,), the handler re-performs Move with the same param-
eters. That is, the handler explicitly forwards the operation to another enclosing handler.
The result is stored in »” which is checked against the legal moves. If 7’ is a legal move,
then the game continues. Otherwise, the handler raises the Cheat signal.

The input and output effect rows of monitor are identical. The operation Move appears
in both rows, because the handler handles invocations of Move in the input computation
by performing another invocation of Move, thus introducing the operation into the out-
put row. The Cheat operation appears in the output row, because the handler performs
the operation. The operation propagates to the input row to ensure that if the computation
performs the operation, it has the same type. One may regard this property as introducing
imprecision. However, it is a necessary artefact of the particular form of row polymor-
phism (Remy, 1993) that our effect system is based upon. As in our effect system, labels
must distinct. Other effect systems have been designed which allow programmers to be
more precise about effects generated by the input and output; one example is the Frank
language (Lindley ef al., 2017; Convent ef al., to appear).

Composing the handlers defaultVictory and monitor with ps_vs cs means Bob is
caught cheating whenever n > 5, and thus Alice is declared the winner. Regular function
composition composes handlers:

(ps_vs_csodefaultVictory o monitor) (game 7) ~* Alice

The reader may have observed that the defaultVictory handler does not handle the Move
operation. The above composition works because all handlers implicitly forward opera-
tions that they do not handle to their nearest, dynamically enclosing handler. This implicit
forwarding behaviour is known as effect forwarding. Unlike explicit forwarding, as in
monitor, implicit forwarding does not affect the typing of handlers.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 11

2.5 Handling stateful computations and instrumentation

In this section, we will show how to instrument a computation with logging using effect
handlers. We provide an interface for accessing and updating the value of a state cell:
State 8 E{Get: () > B, Put: B — ()}. The interface consists of the operation Get which
accesses the value of type 8, and Put which updates the value. The following handler

provides an implementation of this interface:

runState: 8 — ({) — {(«a, B)!{State 8, ¢}) = ({) = (a, B)!{e})
runState init m = A().let run < handle m () with
return x > ASt.(x, st)
Get () resume +> Ast.(resume st) st
Put st’ resume +— A_.(resume ()) st’
in run init
The runState handler provides a generic way to interpret any stateful computation. It takes
as its first parameter the initial value of the state cell. The second parameter is a stateful
computation that may perform the Get and Put operations. Ultimately, the handler returns
the value of the input computation along with the current value of the state cell.
This formulation of state handling is analogous to the standard monadic implementation
of state handling (Wadler, 1995). In the context of handlers, the implementation uses a
technique known as parameter passing (Pretnar, 2015). The operations Get and Put are
interpreted as functions that take the current state as input. Consequently, resume returns
a function that expects to be passed the state for the rest of the computation. In the imple-
mentation, we explicitly paranthesise invocations of resume to emphasise that it is an unary
function returning another unary function. For example, the type of resume in the Get case
is B — B — (a, B)!{e}. The resumption threads the state value through to the subsequent
activation of the handler via its second argument. In the Get case, the state value is passed
unchanged, whereas in the Put case the provided value s’ is passed as the new state. A sim-
ilar interpretation is given to the return case, although in this case the function takes the
final state as input and returns a pair consisting of the return value and the final state value.
Operationally, evaluation of the subcomputation m gets suspended when it either
invokes an operation or returns a value upon which the corresponding clause in the han-
dler definition returns a state accepting function. This function gets bound to 7un which is
subsequently applied to the initial state init, thereby continuing evaluation of the stateful
fragment of m.
Next, we implement a stateful handler computation, which intercepts and records move
operations:

history: ({) — a!{Move : (Player, Int) — Int, State (List (Player, Int)), ¢})
— ({) = a!{Move : (Player, Int) — Int, State (List (Player, Int)), £})
history m = A().handle m () with
return x = X
Move (p, n) resume +— letn’ < do Move (p, n) in
do Put ({p, ') :: do Get ()); resume n’

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

12 D. Hillerstrom et al.

The history handler uses Get and Put operations to accumulate a list of moves performed
during a game. The handler works in a similar way to the defaultVictory handler from
the previous section. It intercepts the Move operation and immediately re-performs it. The
result is stored in #’, which gets paired with the active player p, and cons-ed onto the
current list of moves, that was retrieved via Get. The resulting list is given as argument
to Put, which performs the update. The original invocation of Move is resumed with #’.
Plugging everything together, using runState with the empty list [] as the initial state, we
obtain the winner of the game and the (reversed) list of moves performed by each player:

(ps_vs_pso(runState[]) o history) (game 7) ~* (Alice, [(Alice, 3), (Bob, 1), (Alice, 3)])

Moreover, we can compose this logging infrastructure with the cheat detection machinery
to witness that Bob is caught cheating:

(ps_vs_cso (runState []) o history o defaultVictory o monitor) (game 7)
~T (Alice, [(Bob, 4), (Alice, 3)])

Alice wins by default after Bob makes the illegal move “4”.

Parameterised Handlers. The parameter-passing style used in runState is sufficiently
common that it has its own specialised handling idiom known as parameterised handlers.
A parameterised handler is a handler augmented with an explicit state parameter. Using a
parameterised handler, the runState handler above may be rewritten as follows:

runState’ : B — ({) = (a, B)!{State B,¢}) = ({) = (a, B)!{e})
runState’ init m = .().handle m () with
st. return x — (x, st)
Get () resume +— resume (st, st) init
Put st resume — resume ({), st')

The binding form st. --- binds the state parameter s¢ in the handler definition. When
the handler runs initially, it will bind s¢ to the value init by applying the parameterised
handler definition to init. Subsequently, the parameter st is accessible in the return and
operation cases. A key difference between ordinary handlers and parameterised handlers
is that in the latter a resumption takes a pair as input, whose first component is the result
of the operation invocation, and the second argument is the updated value of the parameter
st. Thus, parameterised handlers provide a primitive interface for the parameter-passing
idiom. Indeed, using runState’ in place of runState in the previous example yields the
same result:

(ps_vs_ ps o (runState’ []) o history) (game 7) ~ (Alice, [(Alice, 3), (Bob, 1), (Alice, 3)])

The primary advantage of parameterised handlers is that they can implement parameter
passing efficiently. The runState handler above causes a large amount of closures alloca-
tions. In contrast, the parameterised handler runState’ need not allocate any closures. We
discuss the operational semantics of parameterised handlers and their implementation in
Section 7.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 13

2.6 Shallow handlers and streaming

The machinery we have developed thus far only runs the game once. We now show
how to run the game multiple times. Various forms of concurrency can be implemented
using effect handlers, for example, cooperative multi-threading (Bauer & Pretnar, 2015),
message passing (Hillerstrom, 2016), the async/await idiom (Dolan et al., 2017; Leijen,
2017b), and synchronous streams via pipes (Kammar et al., 2013). We will use the latter
to implement a basic live scoring system that tracks the number of wins for each player.
We will follow the Unix philosophy, that is, decompose our system into a collection of
modular processes and then combine them in a pipeline.

The natural implementation of pipes is in terms of two mutually recursive handlers,
which handle production and consumption of values, respectively. Using a deep handler to
implement mutual recursion is at best cumbersome as it essentially amounts to encoding
a mutumorphism using catamorphisms. Therefore, we switch to using shallow handlers to
implement pipes. Unlike deep handlers, shallow handlers do not fix a particular recursion
scheme. A shallow handler handles only a single invocation of an operation, whereas
a deep handler handles al/l invocations of the same operation. Consequently, shallow
handlers offer more flexibility in how to handle subsequent operation invocations in a
computation.

We mark shallow handlers in our calculus with a dagger (F). With shallow handlers, we
define a demand-driven Unix pipeline operator as follows:

pipe : {() = a!{Yield: B — (), &}, () = a!{Await: () — B, &}) — al{e}
copipe : {8 — a!l{Await: () = B,&},{) = al{Yield: B — (),&}) — al{e}

pipe (p,c) = copipe (¢, p) =
handle’ ¢ () with handle’ p () with
return x =X return x =X
Await () resume +— copipe (resume, p) Yield s resume > pipe (resume, 1{).c s)

A pipe takes two suspended computations, a producer p and a consumer c. Each of the
computations returns a value of type «. The producer can perform the Yield operation,
which yields a value of type 8 and the consumer can perform the Await operation, which
correspondingly awaits a value of type 8. The shallow handler pipe runs the consumer first.
If the consumer terminates with a value, then the return clause is executed and returns
that value as it is. If the consumer performs the Await operation, then the copipe handler is
invoked with the resumption of the consumer (resume) and the producer (p) as arguments.
The copipe function runs the producer to get a value to feed to the waiting consumer. If
the producer performs the Yield operation, then pipe is invoked with the resumption of the
producer along with a thunk that applies the consumer’s resumption to the yielded value.

Example. To illustrate the interaction between pipe and copipe, we will consider a con-
crete example with a simple producer, ones, which produces an infinite stream of ones, and
an equally simple consumer, add,, which awaits two integers and returns their sum:

ones = rec ones ().do Yield 1; ones () add, = A().do Await () + do Await ()

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

14 D. Hillerstrom et al.

Let Hpipe and Heopipe denote the handler definitions of pipe and copipe, respectively. We
detail the reduction sequence of pipe (ones, add,):

pipe (ones, add,)
~ (definition of pipe)
handle' add; () with Hyipe
~»T (definition of add, with &,44, =[] + do Await)
handle’ &,44,[do Await ()] with Hyipe
> (Await clause definition)
copipe(resume, ones)[Ay.&add, [V]/resume]
= (substitution)
copipe((y.Eada, [¥]), ones)

The resumption is simply the continuation &,q4q4,. In contrast to a deep handler, the shal-
low handler H,pe is discarded after handling its operation. Evaluation continues with the
application of copipe:

~ (definition of copipe)
handle’ ones () with Hopipe
~»T (definition of ones with &ynes =[]; ones {))
handle’ &,,es[do Yield 1] with Heopipe
~ (Await clause definition)
pipe (resume, (A {).(Ay.6add, [V]) 5))[Az.Eones[2]/resume, 1/s]
~ (definition of pipe)
handle’ (A ().(Ay.&aga, [V]) 1) () with Hpipe
~»T (beta reduction)
handle’ &,q44,[1] With Hpipe
> (definition of &,4q4, With &, & = 1+[D
handle’ &/, [do Await ()] with Hpipe
~ (Await clause definition)
copipe(()»y.é";ddz D, (Az-Eones[2]))
~ (definition of copipe)
handle (Az.&nes[2]) () With Heopipe
~*1 (the continuation of &,es eventually performs Yield 1)
handle’ &,,c.[do Yield 1] with Heopipe
~ (Yield clause definition)
pipe{(hz Gonesl21), (3 ()-(y.ELgq, D) 1))
~T (beta reduction, é”a/ddz[l] =1+1
handle’ 2 with Hpipe
~ (return clause definition)
2

Observe how the handling of operations alternates between pipe and copipe throughout
the reduction sequence. Either handler handles exactly one operation before transferring
control to the other. The crucial operational difference between shallow and deep handlers

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 15

is that the former does not recursively wrap itself around resumptions. Effectively, shallow
handlers provide the ability to perform case splits on computations.

We return to the Nim game. We have to implement some processes to pipe together.
First, we implement a process that receives an integer, which is used as the starting value
for a game. As output, the process will yield the winner of the game:

gameProc: () — «!{Await : () — Int, Yield : Player — (), ¢}

gameProc & A{). let n < do Await () in
let winner <— (ps_vs_ ps o defaultVictory o monitor) (game n) in
do Yield winner; gameProc ()

From the signature of gameProc, we can see that the process will fit as an intermediate
component in a pipeline, since it both Awaits and Yields values. The process first awaits
the starting value », which is used to start a new game with the cheat detection enabled and
where Alice and Bob both adopt the perfect strategy. The winner of the game is yielded,
before awaiting a new start value.

To obtain some start values for successive games, we define a recursive process which
produces a monotonically increasing sequence of integers on demand:

startFrom : Int — () — a!{Yield : Int — (), &}
startFromjdéf)»().do Yield j; startFrom (j+ 1) ()

Given an initial value j the startFrom produces the infinite sequence:
S+ Lj+2,j+3, ...

From the signature, we can tell that this process acts exclusively as a producer.

Next, we implement a stateful process that keeps track of the number of games won
by each player, and upon receiving the winner of a game displays the current score. We
represent the current score as a simple pair Score = (Int, Int), where the first component
is the number of times Alice has won, and vice versa, the second component contains the
number of times Bob has won:

livescore : () — a!{Await : () — Player, Get : () — Score, Put : Score — (), ¢}
livescore = A(). let (fst = aliceSc, snd = bobSc) =
case do Await ()
Alice — (do Get () with fst = (do Get ()).fst + 1)
{ Bob > (do Get () with snd = (do Get ()).snd + 1) }
in do Put (aliceSc, bobSc); display aliceSc bobSc; livescore ()

The signature of livescore tells us not only that this process is a consumer, but also that it
is stateful. First, the process updates the current score by pattern matching on the winner,
which is received via the Await operation. The current score is updated using functional
record update. Subsequently, the value of the state cell is updated with the new score. It is
worth noting that an alternative to using the abstract state operation Get and Put would be
to make livescore a parameterised handler, thereby internalising the state. The advantage
of internal state is that everything is kept local at the expense of modularity as its state
handling would not be overloadable.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

16 D. Hillerstrom et al.

The function display prints the current score using a primitive operation, for example,
writing to standard out. With the processes we have defined so far, we can produce a live
score board for an infinite series of games. In order to make the overall process finite,
we define another intermediate process that halts the pipeline after a given number of
steps:

take: Int — () — ()!{Await: () - B, Yield: 8 — (), ¢}
takejdzefk().ifj < 0 then () else do Yield (do Await ()); take (j — 1) ()

This process uses explicit state passing to keep track of whether to halt. Alternatively, we
could have used the state interface provided by Get and Put.

For convenience, we define an infix pipe operator for constructing pipelines, analogous
to the Unix shell’s pipe operator p1 | p2:

> (() = a!{Yield: 8 — (), e}) > () > a!{Await: () = B,e}) = ({) = a!{e})
p>>cd§)\<).pipe (p,c)

Plugging everything together, we report the live score during a series of consecutive
games:

(startFrom 7 > gameProc > take 3 > ignore o (runState (0, 0) livescore)) ()
Alice 1 - 0 Bob
Alice 1 - 1 Bob
Alice 2 - 1 Bob

~F)

We start an infinite series of games with increasing initial heap sizes, then we consume
three of those games, and for each of the three games we report the winner. We post-
compose ignore = ix.() to disregard the return value of runState.

Implementing Pipes with Deep Handlers. As we have seen, shallow handlers provide a
direct way to implement Unix-style pipes. It is also possible to implement pipes using deep
handlers, albeit in a much more roundabout way. Indeed, shallow handlers can always be
simulated by deep handlers, as we show in Section 4, though not in a straightforward way.
With deep handlers we cannot use term-level recursion and choose how to handle the next
step of the computation, instead we follow Kammar ef al. (2013) and simulate a form of
open recursion using recursive types to parameterise a pair of mutually recursive functions,
namely, the producer and consumer:

Producer ¢ a 8 = ()— (Consumer ¢ o — a!{e})!{e}
Consumer ¢ 8 = f— (Producer ¢ a g — a!{e})!{e}

The underlying idea is state passing: the Producer type is an alias for a suspended
computation which returns a computation parameterised by a Consumer computation.
Correspondingly, Consumer is an alias for a function that consumes an element of type
and returns a computation parameterised by a Producer computation. The ultimate return
value has type «. Both are parameterised by an effect variable ¢ that denotes the allowed
effects. Using these recursive types, we can define the pipe’ and copipe’ implementations
using deep handlers as follows:

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 17

pipe’ : ({) = a!{Await: () = B,¢}) — Producerc a B — a!{s}
copipe’ : ({) = a!{Yield: B — (), &}) — Consumer ¢ a 8 — a!{e}

pipe’ ¢ = copipe p =
handle c () with handle p () with
return x = AY.X return x = AY.X
Await () resume — Ap.p () resume Yield s resume +— Ac.c s resume

p>>'"cZ () .pipe ¢ (1().copipe p)
Application of the pipe operator is no longer direct as extra plumbing is required to connect
the handlers. The observable behaviour of >’ is the same as >>. Indeed, the example
yields the same result:

(startFrom 7 >’ gameProc >’ take 3 > ignore o (runState (0, 0) livescore)) ()
Alice 1 - 0 Bob
Alice 1 - 1 Bob
Alice 2 - 1 Bob

~* ()

This example shows that, whilst it is possible to use deep handlers for everything in our
application, it is not always convenient to do so. The extra flexibility of shallow han-
dlers make it possible to implement arbitrary recursion schemes in direct style, whilst
deep handlers require one to jump through hoops. Deep handlers may afford more effi-
cient implementations than shallow handlers, as well-studied standard fusion techniques
for catamorphisms (Meijer et al., 1991) can be applied to deep handlers (Wu et al., 2014).
Thus, a case can be made for providing both constructs in a single language. In the next sec-
tion, we introduce a calculus which includes both deep and shallow handlers. In Section 4,
we study the relationship between deep and shallow handlers further.

3 Handler calculus

In this section, we present AT, a Church-style row-polymorphic call-by-value calculus with
effect handlers (Hillerstrdom & Lindley, 2018). The calculus captures the essence of the
effect handlers as realised by the intermediate representation of Links. As in Links, our
calculus includes both deep and shallow handlers, allowing us to compare both within the
same language. Links also features parameterised handlers. We will further extend the cal-
culus with parameterised handlers in Section 7. A key ingredient of our calculus is row
polymorphism. As in Links, row polymorphism is used to uniformly support extensible
records and variants as well as an extensible effect system. We use Remy-style row poly-
morphism with presence polymorphism (Remy, 1993). The term syntax of our calculus
also follows the syntax of the Links intermediate representation closely, as it is based on
fine-grain call-by-value (Levy et al., 2003). Fine-grain call-by-value is similar to A-normal
form (Flanagan ef al., 1993) in that it names each intermediate computation, but unlike
A-normal form is closed under S-reduction. Fine-grain call-by-value provides a conve-
nient framework for working with delimited control as only the operational rules for let
bindings and handlers admit continuations. By contrast, in standard call-by-value, every
operational congruence rule admits a continuation.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

18 D. Hillerstrom et al.

Value types A,B:=A— C|YaX.C|(R)|[R] |«
Computation types C,D ::=AE

Effect types E = {R}

Depth o= |t

Handler types Fu:=C='D

Row types R:=/¢:P;R|p]|-

Presence types P ::=Pre(4)| Abs | 6

Types T:=A|C|E|F|R|P

Kinds K ::= Type | Comp | Effect | Handler | Row & | Presence
Label sets L =01} vZ

Type environments a=-|T,x:4

Kind environments A=A a:K

Fig. 2. Types, kinds, and environments.

3.1 Syntax of types and kinds, kinding rules

The syntax of types, kinds, and environments is given in Figure 2.

Value Types. Function types 4 — C classify functions that map values of type 4 to com-
putations of type C. Polymorphic types YaX.C quantify universally over a type variable o
of'kind K. Record types (R) represent records with fields constrained by the row R. Dually,
variant types [R] represents tagged sums constrained by the row R.

Computation Types and Effect Types. The computation type A!E is given by a value
type 4 and an effect type £, which specifies the operations that a computation inhabiting
this type may perform.

Handler Types. The handler type C =° D represent handlers that transform computations
of type C into computations of type D (where § empty denotes a deep handler and § =t a
shallow handler).

Row Types. Effect, record, and variant types are given by row types. A row fype (or just
row) describes a collection of distinct labels, each annotated by a presence type. A presence
type indicates whether a label is present with type 4 (Pre(A)), absent (Abs) or polymorphic
in its presence (6). Row types are either closed or open. A closed row type ends in -, whilst
an open row type ends with a row variable p. The row variable in an open row type
can be instantiated with additional labels. We identify rows up to reordering of labels.
For instance, we consider rows £; : Py;--- ; £, : Py;-and £, : P,; - - - ; £ : Py; - equivalent.
Closed rows are further considered equivalent up to inclusion of explicitly absent labels.
The unit type is the empty closed record, that is, {-). Dually, the empty type is the empty,
closed variant [-]. Often, we omit the - for closed rows.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 19

ComP FuN
FORALL AFA:Type AFA:Type

TYVAR A,a:KFC:Comp A+ E : Effect A C:Comp
Ao:KFa:K AFVaX. C: Type AFA'E: Comp A+A— C:Type

RECORD VARIANT EFFECT

A R:Rowy AR :Rowy A+ R :Rowy

AF(R): Type AF[R]: Type A F{R} : Effect

EXTENDROW
PRESENT A F P: Presence
A+ A :Type ABSENT EMPTYROW A+ R:Row.gue)

A+ Pre(A4) : Presence A+ Abs : Presence A -:Rowgy AFL:P;R:Rowy

HANDLER
A+ C:Comp A+ D:Comp

A+ C=° D:Handler

Fig. 3. Kinding rules for AT,

Kinds. We have six kinds: Type, Comp, Effect, Handler, Row «, and Presence, which
respectively classify value types, computation types, effect types, handler types, row types,
and presence types. Rows have the property that they mention each label at most once. To
ensure this property, we annotate row kinds with a set of labels ., which contains the
labels mentioned by the row. The rule ExtendRow builds the set using disjoint union to
ensure uniqueness. In other words, the kind Rowy denotes a complete row, whilst Row &
for non-empty .Z denotes a partial row that may not mention the labels in .Z. We write
£ : A as sugar for € : Pre(4).

Type Variables. We let «, p, and 0 range over type variables. By convention, we write
«a for value type variables or for type variables of unspecified kind, p for type variables of
row kind, and 0 for type variables of presence kind.

Type and Kind Environments. Type environments (I") map term variables to their types
and kind environments (A) map type variables to their kinds.

Kinding Rules. The kinding judgement A 7 : K states that type T has kind K in kind
environment A. The kinding rules for AT are given in Figure 3.

3.2 Terms

The terms are given in Figure 4. We let x, y, z, r, p range over term variables. By con-
vention, we use 7 to denote resumption names. The syntax partitions terms into values,
computations, and handlers. Value terms comprise variables (x), lambda abstraction
(AMx?.M), type abstraction (AaX.M), the introduction forms for records and variants, and

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

20 D. Hillerstrom et al.

Values VW i=x | AA M| AKX M|)| €=V, W) | (V)R
| recg!”C x.M
Computations M,N =V W |V T|let({=x;y)=VinN
| case V{{x+— M;y+> N}|absurd“V
| return/V |letx < Min N
| (do ¢ V)F | handle’ M with H

Handlers H:={returnx— M} | {{pr—> M}WH
Fig. 4. Term syntax.

recursive functions (rec g~ ¢ x.M). Records are introduced using the empty record () and
record extension (£ = V; W), whilst variants are introduced using injection (£ ¥)®, which
injects a field with label £ and value V' into a row whose type is R.

All elimination forms are computation terms. Abstraction and type abstraction are
eliminated using application (¥ W) and type application (V' T), respectively. The record
eliminator (let (¢ =x;y) =V in N) splits a record V into x, the value associated with £,
and y, the rest of the record. Non-empty variants are eliminated with the case construct
(case V {€ x+— M;y+> N}), which evaluates the computation M if the tag of /' matches
£. Otherwise, it falls through to y and evaluates N. The elimination form for empty vari-
ants is (absurd® 7). A trivial computation (return /) returns value V. The expression
(letx <— M in N) evaluates M and binds the result to x in N.

Operation invocation (do £ V)£ performs operation £ with value argument ¥. Handling
(handle’ M with H) runs a computation M using deep (8 empty) or shallow (8 = 1) handler
H. A handler definition H consists of a return clause {return x — M} and a possibly empty
set of operation clauses {€ p 7 — N;}¢c.«. The return clause defines how to handle the final
return value of the handled computation, which is bound to x in M. The operation clause
for ¢ binds the operation parameter to p and the resumption » in N,.

We define three projections on handlers: H™ yields the singleton set containing the
return clause of H, whilst H* yields the set of either zero or the unique operation clause
in A that handle the operation ¢, and H°P yields the set of all operation clauses in H. We
write dom(H) for the set of operations handled by H. Various term forms are annotated
with type or kind information; we sometimes omit such annotations. We write /d(M) for
handle M with {return x — return x}.

Syntactic Sugar. We make use of standard syntactic sugar for sequential composition,
pattern matching, n-ary record extension, n-ary case elimination, and n-ary tuples:

M;N =let() <~ MinN
A)M =2 M
A, yy.M = dzlet (x,y) =zin M
(V],...,Vn> E<1=V1;...;}’l= Vn)
case V {£| x+— Ni; =caseV {{; x> Nz casez {{, x+— Nj;z+—

Ly x+—> Ny;z— N} casez {{, x> Ny;z+—> N}...}

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 21

3.3 Typing rules

The typing rules are given in Figure 5. The value typing judgement A; " V' : 4 states
that value term V has type 4 under kind environment A and type environment I". The
computation typing judgement A; "= M : C states that term M has computation type C
under kind environment A and type environment I". The handler typing judgement A; " -
H : C =° D states that handler H has type C =° D under kind environment A and type
environment I". In the typing judgements, we implicitly assume that I", 4, C, and D are
well kinded with respect to A. The set FTV (") denotes the free type variables of I.

The interesting rules are those for performing and handling operations. The T-HANDLER
and T-HANDLER rules are where most of the work happens. The only difference between
the two rules is the typing of resumptions. A deep resumption has the same return type,
D, as its handler, whilst a shallow resumption has the same return type, C, as the input
computation. The effect rows on the input computation type C and the output computation
type D must mention every operation in the domain of the handler. In the output row those
operations may be either present (Pre(4)), absent (Abs), or polymorphic in their presence
(6), whilst in the input row they must be mentioned with a present type as those types are
used to type operation clauses. The effect rows must also share the same suffix R, which
describes the operations that are forwarded. It may include a row variable, in which case
an arbitrary number of effects may be forwarded by the handler. To exemplify all of this,
consider the handler definition in the function ps_vs_ps from Section 2.2. The domain of
the handler definition is the singleton set {Move} and its A -type is

a!{Move : Pre({Player, Int) — Int), ¢} = a!{Move: 0, ¢}

The operation Move is mentioned in the input row with a present type, because it appears
in the domain of the handler definition. In the output row, it is mentioned with a presence
polymorphic type, allowing Move to be reintroduced again later. Alternatively, we could
make it absent (Abs) to prevent it from being reintroduced. The two effect rows share the
same suffix &, meaning that any unmentioned operation is forwarded by the handler.

3.4 Operational semantics

Figure 6 gives a small-step operational semantics for A. The reduction relation ~~ is
defined on computation terms. The interesting rules are the handler rules. We write BL(&)
for the set of operation labels bound by &

BL(1) =% BL(letx < &inN)=BL(&)
BL(handle’ & with H) = BL(&) U dom(H)

The S-RET rule invokes the return clause of a handler. The S-OP? rules handle an operation
by invoking the appropriate operation clause. The constraint £ ¢ BL(&") asserts that no
handler in the evaluation context handles the operation: a handler reaches past any other
inner handlers that do not handle £. The difference between S-OP and S-OPT is that in the
former the resumption reinserts the handler around the captured evaluation context.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

22 D. Hillerstrom et al.

Values
T-LAM T-REC
AT, x:A-M: C AT, f:A—Cx:AFM: C
ATHEM . M:A—C A;TkrecffCxM:4— C
T-POLYLAM
Ao:K;THM:C a¢FTV(T)
A;THAaX. M:VaX. C
U T-EXTEND
“UNIT A;THV:A A;THW:(L:Abs;R)
AT HE(O () AN THE=V,W):(£:Pre(4A);R)
T-INJECT T-VAR
A;THV A x:Ael
A;TH@E VR [0 Pre(4); R] A;ThHx:4
Computations
T-App T-POLYAPP T-SPLIT
A;THV A= C A;THV Yok C A; TV (€:Pre(4); R)
AN TEW:A ART:K A;T,x:A,y: (£:Abs;R)EN: C
AN THEVW:C AN THEVT:CIT/ o] A;THlet(=x;y)=VinN:C
T-CASE
A;T =V [€:Pre(4); R] T-ABSURD
AT, x:A-M: C A;T,y:[€:Abs;RIEN: C A THETV]
A;T Fcase V{lx+— M;y+> N}:C A;T Fabsurd® V: C
T-LET
T-RETURN ATEM:AE
A THEV A A;T,x:A-N:BE
A;T Freturn V : A'E A;THletx < MinN :B'E
T-Do T-HANDLE
A THEV A E={{:4— B;R} r=m:C 'H:C='D
A;TH(dot V) :BIE I - handle’ M with H : D
Handlers
T-HANDLER T-HANDLER
C =AYt : 4, — B); R) C=AY(t;: 4, — B); R)

D=B{(t;: P); R} D=B(t;: P); R}
H:{returanM}&J{ﬁipiriHN,-},- H:{returanM}Lﬂ{ZipiriHN},-
A;T,x:A-M: D A;T,x:A-M: D
[A;F,piZAi,}’iZBi—)Dl_]vi:D]i [A, F,piZAi,l’:Bi—> Cl_ND]l
ATHH:C=D ATHH:C='D

Fig. 5. Typing rules for A%,

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 23

S-APP (Ax.M)V ~ M[V /4]
S-TYAPP (Aoe.M)T ~~ M[T /(]
S-SpLIT let (({ =x;y) = (({=V;W)inN ~> N[V/x,W/y]
S-CASE; case {V{{x— M;y— N} ~ M[V/x]
S-CASE; case (V{l' x+— M;y s N} ~ N[£V]y], if 00
S-REC (recgx.M)V ~> M[(recgx.M)/g,V /x]
S-LET let x < return Vin N ~~ N[V /x]
S-RET handle® (return V) with H ~~ N[V /x], where H™ = {returnx — N}
S-Op handle &[do ¢ V] with H ~~ N[V /p, Ay.handle & [return y] with H /resume],
where ¢ ¢ BL(&) and H = {{p r — N}
S-opf handle” &[do ¢ V] with H ~ N[V /p, Ay.&[return y| /resume],
where ¢ ¢ BL(&) and H' = {{p r — N}
S-LIFT EM] ~ E[N], if M~ N
Evaluation contexts & ::=[] | letx - & in N | handle® & with H

Fig. 6. Small-step operational semantics.

Remark. The S-LET rule eliminates a trivial computation term return V. It is not the
only rule which does so. The rule S-HANDLE-RET also eliminates a return computation.
In fact, we could omit let bindings altogether since any let binding can be thought of as
syntactic sugar for a trivial handler:

let x < M in N = handle M with {return x — N}

Nevertheless, we elect to keep let bindings as a distinguished syntactic form in our formal-
ism as implementing let bindings using handlers is somewhat heavy weight. One can also
view the computation return /' as an operation invocation returny V, given by a type-
indexed family of operations returny : A — Zero, that is exceptions which are handled
uniformly by the return clause of the nearest enclosing handler.

For any relation R, we write R for the transitive closure of R and R* for the reflexive-

transitive closure of R.

Definition 1. We say that computation term N is normal with respect to effect E if N is
either of the form return V or &[do £ W), where £ € E and £ ¢ BL(&).

Theorem 1 (Type Soundness). If'+ M : A/E, then either M diverges or there exists = N :
A!E such that M ~~" N such that N is normal with respect to E.

4 Deep as shallow and shallow as deep

In this section, we show that shallow handlers and general recursion can simulate deep
handlers up to congruence, and that deep handlers can simulate shallow handlers up
to administrative reductions. The latter construction generalises the example of pipes
implemented using deep handlers that we gave in Section 2.6.

4.1 Deep as shallow

The implementation of deep handlers using shallow handlers (and recursive functions) is
by a direct local translation, similar to how one would implement a fold (catamorphism)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

24 D. Hillerstrom et al.

in terms of general recursion. Each handler is wrapped in a recursive function and each
resumption has its body wrapped in a call to this recursive function. Formally, the trans-
lation .”[—] is defined as the homomorphic extension of the following equations to all
terms:

. [handle M with H] = (rec & f.handle’ f () with .7 [H]h) (A (). [M])
FL[H]h = L[H™|h & L [H]h

S [{return x > N}]i = {returnx — Z[N]}

e pr> Neloew]h = {€pr letr < return Ax.h (A().rx)in 7 [Ne]}rc»

Example. We illustrate the translation .[—] on the ps_vs_ ps handler from Section 2.2
(recall that the variable m is bound to the input computation). The example here is
reproduced in A-normal form (ANF) notation:

handle m () with
5 return x > return x =
Move (_, n) resume +— lety <— ps nin resume y

rec / . handle' f () with
return x > returnx
Move (_, n) resume — (A().m ()
let 7 <— return Ax.2(A().resume x) in
lety < psninry

Theorem 2. If A;T'=M: Cthen A;T +.7[M] : C.

In order to obtain a simulation result, we allow reduction in the simulated term to be
performed under lambda abstractions (and indeed anywhere in a term), which is neces-
sary because of the redefinition of the resumption to wrap the handler around its body.
Nevertheless, the simulation proof makes minimal use of this power, merely using it to
rename a single variable. We write Rcong for the compatible closure of relation R, that is,
the smallest relation including R and closed under term constructors for A .

Theorem 3 (Simulation up to Congruence). If M ~ N, then S [M] ~¢,.. Z[N].

cong

Proof. By induction on ~~ using a substitution lemma. The interesting case is S-OP, which
is where we apply a single S-reduction, renaming a variable, under the lambda abstraction
representing the resumption. g

4.2 Shallow as deep

Implementing shallow handlers in terms of deep handlers is slightly more involved than
the other way round. It amounts to the encoding of a case split by a fold and involves a
translation on handler types as well as handler terms. Formally, the translation Z[—] is
defined as the homomorphic extension of the following equations to all types, terms, and
type environments:

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 25

2[C= D] = 7[C] = () — Z[C], () = Z[D])

Z[handle’ M with H] = let z < handle Z[M] with Z[H] in
let (f,g) =zing ()
[H] = 2[H™] W 2[H™]
P[{returnx — N}] = {returnx — return (A().returnx, A{). Z[N])}
Ipr— Nyeg] ={tpr—
letr < Axletz «<—rxinlet (f,g) =zinf () in
return (A().letx <~ do ¢pinrx, A().Z[N])}ecer

Each shallow handler is encoded as a deep handler that returns a pair of thunks. The first
forwards all operations, acting as the identity on computations. The second interprets a
single operation before reverting to forwarding.

Example. We demonstrate the translation 2[—] on the pipe handler from Section 2.6
(recall that the variables ¢ and p are bound to the consumer and producer functions,
respectively). The example is reproduced in ANF notation:

handle’ ¢ () with
9 return x > return x =
Await () resume +— copipe (resume, p)
letz < handle ¢ () with
return x > return (A().returnx, A().return x)
Await () resume —
letr < Axletz < resume xinlet (f, g) =zinf () in
return (A().letx < do £ pinr x, 1().Z[copipe](r, p))
inlet (f,g)=zing ()

Theorem 4. If A; T =M : C, then 2[A]; 2[T|+ 2[M] : 2]C].

As with the implementation of deep handlers as shallow handlers, the implementation is
again given by a local translation. However, this time the administrative overhead is more
significant. Reduction up to congruence is insufficient and we require a more semantic
notion of administrative reduction.

Definition 2 (Administrative Evaluation Contexts). An evaluation context & is adminis-
trative, admin(&), iff

1. For all values V, we have: &[return V] ~~* return V'
2. For all evaluation contexts &', operations £ € BL(&)\BL(&"), values V :

E[E'[do L V]] ~"letx <~ do £V in &[& [return x]].
The intuition is that an administrative evaluation context behaves like the empty evalua-
tion context up to some amount of administrative reduction, which can only proceed once

the term in the context becomes sufficiently evaluated. Values annihilate the evaluation
context and handled operations are forwarded.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

26 D. Hillerstrom et al.

Definition 3 (Approximation up to Administrative Reduction). Define 2 as the compatible
closure of the following inference rules:

M~ M M >N admin(&) MZN
MZM M >N EM]) >N

We say that M approximates N up to administrative reduction if M 2 N.

Approximation up to administrative reduction captures the property that administra-
tive reduction may occur anywhere within a term. The following lemma states that the
forwarding component of the translation is administrative.

Lemma 1. For all shallow handlers H, the following context is administrative:

letz < handle [| with Z[H] inlet {f;) =zinf ().

Theorem 5 (Simulation up to Administrative Reduction). If M’ > 2[M] and M ~~ N,
then there exists N' such that N' 2 P[N] and M’ ~* N'.

Proof. By induction on ~» using a substitution lemma and Lemma 1. The interesting
case is S-OP', which uses Lemma 1 to approximate the body of the resumption up to
administrative reduction. O

5 Continuation-passing style for effect handlers

We now show how our effect handler calculus A" can be implemented via a CPS translation
into a calculus without effect handlers. Beyond a practical implementation technique for
AT, the contribution of this section is the identification of the structure of generalised con-
tinuations that we need to correctly model the behaviour of dynamically nested handlers,
and the way that deep and shallow handlers behave differently upon resumption. Once
we have identified this structure in the CPS translation, we use it to design an CEK-like
abstract machine for deep and shallow handlers in Section 6.

The basic idea of the translation is as follows. We upgrade the continuation argument
from a standard CPS translation to be a stack of continuations, similar to CPS translations
for delimited continuations (Materzok & Biernacki, 2012). Special to handlers, this stack
is composed of alternating pure and handler continuations. Returning from a computation
invokes the pure continuation and invoking an operation initiates a search through the
handler frames to find the one that handles it. The frames skipped over in the search are
remembered, so they can be reinstated after the operation has been handled and execution
resumed.

We define our untyped target calculus in Section 5.1. We then present our CPS transla-
tion in stages. We start with a basic translation for fine-grain call-by-value without handlers
in Section 5.2. We then formulate a sequence of first-order translations that progressively
move from representing the dynamic stack of handlers as functions to explicit stacks in
Section 5.3, gaining support for both deep and shallow handlers as we do so. These steps
prepare us for our final higher-order one-pass translation (Danvy & Filinski, 1992) in
Section 5.4 that uses (higher-order) static computation at translation time to avoid runtime
administrative reductions.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 27

Syntax
Values V.Wi=x|AxM|recgx.M|{)|(V,W)| ¢
Computations M,N =V |MW |let (x,y) =VinN | case V{{ — M;y— N} | absurd V
Evaluation contexts Ex=[]|EW
Reductions
U-AppP (Ax. M)V ~~ M[V /x]
U-REC (recgx.M)V ~> M[recgx.M/g,V /x]

U-SpLIT let (x,y) = (V,W)inN ~» N[V /x, W /y]
U-CASE; casel{{— M;y—N}~M
U-CASE; casel{{'— M,y N}~ N[{/y], ifl#£{

U-LIFT EM] ~ &E[N|, ifM~N
Syntactic sugar
letx=VinN = N[V /x] ()Eé l=¢
tv=(Lv) ({=V,W) = (L,(V,W)) WE((VW)
case V{{x— M;y— N} = let(ﬂzx,y)szN:
lety = Vinlet (z,x) = yin let (z,7/) = Vinlet (x,y) =7 in
case z {{ — M;7 — N} casez {{ —N;Z" — ()}

Fig. 7. Untyped target calculus for the CPS translations.

5.1 Target calculus

The target calculus is given in Figure 7. As in AT, there is a syntactic distinction between
values (V') and computations (). Values (V') comprise lambda abstractions (Ax.M), recur-
sive functions (rec g x.M), empty tuples ({)), pairs ({(V, W)), and first-class labels (¢).
In Section 5.3.3, we will extend the values to also include convenience constructors for
building resumptions and invoking structured continuations. Computations (M) comprise
values (V), applications (M V), pair elimination (let (x,y) =V in N), label elimination
(case V {{+— M;x+> N}), and explicit marking of unreachable code (absurd). We per-
mit the function position of an application to be a computation (i.e., the application form
is M W rather than V' W). This relaxation is used in our initial CPS translations, but will
be ruled out in our final translation when we start to use explicit lists to represent stacks of
handlers in Section 5.3.2.

The reductions for functions, pairs, and first-class labels are standard.

We define syntactic sugar for variant values, record values, list values, let binding, vari-
ant eliminators, and record eliminators. We assume standard n-ary generalisations and
use pattern matching syntax for deconstructing variants, records, and lists. For desugaring
records, we assume a failure constant £, (e.g., a divergent term) to cope with the case of
pattern matching failure.

5.2 CPS translation for fine-grain call-by-value

We start by giving a CPS translation of the operation and handler-free subset of AT in
Figure 8. Fine-grain call-by-value admits a particularly simple CPS translation due to
the separation of values and computations. All constructs from the source language are
translated homomorphically into the target language, except for return, let, and type

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

28 D. Hillerstrom et al.

Values Computations
[= x VWl =[V][W]
[Ax.M] = Ax.[M] [vr) =1v]
[Aoe.M]| = Ak.[M] k [let (¢ =x;y) = Vin N] =let (¢ = x;y) = [V] in [N]
[recgx.M] = recgx.[M] [case V {¢ x— M;y — N}] = case [V] {¢{ x — [M];y — [N]}
[O] =0 [absurd V] = absurd [V]
[(£=VW)] = {=[V];[W]) [return V] = Ak.k [V]
[evl=¢[v] [let x < M in N] = Ak.[M](Ax.[N]k)

Fig. 8. First-order CPS translation of fine-grain call-by-value.

abstraction (the translation performs type erasure). Lifting a value V' to a computation
return V is interpreted by passing the value to the current continuation. Sequencing
computations with let is translated in the usual continuation passing way. In addition, we
explicitly n-expand the translation of a type abstraction in order to ensure that value terms
in the source calculus translate to value terms in the target.

5.3 First-order CPS translations of handlers

As is usual for CPS, the translation of a computation term by the basic CPS translation in
Section 5.2 takes a single continuation parameter that represents the context. With effects
and handlers in the source language, we must now keep track of two kinds of context in
which each computation executes: a pure context that tracks the state of pure computa-
tion in the scope of the current handler and an effect context that describes how to handle
operations in the scope of the current handler. Correspondingly, we have both pure con-
tinuations (k) and effect continuations (h). As handlers can be nested, each computation
executes in the context of a stack of pairs of pure and effect continuations.

On entry into a handler, the pure continuation is initialised to a representation of the
return clause and the effect continuation to a representation of the operation clauses. As
pure computation proceeds, the pure continuation may grow, for example, when executing
a let. If an operation is encountered, then the effect continuation is invoked. The current
continuation pair (k, /) is packaged up as a resumption and passed to the current handler
along with the operation and its argument. The effect continuation then either handles the
operation, invoking the resumption as appropriate, or forwards the operation to an outer
handler. In the latter case, the resumption is modified to ensure that the context of the
original operation invocation can be reinstated when the resumption is invoked.

The translations introduced in this subsection differ in how they represent stacks of
pure and effect continuations, and how they represent resumptions. The first transla-
tion represents the stack of continuations using currying, and resumptions as functions
(Section 5.3.1). Currying obstructs proper tail recursion, so we move to an explicit repre-
sentation of the stack (Section 5.3.2). Then, in order to avoid administrative reductions in
our final higher-order one-pass translation, we use an explicit representation of resump-
tions (Section 5.3.3). Finally, in order to support shallow handlers, we will use an explicit
stack representation for pure continuations (Section 5.3.4).

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 29

5.3.1 Curried translation

Our first translation builds upon the CPS translation of Figure 8. The extension to oper-
ations and handlers is localised to the additional features, because currying conveniently
lets us get away with a shift in interpretation: rather than accepting a single continuation,
translated computation terms now accept an arbitrary even number of arguments repre-
senting the stack of pure and effect continuations. Thus, the translation of core constructs
remain exactly the same as in Figure 8, where we imagine there being some number of
extra continuation arguments that have been n-reduced. The translation of operations and
handlers is as follows:

[do ¢ V] = AkAh.h (£, ([V], Ax.k x h))
[handle M with H]| = [M] [H™'] [H°], where

[{returnx — N}] = Ax.AA.[N]

[{€ p r = Ni}ier] = Mz, (p, 7)) .case z {(£ = [Ne])eez; ¥ = Mrorward(, P> 1)}
MesrwardV, p, ¥) = MM (y, (p, Ax. rx k h))

The translation of do £ V" abstracts over the current pure (k) and effect (%) continuations
passing an encoding of the operation into the latter. The operation is encoded as a triple
consisting of the name ¢, parameter [V], and resumption Ax.k x %, which ensures that any
subsequent operations are handled by the same effect continuation /.

The translation of handle M with H invokes the translation of M with new pure and
effect continuations for the return and operation clauses of H. The translation of a return
clause is a term which garbage collects the current effect continuation 4. The translation
of a set of operation clauses is a function which dispatches on encoded operations, and
in the default case forwards to an outer handler. In the forwarding case, the resumption
is extended by the parent continuation pair in order to reinstate the handler stack, thereby
ensuring subsequent invocations of the same operation are handled uniformly.

The translation of complete programs feeds the translated term the identity pure con-
tinuation (which discards its handler argument), and an effect continuation that is never
intended to be called:

T[M] = [M] (Ax.2h.x) (A(z, _).absurd z)

Conceptually, this translation encloses the translated program in a top-level handler with
an empty collection of operation clauses and an identity return clause.
There are three shortcomings of this initial translation that we address below.

e First, it is not properly tail-recursive (Steele, 1978; Danvy & Filinski, 1992) due
to the curried representation of the continuation stack, as a result the image of the
translation is not stackless, which makes it problematic to implement using a tram-
poline in, say, JavaScript. (Properly, tail recursion CPS translations ensure that all
calls to functions and continuations are in tail position, hence there is no need to
maintain a stack.) We rectify this issue with an explicit list representation in the
next subsection.

e Second, it yields administrative redexes (redexes that could be reduced statically).
We will rectify this with a higher-order one-pass translation in Section 5.4.

e Third, this translation cannot cope with shallow handlers. The pure continuations
k are abstract and include the return clause of the corresponding handler. Shallow

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

30 D. Hillerstrom et al.

handlers require that the return clause of a handler is discarded when one of its
operations is invoked. We will fix this in Section 5.3.4, where we will represent
pure continuations as explicit stacks.

To illustrate the first two issues, consider the following example:

T[return ()] = (Ak.k () (Ax.Ah.x) (A{(z, _).absurd z)
~> (Ax.Ah.x) () (A(z,_).absurd z)
~s (M) (M{z,_).absurd z)

~ ()

The first reduction is administrative: it has nothing to do with the dynamic semantics of
the original term and there is no reason not to eliminate it statically. The second and third
reductions simulate handling return () at the top level. The second reduction partially
applies Ax.Ah.x to (), which must return a value so that the third reduction can be applied:
evaluation is not tail-recursive. The lack of tail recursion is also apparent in our relaxation
of fine-grain call-by-value in Figure 7: the function position of an application can be a
computation and the calculus makes use of evaluation contexts.

Remark. We originally derived this curried CPS translation for effect handlers by com-
posing Forster et al.’s translation from effect handlers to delimited continuations (2017)
with Materzok & Biernacki’s CPS translation for delimited continuations (2012).

Because of the administrative reductions, simulation is not on the nose, but instead up to
congruence. For reduction in the untyped target calculus, we write ~~¢,n, for the smallest
relation containing ~~ that is closed under the term formation constructs.

Theorem 6 (Simulation). IfM ~- N, then T[M] ~~%_, T[N].

cong

Proof. The result follows by composing a call-by-value variant of Forster et al.’s transla-
tion from effect handlers to delimited continuations (2017) with Materzok & Biernacki’s
CPS translation for delimited continuations (2012). O

5.3.2 Continuations as explicit stacks

Following Materzok & Biernacki, we uncurry our CPS translation in order to obtain a
properly tail-recursive translation, representing the stacks of pure and effect continuations
explicitly as lists. The translation of return, let binding, operations, handlers, and top-level
programs is adjusted as follows for the new representation:
[return V] = A(k :: ks).k [V] ks
[let x <— M in N| = A(k :: ks).[M]((Ax.rks.[N] (k :: ks)) :: ks)
[do e V] = A(k::h:ks).h (£, ([V], Ax.Aks.k x (h:: ks))) ks
[handle M with H] = Lks.[M]([H™] :: [H?] :: ks), where
[{returnx +— N}| = Ax.Akslet (h:: ks') = ks in [N] ks’
[{€pr— Nelicwr] = Mz, (p, 1)) Mks.case z {(£ — [N,] ks)ec.z;
y = Mforward((yap: r): kS)}

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 31

Meorward((0, p, 1), ks) = let (k' - 1 2 ks’) = ks in
By, (p, \x.Aks” . rx (K" 0 ks™))) ks'
TM] = [M] (Ax ks.x) :: (A{z, (p, r}).Aks. absurd z) :: [])

The other cases are as in the original CPS translation in Figure 8. The stacks of continu-
ations are now lists, where pure continuations and effect continuations occupy alternating
positions.

Since we now use a list representation for the stacks of continuations, we have had to
modify the translations of all the constructs that manipulate continuations. For return and
let, we extract the top continuation & and manipulate it analogously to the original trans-
lation in Figure 8. For do, we extract the top pure continuation £ and effect continuation
h and invoke / in the same way as the curried translation, except that we explicitly main-
tain the stack ks of additional continuations. The translation of handle, however, pushes
a continuation pair onto the stack instead of supplying them as arguments. Handling of
operations is the same as before, except for explicit passing of the ks. Forwarding now pat-
tern matches on the stack to extract the next continuation pair, rather than accepting them
as arguments. Proper tail recursion coincides with a refinement of the target syntax. Now
applications are either of the form V' W or of the form U V W. We could also add a rule
for applying a two-argument lambda abstraction to two arguments at once and eliminate
the U-LIFT rule, but we defer this until our higher-order translation in Section 5.4.

5.3.3 Resumptions as explicit reversed stacks

In the CPS translations of operations and handlers that we have defined so far, resumptions
have been represented as functions and forwarding has been implemented using function
composition. In order to avoid the administrative redexes arising from function composi-
tion, we move to an explicit representation of resumptions as reversed stacks of pure and
effect continuations. We convert these reversed stacks to actual functions on demand using
a special let 7 =res V in N computation term that reduces as follows:

U-REs letr=res(V,::...:Vi[DinN ~ NAxkVix(Vyi. .V, k)/r]

This reduction rule reverses the stack, pulls out the top continuation V7, and prepends the
remainder onto the current stack /7. The stack representing a resumption and the remaining
stack W are reminiscent of the zipper data structure for representing cursors in lists (Huet,
1997). Resumptions can therefore be thought of as representing pointers into the stack of
handlers.

The translations of do, handling, and forwarding need to be modified to handle the
change in representation of resumptions. The translation of do builds a resumption stack,
handling uses the res construct to convert the resumption stack into a function, and Mioyward
extends the resumption stack with the current continuation pair:

[doe V] =Ak:hks.h (&, ([V],h: k1) ks
[{Epri> Np)eerl] = Mz, (p, rk)).Mks.case z {(£ — letr =res rk in [N;] ks)ec.;

Y= Mforward((%pa rk)) kS)}
Miorward((0, p, 1), ks) = let (k' - b ks y=ksin k' (y, (p, W = K 7)) ks’

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

32 D. Hillerstrom et al.

Since we have only changed the representation of resumptions, the translation of top-level
programs remains the same.

5.3.4 Shallow handlers: Pure continuations as explicit stacks

We now extend the CPS translation to allow deep and shallow handlers. Hillerstrom et al.
(2017) sketched a translation based on the CPS translations given above, but this trans-
lation unfortunately contained a bug. The problem is that the return clause is integrated
into the pure continuation of each stack frame, but the semantics of shallow handlers
demands that this return clause is discarded when any of the operations is invoked. Using
a functional representation of pure continuations means that there is no way to remove the
(translation of the) return clause. Hillerstrom & Lindley (2018) fixed this by switching to
a more intensional representation of pure continuations as explicit stacks. We present their
solution again here, relating it to the CPS translations for only deep handlers presented
above.

A stack frame is now a triple {5, (A", h°PS)), where f5 is list of stack frames representing
the pure continuation for the computation occurring between the current execution and the
handler, 4™ is the (translation of the) return clause of the enclosing handler, and AP is the
(translation of the) operation clauses.

Since pure continuations are no longer represented simply as functions, we cannot
invoke them by simple function application. Instead, we must inspect the structure of the
pure stack fs and act appropriately. To package this neatly, we introduce a computation
form app V' W that feeds a value W into the continuation stack represented by V. There
are two reduction rules:

U-KAPPNIL — app ({[], (™, h)) :: ks) W ~> B W ks
U-KAppCONS app ((f /5,) 2 ks) W~ f W ({fs, h) :: ks)

The first rule describes what happens when the pure continuation stack is exhausted and
the return clause of the enclosing handler is invoked. The second rule describes the case
when the pure continuation stack has at least one element: this continuation is invoked and
the remainder of the stack is passed in as the new continuation.

Since the representation of stacks has changed, we must also change how resumptions
(i.e., reversed stacks) are converted into functions that can be applied. Resumptions for
deep handlers (res V) are similar to the previous section, except that we now use app
to invoke the continuation. Resumptions for shallow handlers (res’ /) are more complex.
Instead of taking all the frames and reverse appending them to the current stack, we remove
the current handler # and move the pure continuation f :: ... :: f, :: [] into the next frame.
This captures the intended behaviour of shallow handlers: they are removed from the stack
once they have been invoked. The reduction rules describing the behaviour of resumptions

are
U-REs letr=res(V,:: ...V :[DDinN ~ N[Axk.app (Vi ...V, k)x/r]
U-REST letr=res’ ((V; ...V [l Ay Voo Vi [])inN ~
N[ixklet (s, ') :: k' =k in
app (Vi Vo (Vy oo Ve, w S 1) k) x /7]

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 33

These constructs along with their reduction rules are macro-expressible in terms of the
existing constructs. We choose to treat them as primitives in order to keep the presentation
relatively concise.

The CPS translation is modified to take into account the new representation of stacks.
We can now implement both deep and shallow handlers within a single translation by
choosing the appropriate way to convert resumptions via the flag §:

[return V] = Aks. app ks [V]
[let x < M in N|| = A{fs, h) :: ks.[M] ({(Ax.Aks.[N] ks) =2 fs, h) :: ks)
[do € V] = A{fs, (h™, hOPS)) =2 ks. hoPS (€, ([V], {fs, (A", hOPS)) 2 [1)) ks
[handle® M with H] = Aks.[M](([1, ([H™], [H°]?)) :: ks), where
[{returnx — N}] = Ax.1ks.[N] ks
[{¢ p r > Ni}oer]® = Mz, (p, rk)).Aks.case z {(€ > let r = res® rk in [N,] ks)ic.o;
Y= Mforward((yapa Vk), kS)}
Meorward((7, p, 7k), ks) = let (s, (h™, h°PS)) :: ks’ = ks in

let 7k’ = (s, (A", h°P%)) :: rk in
hPs (y, (p, rk’)) ks’

The translation of top-level programs feeds in an empty stack for the pure computation, the
identity return clause, and an operations clause that never expects to be invoked:

TM] = [M] ([, (rx.Aks.x, Az, {p, ¥k)).Aks.absurd z)) :: [])

We now have a CPS translation of A" that handles deep and shallow handlers and is tail-
recursive. There still remains the problem of administrative reductions, making translated
code less efficient than it could be. We rectify this in the next section using a higher-order
translation that eliminates administrative reductions statically.

5.4 A Higher-order explicit stack translation

We now adapt the translation of Section 5.3.4 to a higher-order one-pass CPS transla-
tion (Danvy & Filinski, 1990) that partially evaluates administrative redexes at translation
time. Following Danvy & Nielsen (2003), we adopt a two-level lambda calculus nota-
tion to distinguish between static lambda abstraction and application in the metalanguage
and dynamic lambda abstraction and application in the target language: overline denotes
a static syntax constructor; underline denotes a dynamic syntax constructor. The idea is
that redexes marked as static are reduced as part of the translation (at compile time),
whereas those marked as dynamic are reduced at runtime. To facilitate this notation, we
write application in both calculi with an infix “at” symbol (@).

5.4.1 Dynamic terms: The target calculus

The target calculus is given in Figure 9. This is essentially the same as the target calculus
described in Section 5.1, except that the application form (U @ V @ W) comprises three
values, and all applications take two arguments: a function argtEnenszd a parameter. The
calculus also includes the app and let » = res’ ¥ in N constructs described in Section 5.3.4.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

34 D. Hillerstrom et al.

Syntax
Values V,Wi=x|Axk.M |recgxk.M | L] (V,W)
Computations M,N:=V|U@V@W/|let(x,y)=VinN
| case V{{— M;x+— N} |absurd V
| appV W |letr=res® Vin M
Syntactic sugar

letx=VinN = N[V /x| O =¢ =4
Lv=_{Lv) (t=V;W)=L(V,W) VLWEZ;GCWZ
case V{{x— M;y— N} = let ({ =x;y)=VinN =
lety = Vinlet (z,x) = yin let(zz) Vlnlet(xy>—z in
casez {{ — M;z+— N} casez {{+>N;zr 0}
Reductions
U-App (Axk.M) @V @ W ~ M[V [x, W /K]
U-REC (recgxk.M) @V @W ~~ M[recgxk.M/g,V /x,W k|
U-SPLIT let (x,y) = (V,W)inN ~ N[V/x,W/y]
U-CASE; case ({{ s M;x > N} ~ M
U-CASE) case {{{' — M;x+— N}~ N[{/x], if 0l
U-KAPPNIL app ([, (v,e)))V ~v@V @k
U-KAPPCONS PP ((fiis,h) k) V ~~ f @V @ ((s,h)::k)
U-REs letr=res(V,::- 1:[)in N ~
N[Axklet (fs, <hrel hOP ﬁ =kin
app (Vi Vo (fs, (B ROP)) 22 k') x /7]
U-Res’ letr= resT(gvf1 5 me o [] hngn; -V 7@) inN ~
N[Axk.let gsﬁh'zik’ kin
app (q1 - ign i (fro e ifmins W) k) x/7]

Fig. 9. Untyped target calculus for the higher-order CPS translation.

There is a small difference in the reduction rules for the resumption constructs: for deep
resumptions, we do an additional pattern match on the current continuation stack (k).
This is required to make the simulation proof for the CPS translation described below go
through, because it makes the functions that resumptions get converted to have the same
shape as the translation of source-level functions—this is required because our operational
semantics treats resumptions as special kinds of functions, not as first-class objects in their
own right. As above, the app and resumption constructs, with their reduction rules, are
macro-expressible in terms of the other constructs of the dynamic language.

5.4.2 Static terms

Static constructs are marked in static blue and their redexes are reduced as part of the
translation (at compile time). We make use of static lambda abstractions, pairs, and lists.
Reflection of dynamic language values into the static language is written as 1V7. We use
k for variables representing statically known continuations (frame stacks), 6 for variables
representing pure frame stacks, and y for variables representing handlers. We let ¥, #

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 35

range over metalanguage values, ./ range over static language expressions, and #, 2
over static language patterns. We use list and record pattern matching in the metalanguage,
which behaves as follows:
M2, 2)..M) @V, W)

=P 2.)@V QW

=P)@V T=W)
Static language values, comprised of reflected values, pairs, and list conses, are reified as
dynamic language values |7 by induction on their structure:

Wwr=v W omy=1¥ W W)=V W)

We assume the static language is pure and hence respects the usual 8 and n equivalences.

5.4.3 The translation

The CPS translation is given in Figure 10. In essence, it is the same as the CPS trans-
lation for deep and shallow handlers we described in Section 5.3.4, albeit separated into
static and dynamic parts. A major difference that has a large cosmetic effect on the pre-
sentation of the translation is that we maintain the invariant that the statically known
stack (k) always contains at least one frame, consisting of a triple (1 Vi, MW yers b Vopsﬁ of
reflected dynamic pure frame stacks, return handlers, and operation handlers. Maintaining
this invariant ensures that all translations are uniform in whether they appear statically
within the scope of a handler or not, and this simplifies our correctness proof. To maintain
the invariant, any place where a dynamically known stack is passed in (as a continuation
parameter k), it is immediately decomposed using a dynamic language let and repackaged
as a static value with reflected variable names. Unfortunately, this does add some clutter
to the translation definition, as compared to the translations above. However, there is a
pay-off in the removal of administrative reductions at runtime. The translations presented
by Hillerstrdm ef al. (2017) and Hillerstrom & Lindley (2018) did not do this decompo-
sition and repackaging step, which resulted in additional administrative reductions in the
translation due to the translations of let and do being passed dynamic continuations when
they were expecting statically known ones.

Example. The following example illustrates how the higher-order CPS translation avoids
generating administrative redexes by performing static reductions:

T [handle do Await () with /] = [handle do Await () with H] @ ¢+

= [do Await ()] @z[],L[H]]h%T B
= [do Await] @ ([, ([H™], [H*™])) == 7
= [H*"] @ (Await, ((), (1, ([H™], [H**])) : [1) @ | A7

where T = (zﬂ, (thx.rk.x, tA(z, (p,rk)).\k.absurd z)) 7 1[]) is the top-level handler.
The resulting term passes Await directly to the dispatcher that implements the operation
clauses of H. In contrast, our original first-order curried CPS translation yields the term:

(M Ah.h (Await, (), Axk hx))) [H™] [H?] K+ Hr

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

36 D. Hillerstrom et al.

Values
[«] = x) B
[Ax.M] = Axk.let (fs, (h™',hP%)) :: K = k im [M] @ ((1fs, (1h™, 1hOPS)) 2 1K)
[Act.M] = Azklet (fs, (1, h%*)) k' = kin [M] @ ((1fs, (1", th°P)) 1K)
[recgx.M] = recgxk.let (fs, (W', h°P%)) :: k' = kin [M] @ ((1fs, (th™t, thoPs)) =4k

[O1=0 [(e=viml==VEIW]) [evI=<¢[v]
Computations
[VW] =ik [V]@[W] @k
[VT]=Ax.[V]@ () @ |x
[let (¢ =x;y) = Vin N] = Ax.let (£ = x;y) = [V] in [N] @ x
[case V {£x — M;y— N}] = Ax.case [V] {£ x+— [M] @ k;y — [N] @ }
[absurd V] = Ax.absurd [V]

[returnV] = Ax.app (1x) [V]
Mlet x < M in N] = A(6, (™, x°P*)) =
M] @ ((1((A klet {fs, (W', h°P%)) k' = k in
) [IN] @ ((1fs <¢hfet,¢h°m>> T1K)) 1 16),
o (X x%%)) k)
[do € V] = 270, Tt 1) = k. 12 @ (6, (IV], (16, (L™, 1)) = [)) @ L
[handle® M with H] = Zi.[M] @ ({1, [[1{]} 8y)
[H]® = ([H], 1[H*])
[{return x — N}] = Axk.let (fs, (h"',h°P*)) ::k' = k in
IN] @ (s T 1P 10
[{(€pr— No)ey}]® = Az, (p,rk)) k.case z { (£ — let r = res® rk in
- let (fs, (B, h°P%)) :: k' =k in
[Ne] @ ({1fs, (PR HOPS)) 4K) e o
¥ = Meorwara (3,05 7k), k) }
Mforward((yvpvrk)vk) let <fs <hret hops>> k' =kin
let rk’ = {fs, (h'et BOPS)) :: rk in
hP @ (y, (p, rk’ﬁ@k’
Top-level program

T[M] = [M] @ ({1]], (tAxk.x, A (z, (p,rk)) k.absurd z)) = 1))

Fig. 10. Higher-order uncurried CPS translation of AT,

where KT = Ax.Ah.x and Ht = A(z, _).absurd z, requiring two administrative reductions:
[HP] (Await, ((), Ax.[H™'] [H*] x)) K+ H~

before Await may be passed to the dispatcher.

5.4.4 Correctness

To prove the correctness of our CPS translation (Theorem 7), we first state several lem-
mas describing how translated terms behave. In view of the invariant of the translation
that we described above, we state each of these lemmas in terms of static continuation
stacks where the shape of the top element is always known statically, that is, it is of the
form (¥, (Wrer, Vops)) = # . Moreover, the static values ¥, %, and ¥, are all reflected

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 37

dynamic terms (i.e., of the form 1/7). This fact is used implicitly in our proofs, which are
given in Appendix A.
First, the higher-order CPS translation commutes with substitution:

Lemma 2 (Substitution). The CPS translation [—] commutes with substitution in value
terms:

[V /x1=wiv /1],
and with substitution in computation terms:

(IM) @ (Fss Pt Vops)) THDIVD/]
= MUV /X1 @ (Vs Frets Vops)) = OV /%],

In order to reason about the behaviour of the S-OP and S-OpT rules, which are defined in
terms of evaluation contexts, we extend the CPS translation to evaluation contexts, using
the same translations as for the corresponding constructs in A':

M= &’_C.K_
[letx < &in N] =40, (x™, x°P)) T k.
[6] @ ((1(Cox klet (fs, (B, b)) 2 k' = kin
C IVT@ G T T) 1)
o, () = K)
[handle’ & with H] = ac.[€] @ (1, [H]®) =

The following lemma is the characteristic property of the CPS translation on evaluation
contexts. This allows us to focus on the computation within an evaluation context.

Lemma 3 (Decomposition). [&[M]] @ (%, (rer» Vops)) = #) = [M] @ ([€] @
(rets Vops)) TH)).

By definition, reifying a reflected dynamic value is the identity (| 1V = V), but we also
need to reason about the inverse composition. As a result of the invariant that the trans-
lation always has static access to the top of the handler stack, the translated terms are
insensitive to whether the remainder of the stack is statically known or is a reflected ver-
sion of a reified stack. This is captured by the following lemma. The proof is by induction
on the structure of M (after generalising the statement to stacks of arbitrary depth) and
relies on the observation that translated terms either access the top of the handler stack or
reify the stack to use dynamically, whereupon the distinction between reflected and reified
becomes void. Again, this lemma holds when the top of the static continuation stack is
known:

Lemma 4 (Reflect after reify). [M] @ "I/ﬁ, e, 7/,,,,3)) M) =[M] @(?%,?%ef,
Vops)) TH).

The next lemma states that the CPS translation correctly simulates forwarding. The proof
is by inspection of how the translation of operation clauses treats non-handled operations.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

38 D. Hillerstrom et al.

Lemma 5 (Forwarding). If'¢ ¢ dom(H,) then:
[H"]’ @ V Vk)) @ (V. [Ha]?) 22 W)~

[[H"‘“]}‘S Vo, Vs, [EL]) 22 f@W

The following lemma is central to our simulation theorem. It characterises the sense
in which the translation respects the handling of operations. Note how the values substi-
tuted for the resumption variable » in both cases are in the image of the translation of
A-terms in the CPS translation. This is thanks to the precise way that the reductions rules
for resumption construction works in our dynamic language, as described above.

Lemma 6 (Handling). If¢ ¢ BL(&) and H® = {€ pr > N}, then:

1. [dot V] @ ([€] @ (AL1, [H]) = (Fss Frers Vops)) = #)) ~
([[NK]] @ %a %eta %pa)) W)
[[V]/p, Ay kdet (s, (B, 1)) =2 K/
B [returny] @ ([6] @ (4[]
2. [dotV]@([€] @ ({1 [0, [H]") = (Y, (Frers
([[NZ]] @ 76‘35 %en %ps W)
([V]/p, ay ket (s, (B, ho%%)) :: k' = kin

[return y] @ ([€] @ ((ts, (1A™, $h%) TAK)) /7.

=kin
A0, [T = (s, THAS, 1APST) 5 40) /7,
e

Now our main result for the translation: a simulation result in the style of Plotkin (1975).
Theorem 7 (Slmulatlon) If M~ N, then [M] @ ({ Vs, (Yot ”//,,pg W)~ [N] @
((%?5 (%et, %p&‘)

Proof. The proof is by case analysis on the reduction relation using Lemmas 3—6. In

particular, the S-OP and S-Op' cases follow from Lemma 6. O

In common with most CPS translations, full abstraction does not hold (a function could
count the number of handlers it is invoked within by examining the continuation stack,
for example). However, as our semantics is deterministic, it is straightforward to show a
backward simulation result.

Lemma 7 (Backwards simulation). If T[M] ~* V, then there exists W such that M ~~* W
and T[W] =

Corollary 1. M ~*V if and only if T[M] ~* T[V].

6 Abstract machine

In this section, we develop an abstract machine that supports deep and shallow han-
dlers simultaneously, using the generalised continuation structure we identified in the
previous section for the CPS translation. We also build upon prior work (Hillerstrom &

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 39

Configurations € =(M|yl|lkok')
Value environments y =0y v]
Values v,w = (y, .. M) | (v, AaX M)

|01 €=vw) [(o) x| (k,0)!

Continuations k :=[]]0::k Continuation frames 0 = (o, x)
Handler closures x o= (y,H)

Pure continuations o ::=[]|¢ ::0 Pure continuation frames ¢ ::= (y,x, N)

Fig. 11. Abstract machine syntax.

Lindley, 2016) that developed an abstract machine for deep handlers by generalising the
continuation structure of a CEK machine (Felleisen & Friedman, 1987). Hillerstrom &
Lindley (2016) sketched an adaptation for shallow handlers. It turns out that this adaptation
had a subtle flaw, similar to the flaw in the sketched implementation of a CPS translation
for shallow handlers given by Hillerstrom et al. (2017). We fix the flaw here with a full
development of shallow handlers along with a statement of the correctness property.

6.1 The machine

The Informal Account. A machine continuation is a list of handler frames. A han-
dler frame is a pair of a handler closure (handler definition) and a pure continuation (a
sequence of let bindings), analogous to the structured frames used in the CPS translation
in Section 5.4. Handling an operation amounts to searching through the continuation for a
matching handler. The resumption is constructed during the search by reifying each handler
frame. As in the CPS translation, the resumption is assembled in one of two ways depend-
ing on whether the matching handler is deep or shallow. For a deep handler, the current
handler closure is included and a deep resumption is a reified continuation. An invocation
of a deep resumption amounts to concatenating it with the current machine continuation.
For a shallow handler, the current handler closure must be discarded leaving behind a dan-
gling pure continuation, and a shallow resumption is a pair of this pure continuation and
the remaining reified continuation. (By contrast, the prior flawed adaptation prematurely
precomposed the pure continuation with the outer handler in the current resumption.) An
invocation of a shallow resumption again amounts to concatenating it with the current
machine continuation, but taking care to concatenate the dangling pure continuation with
that of the next frame.

The Formal Account. The abstract machine syntax is given in Figure 11. A configuration
€ = (M |y |k ox’) of our abstract machine is a quadruple of a computation term (M), an
environment (y) mapping free variables to values, and two continuations («x) and (k). The
latter continuation is always the identity, except when forwarding an operation, in which
case it is used to keep track of the extent to which the operation has been forwarded. We
write (M | y | k) as syntactic sugar for (M | y | k o []) where [] is the identity continuation.

Values consist of function closures, type function closures, records, variants, and
captured continuations. A continuation « is a stack of frames [0, ..., 0,]. We annotate

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

40 D. Hillerstrom et al.

captured continuations with input types in order to make the results of Section 6.2 easier to
state. Each frame 6 = (o, x) represents pure continuation o, corresponding to a sequence
of let bindings, inside handler closure x. A pure continuation is a stack of pure frames.
A pure frame (y, x, N) closes a let binding let x =[]in N over environment y. A handler
closure (y, H) closes a handler definition H over environment y. We write [] for an empty
stack, x :: s for the result of pushing x on top of stack s, and s + s’ for the concatenation
of stack s on top of s’. We use pattern matching to deconstruct stacks.

The abstract machine semantics defining the transition function — is given in
Figure 12. It depends on an interpretation function [—] for values. The machine is ini-
tialised (M-INIT) by placing a term in a configuration alongside the empty environment
and identity continuation. The rules (M-APPCLOSURE), (M-APPREC), (M-APPCONT),
(M-APPCONT'), (M-APPTYPE), (M-SPLIT), and (M-CASE) enact the elimination of val-
ues. The rules (M-LET) and (M-HANDLE) extend the current continuation with let bindings
and handlers, respectively. The rule (M-RETCONT) binds a returned value if there is a
pure continuation in the current continuation frame; (M-RETHANDLER) invokes the return
clause of a handler if the pure continuation is empty; and (M-RETTOP) returns a final value
if the continuation is empty. The rule (M-Do0) applies the current handler to an operation
if the label matches one of the operation clauses. The captured continuation is assigned the
forwarding continuation with the current frame appended to the end of it. The rule (M-Do')
is much like (M-DO0), except it constructs a shallow resumption, discarding the current
handler but keeping the current pure continuation. The rule (M-FORWARD) appends the
current continuation frame onto the end of the forwarding continuation. The (M-INIT) rule
provides a canonical way to map a computation term onto a configuration.

Example. To make the transition rules in Figure 12 concrete, we give an example of the
abstract machine in action. We reuse the small producer and consumer from Section 2.6.
We reproduce their definitions here in ANF:

ones = rec ones ().do Yield 1; ones ()
add, Z () Jet x < do Await () in lety < do Await () inx + y

Let N, denote the term letx <— do Await () in N, and N, the term let y < do Await () in
x +y. Suppose ones, add,, pipe, and copipe are bound in yr. Furthermore, let Hyipe and
Heopipe denote the pipe and copipe handler definitions. The machine begins by applying
pipe:
(pipe (ones, add,) | yr | «ia)
—> (apply pipe)
(handle’ ¢ () with Hpipe | Y1lc— (9, addy), p — (9, ones)] | kia)
—> (install Hpipe With ypipe = y1[c > (9, add), p — (9, ones)])
(c{)1 Ypipe [([1, (ypipe: Hpipe)) 1 Kid)
—> (apply c and [c]ypipe = (9, add,))
(Ne | 0] ([], (Vpipe, Hpipe)) 1 Kid)
—> (focus on left operand)
(do Await Ol @ | ([(®3x> Ny)]a (Vpipe, Hpipe)) 1 Kid)
— (shallow continuation capture vawait = ([1, [(¥, x, N,)]))
(copipe (resume, p) | Vyipe[resume > vanait] | Kia)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

ssaud Aissaaun abplgquied Aq auluo paysiignd 07000002896£95605/£101°01/B10"10p//:sdny

Transition function

M-INIT

M-APPCLOSURE
M-APPREC
M-APPCONT
M-APPCONT'
M-APPTYPE

M-SPLIT

M-CASE
M-LET
M-HANDLE

M-RETCONT
M-RETHANDLER
M-RETTOP

M-Do

M-Dof

M-FORWARD

M — (M| @[], (9, {return x — returnx}))])

VWlyle) — (M|y'xe [W]y]lc), if [V]y = (', ax".M)
VWyle)— (M|y'lgr (v reeg™ xM), x> [W]yllc), if[V]y =/ recg’” x.M
(VW |y|k) —> (return W |y | k' +H k), if [V]y =)
VWlyl(o,x):k) —> (return W |y | '+ (o' H o0, x):: k), if [V]y =, 0"y
(VTlylk)— (M[T/a]|y"|K), it [V]y =@, AaX. M)
(let(=x;y)=VinN|y|k) — (N|y[x—=> v,y w]|k), if[V]y ={€=uv;w)

(M| y[x+— v]| k), if[V]y=2v
(case V{tx—> My Niy k) — { NIyl € v]|«), i [V]y = vand € £
(letx <~ MinN |y |(o,x) k) — M|y |({(y,x,N):o,x):«)

(
(handle’ M with H | y |k) — (M |y | ([1, (v, H)?) :: k)
(

(return V| y [((y',x,N) 10, x) i) —> (N [y [x=> [V]y]1 (o, x) i)
(return V |y | ([}, (¥, H)) i) — (M | y'[x = [V]y]] k), if H™ = {return x — M}
(return V' |y |[]) — [V]y

(ot VYE |y | (0, (Y, H) k) o'y —> (M | y'[x > [V]y,ri—> (&' +[(o, (', H)DP]| &),
ift:A—BeEand H ={{xr+— M)}

(ot V)E |y [(o, (v, H)) ik) o k") —> (M |y [x = [V]y,r— (c',0)P]| k),
ift:A—BeEand H ={{xr+— M)}

(ol V) |y | ((o,(y,HY) k) ok') —> (oL V)E |y [k o (k' H[(o, (v, H))]), ifH =0

Value interpretation

[y = v
[0Ty =0

WA My = (y, axt.M) [AcX M]y = (v, AaX.M)

—C _ —C
[e=ViWly = =¥l [0y =@y rees wMly =(rees™ 0t

Fig. 12. Abstract machine semantics.

SsUoLNUIUOD pasymauaS via sio]puvy JOB‘I[H

I

https://doi.org/10.1017/S0956796820000040

42 D. Hillerstrom et al.

The invocation of Await begins a search through the machine continuation to locate a

matching handler. In this instance, the topmost handler Hpipe handles Await. The complete

shallow resumption consists of an empty continuation and a singleton pure continuation.

The former is empty as Hpipe is a shallow handler, meaning that it is discarded.
Evaluation continues by applying copipe:

— (apply copipe)
(handle%P <) with Hcopipe | VT[C = VAwait, P > (ﬂ, ones)] | Kid)
— (install Heopipe With Yeopipe = YT[C > Vawait, p —> (4, ones)])
(P () | Ycopipe | (V), (VCOPipea Hcopipé)) " Kid>
(apply p, [P]Veopipe = (&, ones), and Yones = Blones — (¥, ones)])
(do Yield 1| Yones | ([(Voness _» ones ()], (Vcopipea HcopipE)) 1 Kid)
— (shallow continuation capture vvield = ([1, [(Vones> _> ones ())]))
(pipe (resume, A().c 5) | Veopipels —> 1, resume — vyieia] | «iq)

Hz

At this point, the situation is similar as before: the invocation of Yield causes the continu-
ation to be unwound in order to find an appropriate handler, which happens to be Hcopipe-
Next pipe is applied:

—> (apply pipe and y;,. = yr[c > (Veopipel€ = VAwait, s > 11), p = vvietd])])
(handle' ¢ () with Hyipe | 5 | Kia)
—> (install Hyipe)
(€ 01V ipe | 01 W lipes Heipe) = i)
— (apply c and HC]] y[;ipe = (Vcopipe [C = VAwait, S > 1]))
<C § | ycopipe[c = VAwait, S > 1] | ([]: (yp/)ipe’ Hpipe)) I Kid)
—> (shallow resume with vawait = ([1, [(9, x, N,)]))
return 11 /. | (%% N, (9 spes Hoipe)) - ia)

Applying the resumption concatenates the first component (the continuation) with the
machine continuation. The second component (pure continuation) gets concatenated with
the pure continuation of the topmost frame of the machine continuation. Thus, in this
particular instance, the machine continuation is manipulated as follows:

[0 (% N1+ T (Vs Hoipe)) = i
= ([(ana]vy)]r (yrgipe’ Hpipe)) L Kid

Because the control component contains the expression return 1 and the pure continuation
is non-empty, the machine applies the pure continuation:

— (apply pure continuation, yadd, = 9[x — 1])
va | Yadd, | ([]a (y;;ipe’ Hpipe)) - Kid)
—> (focus on right operand)
<d0 AWalt <) | Vadd2 | ([(yaddzaya X +y)]’ (V,;ipea Hpips)) - Kid)
(shallow continuation capture Wawait = ([1, [(Vadd,»¥> X + ¥)]), apply copipe)
(handle’ p () with ycopipe | YT[C = WaAwait, P H> Vyield] | Kid)
~ (install Hcopipe with Vcopipe = yTlc = Wawait, P > Vvield])
(D O | Yeopipe | ([1, (Veopipes Heopipe)) i Kid)

_)2

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 43

The variable p is bound to the shallow resumption vvied, thus invoking it will transfer
control back to the ones computation:

—> (shallow resume with vvield = ([], [(Vones, _» ones ())]))

(return (> | Ycopipe | ([(Vone& _,ones <>)]9 (Vcopipe, Hcopipe)) - Kid)
(apply pure continuation, apply ones, focus on Yield)

(dO Yield 1 | Yones | ([(yones; _, ones (>)]s (ycopipe; Hcopipe)) - Kid)

—3

At this stage, the machine repeats the transitions from before: the shallow continuation of
do Yield 1 is captured, control passes to the Yield clause in Hcopipe, Which again invokes
pipe and subsequently installs the Hpipe handler with an environment yé’ipe. The handler
runs the computation ¢ (), where c is an abstraction over the resumption wawait applied to
the yielded value 1:

6

— (by the above reasoning, shallow resume with wawait = ([1, [(Vadd,, V> X +»)]))

<x+y | Vaddz[y = 1] | ([]’ (y{,/ipe:Hpipe)) = Kid>
— ([x]vaae, v~ 11=1and [y]yaas, [y > 11=1)
(return 2 | yaddz[y = 1] | ([]’ (y[/)/ipe’ Hpipe)) o Kid)

Since the pure continuation is empty, the return clause of Hpipe gets invoked with the
value 2. Afterwards, the return clause of the identity continuation in «jq is invoked,
ultimately transitioning to the following final configuration:

—2 (by the above reasoning)

(return2 | 7 | [])

Remark. If the main continuation is empty, then the machine gets stuck. This occurs
when an operation is unhandled, and the forwarding continuation describes the succession
of handlers that have failed to handle the operation along with any pure continuations that
were encountered along the way. Assuming the input is a well-typed closed computation
term - M : A'E, the machine will either not terminate, return a value of type 4, or get stuck
failing to handle an operation appearing in £. We now make the correspondence between
the operational semantics and the abstract machine more precise.

6.2 Correctness

Figure 13 defines an inverse mapping (—|) from configurations to computation terms
via a collection of mutually recursive functions defined on configurations, contin-
uations, computation terms, handler definitions, value terms, and values. We write
dom(y) for the domain of y and y\{xi,...,x,} for the restriction of environ-
ment y to dom(y)\{xy,...,x,}. The (—) function enables us to classify the abstract
machine reduction rules by how they relate to the operational semantics. The rules
(M-INIT) and (M-RETTOP) concern only initial input and final output, neither a fea-
ture of the operational semantics. The rules (M-APPCONT?), (M-LET), (M-HANDLE),
and (M-FORWARD) are administrative in that (—) is invariant under them. This
leaves B-rules (M-APPCLOSURE), (M-APPREC), (M-APPTYPE), (M-SPLIT), (M-CASE),
(M-RETCONT), (M-RETHANDLER), (M-D0'), and (M-Do), each of which corresponds

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

44 D. Hillerstrom et al.

Configurations

(M [7] ror)) = (k" ++ k) ((M)7) = (D ((x) (M) 7)

Pure continuations

(M =M (((r,x,N) :: 6))M = (o) (let x <~ M in (N)(¥\{x}))
Continuations
(M =m ((o,x)::)M = (&) ((x) ((c)(M)))
Handler closures
((7,H))° M = handle® M with (H)y

Computation terms

vw

(v

(let ({ =x;y) =VinN
(case V{{x— M;y— N})y
(return V

(let x < M in N

(do ¢ V|

(handle® M with H

My (Why
(V)1
let (¢ =x;y) = (V)yin (N)(P\{x,y})
= case (V)y{lx— (M)(V\{x}):y = (N (P\{y})}
Y =return (V)y
y=letx < (M)yin (N)(P\{x})
y=dol(V)y
y = handle® (M)y with (H)y

Y=
Y
Y

wcwcwvwc

Handler definitions

({return x — M})y = {return x — (M) (Y\{x})}
({lxk—M}aH)y={{xk— (M)(y\{x,k}} & (H)y

Value terms and values

y= (), ifyx)=v x4) = AxA.(K) (return x)

y=x, ifxé¢dom(y) ((x,0)4) = Ax*. (o) ((x]) (return x))
(Axt M)y = 2 (M)A L)) (7 A M)) = At (M) (1\{x})
(AaK M)y = AaK.(M)y ((y, AaK. M) = AaX.(M)y

(Oby= 0 0r =0

((t=V:Wy={t=(V)y.(W)y) ((€=viw)) = (€= (v): (w))
(eV)Ryy=(¢ VD?’)R WV)RI)=(5)*
=((r,

Fig. 13. Mapping from abstract machine configurations to terms.

directly to performing a reduction in the operational semantics. We write —, for
administrative steps, —> g for B-steps, and = for a sequence of steps of the form

*
>a 7B

Each reduction in the operational semantics is simulated by a sequence of administrative
steps followed by a single S-step in the abstract machine. The /d handler (Section 3.2)

implements the top-level identity continuation.

Theorem 8 (Simulation). If M ~ N, then for any € such that (€) = Id(M) there exists

€' such that € =—> €' and (€') = Id(N).
Proof. By induction on the derivation of M ~~ N.

Corollary 2. If=M : A/E and M ~~* N 4, then M —>+ € with (€)) = N.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 45

Fu=---|(C,A)=*D
du=--|%
M,N ::= --- | handle* M with H*(W)
H* n=qg* H

Fig. 14. Syntax extensions for parameterised handlers.

T-PARAM-HANDLE .
r=m:cC r-w:A I'kH*:(C,A)=D

I+ handle* M with H¥ (W) : D

T-HANDLER?

C:A!{(&' TA; —>Bl‘),’;R}

DZB!{(Z,' : P),';R}

H = {returnx — M}W{¢{; p; ri — N;};
AT, q:A' x:AFM:D

[A;T,q: A p;:Ai,ri: Bi — DFN;:DJ;
ATHH:(CA)=*D

Fig. 15. Typing rules for parameterised handlers.

7 Parameterised handlers

In Section 2.5, we informally presented parameterised handlers as a useful idiom for han-
dling stateful computations. We now consider parameterised handlers as a primitive in A"
and show how to extend the CPS and abstract machine implementations to support them.
We also show that parameterised handlers can always be simulated by deep handlers.

7.1 Syntax and semantics

Syntax. Figure 14 extends the syntax of AT with parameterised handlers. Syntactically, a
parameterised handler is new binding form (¢*. H), where ¢ is the name of the parameter,
whose type is 4. The name is bound in the ordinary handler definition H. The elimination
form (handle! M with H*()) is similar to the form for ordinary deep handlers, except
that the parameterised handler definition is applied to a value W, which is the initial value
of the parameter q.

Typing and Dynamic Semantics. We require two additional rules to type parameterised
handlers. The rules are given in Figure 15. The main differences between the T-HANDLER
and T-HANDLER? are that in the latter the return and operation cases are typed with respect
to the parameter ¢, and that resumptions r have type (By, A’y — D, that is they accept
a pair as input. Operationally, a parameterised resumption uses the first component as the
return value of the operation and the second component as the updated value of the handler
parameter g. This operational behaviour is formalised by following reduction rule S-Op?:

handle* &[do ¢ V] with (g. H)(W)
~ N[V /p, W/q, Ly, q') . handle &[return y] with (¢q. H)(q')/r]
where € ¢ BL(&) and H = {¢ pr +— N}

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

46 D. Hillerstrom et al.

The parameter value W is substituted for the parameter name ¢ into the operation case
body N. As with ordinary deep handlers, the resumption rewraps its handler, but with the
slight twist that the parameterised handler definition is applied to the updated parameter
value ¢’ rather than the original value W. The reduction rule for handling the return of a
computation is as follows:

handle! (return V) with (g. H)(W) ~» N[V /x, W /q], where H™ = {return x — N}

Both the return value V' and the parameter value W are substituted into the return case
body N for their respective binders.

7.2 Implementing parameterised handlers

Continuation-Passing Style. To accommodate parameterised handlers, we generalise the
notion of continuations once more. A continuation becomes a triple consisting of a pure
continuation, effect continuation, and the handler parameter. This effectively amounts to
explicit state passing as the parameter value gets threaded through every function applica-
tion. The pure continuation invocation rule U-KAPPNIL is slightly modified to account for
the third component:

app (([J, (B, B, q)) k) V ~ I @ (V, q) @k

The pure continuation v is now applied to a pair consisting of the return value V" and the
current value of the handler parameter g. The resumption rule U-RES is adapted to update
the value of the handler parameter:

let r =res (A", A%,) ::...:iq; = [))in N ~
N[{x,p) kapp (g1 ::... 2 (B, b, p) 2 k) x/r]

Thus, the parameter of the topmost handler in the resumption stack is ignored and replaced
by a new value p. The translation is updated accordingly to account for the triple structure.
This involves updating all the parts that previously dynamically decomposed and statically
recomposed frames to now include the additional state parameter. The key updated trans-
lation clauses are shown in Figure 16. The translation of do invokes the effect continuation
1 x° with a pair consisting of the operation and the value of the handler parameter. The
parameter is also pushed onto the reversed resumption stack. This is necessary to account
for the case where the effect continuation |, x °®® does not handle operation ¢.

The translation of the return and operation clauses yields functions that take a pair as
input in addition to the current continuation. The forwarding case is adjusted in much the
same way as the translation for do. The current continuation k is destructed in order to
identify the next effect continuation 4°?* and its parameter g. Then A°® is invoked with the
updated resumption stack and the value of its parameter g.

The amended CPS translation for parameterised handlers is not a zero-cost translation
for shallow and ordinary deep handlers as they will have to thread a “dummy” parameter
value through. In contrast, the abstract machine implementation of parameterised handlers
does not impose an overhead on shallow and deep handlers.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 47

Computations

[do ¢ V] =A(6, (%", X"pq &)K.
L @ (L (V] (18, (™10, 18)) = [1),16) @ L
[handle* M with (. H)(W)] = Ax.[M] @ (1], [(q. H)(W)]¥) =&
[g- HYW)I* = (H[H™]3, t[HP]5, 1 [W])
[{returnx > N}]G = A (x,q)klet(fs, (1", h°*,q)) :: k' = k in
L INT @ ({1, (1%, 1% 1) 7 1)
[{(pr—= No)ertly = Alx,q) klet (z,(p,rk)) = xin
case z { (£ — let(fs, (K", h°PS ¢)) k' =k in
let r :7rgsi rkfin N B
[Ne] @ ((ifs, (TR, ThPS 1)) 1K)) ez
¥ = Morward (v, , 7k), k) }
Msorward (v, p,7k), k) = let (s (hm hoPS g)) k! =k in

h0p§ <y <p < <hret hoPs, >> erqu@k/
Top-level program

TM] = [M] @ (([), (12 {x,) k.x, 1A (z,_) k.absurd z)) 1))

Fig. 16. CPS translation for parameterised handlers.

Abstract Machine Semantics. The abstract machine requires two modest changes to
accommodate parameterised handlers. The handler installation transition rule M-HANDLE
now binds the parameter in the closure environment:

(handle? M with (q. H)W) |y | i) — (M |y | ([, (y[g = [W]y], H)) :: c)

The parameter ¢ is bound to the interpretation of its initial value W. Otherwise, there are
no differences from installing an ordinary deep handler.

The resumption application rule M-APPCONT is adapted to update the value of
parameter in the handler closure environment:

(VW ly k) — (return V' |y | (" + [(o, (v'[g = [W']y],) +«),
if [V]y =’ +[(o, (v, H))))*
Besides the environment update, the rule is the same as for ordinary deep handlers. In
contrast to the CPS translation, the extension of the abstract machine does implement
parameterised handlers as a zero-cost abstraction. This is because the abstract machine
has intensional access to the environments that a CPS translation does not.

7.3 Parameterised handlers as ordinary deep handlers

As mentioned in Section 2.5, parameterised handlers codify the parameter-passing idiom.
They may be seen as an optimised form of parameter passing deep handlers. We now show
formally that parameterised handlers are special instances of ordinary deep handlers. We
define a local transformation &?[—] which translates parameterised handlers into ordinary
deep handlers. We omit the homomorphic cases and show only the interesting cases:

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

48 D. Hillerstrom et al.

2[(C,4) =* B'E] = 2[C] = (2][A] — 2[B'E]) Z[E]
2[handle’ M with (3. H)(W)] = (handle 2[M] with Z[H],) 2[W]
Z[{returnx — M}], = {returnx — rq.Z[M]}

Lpri> rgletr < returnA(x,q').rxq
Z[{epr— My, ={ in 2 7] }

The parameterised handle! construct becomes an application of a handle construct to the
translation of the parameter. The bodies of return and operation clauses are each enclosed
in a lambda abstraction whose formal parameter is the handler parameter ¢q. As a result,
the ordinary deep resumption r is a curried function. However, the uses of » in M expects
a binary function. To repair this discrepancy, we construct an uncurried interface of » via
the function 7.

This translation of parameterised handlers simulates the native semantics. As with the
simulation of deep handlers via shallow handlers in Section 4.1, this simulation is only
up to congruence due to the need for an application of a pure function to a variable to be
reduced. The interesting cases of the proof appear in Appendix B.

Theorem 9 (Simulation of Parameterised Handlers by Deep Handlers). If M ~~ N, then
P[M] ~E . P[N].

cong

8 Implementation

In this section, we briefly discuss our experiences with using the CPS transforms from
Section 5 and the abstract machine from Section 6 as implementation techniques in prac-
tice. Our implementation in Links (available at https://github.com/links-lang/links) relies
on both the higher-order CPS translation and abstract machine.

We retrofitted Links with effect handlers by leveraging most of the infrastructure that
was already in place. Server-side code is interpreted by an abstract machine. The existing
abstract machine was reminiscent of the CEK machine by Felleisen & Friedman (1987). By
modest effort, we were able to generalise the machine’s notion of continuation to support
handlers. The new abstract machine is in fact parameterised by the notion of continuation,
allowing us to switch effect handlers on and off as a language extension.

On the client side, Links has long used a CPS translation to JavaScript, relying on a
trampoline for supporting lightweight concurrency and responsive user interfaces. The
trampoline periodically discards the call stack, therefore it is essential that the CPS transla-
tion is properly tail-recursive. Initially, we attempted to implement a higher-order curried
translation. We then realised that it is unclear whether it is even possible to define a
higher-order curried translation for effect handlers, so we began implementing a first-order
curried translation. It quickly became apparent that this approach could not work given the
need to be properly tail-recursive. At this point, we changed track and successfully imple-
mented a properly tail-recursive higher-order uncurried translation along the lines of the
one described in Section 5.4. Our implementation selectively CPS transforms terms based
on their purity, which is crucial in practice for performance. The CPS compiler is also
parameterised by the notion of continuation in order to support toggling of handlers.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://github.com/links-lang/links
https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 49

Our implementation also supports n-ary parameterised handlers. Initially, we desugared
parameterised handlers into ordinary deep handlers using a source-to-source translation
along the lines of the translation presented in Section 7.3. Now, we provide native support
for them in the abstract machine and CPS transform. Anecdotally, we have observed a
performance boost when handling stateful computations using parameterised handlers.

9 Related work

Interdefinability of Control Operators. In Section 4, we confirmed the folklore that deep
and shallow handlers are interdefinable. This result is similar in spirit to the result of Shan
(2007) in the setting of delimited continuations. Shan demonstrated that static delimited
control can simulate dynamic delimited control. Our results are obtained using differ-
ent techniques; Shan uses a CPS transform with recursive delimited continuation, whilst
we use a variation of the technique of Fokkinga (1990) to implement a mutumorphism
(shallow handler) using a tuple and a catamorphism (deep handler).

CPS Translations for Handlers. We draw on insights from literature on CPS transla-
tions for delimited control operators such as shift and reset (Danvy & Filinski, 1990, 1992;
Danvy & Nielsen, 2003; Materzok & Biernacki, 2012) to devise our one-pass higher-order
CPS translation for deep and shallow effect handlers. Other CPS translations for handlers
use a monadic approach. For example, Leijen (2017¢) implements deep and parameterised
handlers in Koka (Leijen, 2014) by translating them into a free monad primitive in the
runtime. Leijen uses a selective CPS translation to lift code into the monad. The selective
aspect is important in practice to avoid overhead in code that does not use effect handlers.
Scala Effekt (Brachthduser & Schuster, 2017; Brachthiuser et al., to appear) provide an
implementation of effect handlers as a library for the Scala programming language. The
implementation is based closely on the monadic delimited control framework of Dybvig
et al. (2007). A variation of the Scala Effekt library is used to implement effect han-
dlers as an interface for programming with delimited continuations in Java (Brachthduser
et al., 2018). The implementation of delimited continuations depend on special byte code
instructions, inserted via a selective type-driven CPS translation.

There are clear connections between our CPS translations and the continuation monad
implementation of Kammar et al. (2013). Whereas Kammar et al. present a practical
Haskell implementation depending on sophisticated features such as type classes, which to
some degree obscures the essential structure, here we have focused on a foundational for-
mal treatment. Kammar et al. obtain impressive performance results by taking advantage
of the second-class nature of type classes in Haskell coupled with the aggressive fusion
optimisations GHC performs (Wu & Schrijvers, 2015).

Abstract Machines for Handlers. Biernacki ef al. (2018) make use of a variation of our
abstract machine, which they later refined to be used as the runtime basis for the Helium
language (Biernacki et al., 2019). Their machine supports only deep handlers.

The Frank language (Lindley et al., 2017; Convent et al., to appear) compiles to a
dynamically typed variation of itself called Shonky (McBride, 2016). Shonky uses an

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

50 D. Hillerstrom et al.

abstract machine as a basis for its runtime. In contrast to our machine, the Shonky machine
uses a flat continuation structure with syntactic markers to delimit the extent of handlers.

Stacks for Handlers. Leijen (2017a) implements effect handlers in C as a library using
a stack copying technique similar to the technique used by Kiselyov (2012) to imple-
ment multi-prompt continuations and shift and reset in OCaml as a library. The multicore
extension to OCaml (Dolan et al., 2014) adds native support for effect handlers in
OCaml. Handlers are intended as the primary means for implementing and structuring
concurrency (Dolan et al., 2015). Their implementation uses a variation of segmented
stacks (Bruggeman et al., 1996) to implement efficient one-shot resumptions. Multi-
shot continuations can be simulated using an explicit continuation cloning primitive.
The cloning primitive has been used by both Hillerstrom et al. (2016) and Kiselyov &
Sivaramakrishnan (2016). Hillerstrom et al. used it to implement multi-shot semantics
for effect handlers in their prototype compiler for Links which targets the intermediate
Lambda layer of the Multicore OCaml compiler. Kiselyov & Sivaramakrishnan (2016)
used it to embed the Eff language (Bauer & Pretnar, 2015) directly in Multicore OCaml.

10 Conclusions and future work

In this paper, we have examined effect handlers and their implementation in depth. We
have explored the design space of handlers: deep, shallow, and parameterised, and formally
and informally compared their expressiveness. We have also given two formally presented
implementation strategies for all the different kinds effect handlers: a CPS translation into a
calculus without effect handlers, and an abstract machine designed explicitly for executing
languages with effect handlers. This is the first full CPS translation for effect handlers:
our translations go all the way to lambda calculus without relying on a special low-level
handling construct as Leijen (2017c) does. As well as the formal development, we have
also demonstrated the practicality of our implementation techniques by implementing them
in the Links programming language.

A key finding of this work is the structure of generalised continuations needed to cor-
rectly implement effect handlers in both the CPS translation and the abstract machine. For
us, this turned out to be surprisingly subtle, and we had several broken designs before
arriving at the ones presented here. The presence of an implementation in the Links
interpreter/compiler made the process of discovering buggy translations much easier.

Our formal translations between the different kinds of handlers shows that they are,
in a sense, equally expressive, and one might consider a language with only deep han-
dlers as this most closely matches Plotkin and Pretnar’s original vision. However, as we
demonstrated in Section 2, shallow handlers allow more natural programming for some
problems. Moreover, parameterised handlers appear to offer an efficiency boost for a com-
mon idiomatic use of deep handlers. Comprehensive benchmarking is still required to
prove this conclusively though.

For future work, we wish to further explore the range of possible idioms of effect
handlers and their implementations. Of particular interest are handlers that use their
resumptions linearly (exactly once) or affine linearly (at most once). The latter restric-
tion is enforced dynamically in Multicore OCaml (Dolan et al., 2017) because it allows

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 51

an implementation that does not have to copy runtime stacks for multiple resumptions
after an operation. Extending the abstract machine we presented in Section 6 to accurately
model linearly used continuations seems feasible, as does attempting to linearly type the
CPS translation of Section 5, following the linearly used CPS described by Berdine et al.
(2002).

We would also like to make our CPS translation typed, so that the type safety guarantees
of the source language are carried through automatically to the translation. The appendix
of Hillerstrom et al. (2017) sketches a type-preserving CPS translation for deep handlers,
but it remains to extend this to shallow and parameterised handlers.

Finally, there is now a wide diversity of implementation strategies for a wide variety
of styles of effect handlers. We plan to perform comprehensive benchmarking of compet-
ing implementation strategies, especially in the setting of “advanced control abstraction
hostile” environments, such JavaScript.

Acknowledgements

We thank Nicolas Oury for originally suggesting the Nim game as an example to demon-
strate programming with handlers. We thank John Longley for insightful discussions about
the inter-encodings of deep and shallow handlers. We thank KC Sivaramakrishnan for his
generosity. We thank Simon Fowler, Ohad Kammar, James McKinna, Craig McLaughlin,
Gabriel Scherer, and the anonymous reviewers for helpful feedback, suggestions, and
discussions. This work was supported by EPSRC grants EP/L01503X/1 (EPSRC Centre
for Doctoral Training in Pervasive Parallelism) and EP/K034413/1 (From Data Types to
Session Types—A Basis for Concurrency and Distribution).

Conflict of interest

None.

References

Appel, A. W. (1992) Compiling with Continuations. Cambridge University.

Bauer, A. & Pretnar, M. (2015) Programming with algebraic effects and handlers. J. Log. Alg. Meth.
Program. 84(1), 108-123.

Berdine, J., O’Hearn, P. W., Reddy, U. S. & Thielecke, H. (2002) Linear continuation-passing.
Higher-Order Symb. Comput. 15(2-3), 181-208.

Biernacki, D., Pirdg, M., Polesiuk, P. & Sieczkowski, F. (2018) Handle with care: Relational
interpretation of algebraic effects and handlers. PACMPL 2(POPL), 8:1-8:30.

Biernacki, D., Pirég, M., Polesiuk, P. & Sieczkowski, F. (2019) Abstracting algebraic effects.
PACMPL 3(POPL), 6:1-6:28.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R.,
Szerlip, P., Horsfall, P. & Goodman, N. D. (2018) Pyro: Deep universal probabilistic program-
ming. J. Mach. Learn. Res, 28:1-28:6.

Bouton, C. L. (1901) Nim, a game with a complete mathematical theory. Ann. Math. 3(1/4), 35-39.

Brachthiuser, J. I. & Schuster, P. (2017) Effekt: Extensible algebraic effects in scala (short paper).
In SCALA@SPLASH. ACM, pp. 67-72.

Brachthiuser, J. 1., Schuster, P. & Ostermann, K. (2018) Effect handlers for the masses. PACMPL
2(O0OPSLA), 111:1-111:27.

Brachthiuser, J. 1., Schuster, P. & Ostermann, K. (to appear) Effekt: Capability-passing style for
type- and effect-safe, extensible effect handlers in Scala. J. Funct. Program. 30.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

52 D. Hillerstrom et al.

Bruggeman, C., Waddell, O. & Dybvig, R. K. (1996) Representing control in the pres-
ence of one-shot continuations. In Proceedings of the ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation (PLDI), Philadephia, Pennsylvania, May
21-24, 1996, Fischer, C. N. (ed). ACM, pp. 99-107.

Convent, L., Lindley, S., McBride, C. & McLaughlin, C. (to appear) Doo bee doo bee doo. J. Funct.
Program. 30.

Cooper, E., Lindley, S., Wadler, P. & Yallop, J. (2006) Links: Web programming without tiers. In
FMCO. LNCS, vol. 4709. Springer, pp. 266-296.

Danvy, O. & Filinski, A. (1990) Abstracting control. In LISP and Functional Programming, pp.
151-160.

Danvy, O. & Filinski, A. (1992) Representing control: A study of the CPS transformation. Math.
Struct. Comput. Sci. 2(4), 361-391.

Danvy, O. & Nielsen, L. R. (2003) A first-order one-pass CPS transformation. Theor. Comput. Sci.
308(1-3), 239-257.

Dolan, S., Eliopoulos, S., Hillerstrom, D., Madhavapeddy, A., Sivaramakrishnan, K. C. & White, L.
(2017) Concurrent system programming with effect handlers. In TFP. Lecture Notes in Computer
Science, vol. 10788. Springer, pp. 98-117.

Dolan, S., White, L. & Madhavapeddy, A. (2014) Multicore OCaml. In OCaml Workshop.

Dolan, S., White, L., Sivaramakrishnan, K. C., Yallop, J. & Madhavapeddy, A. (2015) Effective
concurrency through algebraic effects. In OCaml Workshop.

Dybvig, R. K., Peyton Jones, S. L. & Sabry, A. (2007) A monadic framework for delimited
continuations. J. Funct. Program. 17(6), 687-730.

Felleisen, M. & Friedman, D. P. (1987) Control operators, the SECD-machine, and the A-calculus.
In Formal Description of Programming Concepts I1I, Martin Wirsing (ed). Elsevier, pp. 193-217.

Flanagan, C., Sabry, A., Duba, B. F. & Felleisen, M. (1993) The essence of compiling with
continuations. In PLDI. ACM, pp. 237-247.

Fokkinga, M. M. (1990) Tupling and mutumorphisms. Squiggolist 1(4), 81-82.

Forster, Y., Kammar, O., Lindley, S. & Pretnar, M. (2017) On the expressive power of user-defined
effects: Effect handlers, monadic reflection, delimited control. PACMPL 1(ICFP), el5.

Forster, Y., Kammar, O., Lindley, S. & Pretnar, M. (2019) On the expressive power of user-defined
effects: Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29, el5.

Hillerstrom, D. (2015) Handlers for Algebraic Effects in Links. MSc thesis, The University of
Edinburgh, Scotland.

Hillerstrdm, D. (2016) Compilation of Effect Handlers and their Applications in Concurrency.
MSc(R) thesis, The University of Edinburgh, Scotland.

Hillerstrom, D. & Lindley, S. (2016) Liberating effects with rows and handlers. In TyDe@ICFP.
ACM, pp. 15-27.

Hillerstrom, D. & Lindley, S. (2018) Shallow effect handlers. In APLAS, vol. 11275. Springer
International Publishing, pp. 415-433.

Hillerstrom, D., Lindley, S., Atkey, R. & Sivaramakrishnan, K. C. (2017) Continuation passing style
for effect handlers. In FSCD. LIPIcs, vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
pp. 18:1-18:19.

Hillerstrom, D., Lindley, S. & Sivaramakrishnan, K. C. (2016) Compiling Links effect handlers to
the OCaml backend. In ML Workshop.

Huet, G. P. (1997) The zipper. J. Funct. Program. 7(5), 549-554.

James, R. P. & Sabry, A. (2011) Yield: Mainstream delimited continuations. In TPDC.

Kammar, O., Lindley, S. & Oury, N. (2013) Handlers in action. In ICFP. ACM, pp. 145-158.

Kennedy, A. (2007) Compiling with continuations, continued. In ICFP. ACM, pp. 177-190.

Kiselyov, O. (2012) Delimited control in OCaml, abstractly and concretely. Theor. Comput. Sci. 435,
56-76.

Kiselyov, O. & Sivaramakrishnan, K. C. (2016) Eff directly in OCaml. In ML Workshop.

Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J. & Adams, N. (1986) ORBIT: An optimizing
compiler for Scheme. 21(7), 219-233. Proceedings of the SIGPLAN’86 Symposium on Compiler
Construction.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 53

Leijen, D. (2014) Koka: Programming with row polymorphic effect types. In MSFP. EPTCS, vol.
153, pp. 100-126.

Leijen, D. (2017a) Implementing algebraic effects in C - “monads for free in C”. In APLAS. Lecture
Notes in Computer Science, vol. 10695. Springer, pp. 339-363.

Leijen, D. (2017b) Structured asynchrony with algebraic effects. In TyDe@ICFP. ACM, pp. 16-29.

Leijen, D. (2017c) Type directed compilation of row-typed algebraic effects. In POPL. ACM,
pp. 486—499.

Levy, P. B., Power, J. & Thielecke, H. (2003) Modelling environments in call-by-value programming
languages. Inf. Comput. 185(2), 182-210.

Lindley, S., McBride, C. & McLaughlin, C. (2017) Do be do be do. In POPL. ACM, pp. 500-514.

Materzok, M. & Biernacki, D. (2012) A dynamic interpretation of the CPS hierarchy. In APLAS.
LNCS, vol. 7705. Springer, pp. 296-311.

McBride, C. (2016) Shonky. https://github.com/pigworker/shonky.

Meijer, E., Fokkinga, M. M. & Paterson, R. (1991) Functional programming with bananas, lenses,
envelopes and barbed wire. In FPCA. Lecture Notes in Computer Science, vol. 523. Springer, pp.
124-144.

Pir6g, M., Polesiuk, P. & Sieczkowski, F. (2019) Typed equivalence of effect handlers and delimited
control. In FSCD. LIPIcs, vol. 131. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 30:1—
30:16.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.
1(2), 125-159.

Plotkin, G. D. & Power, J. (2001) Adequacy for algebraic effects. In FoSSaCS. LNCS, vol. 2030.
Springer, pp. 1-24.

Plotkin, G. D. & Pretnar, M. (2013) Handling algebraic effects. Log. Methods Comput. Sci. 9(4).

Pretnar, M. (2015) An introduction to algebraic effects and handlers. Electr. Notes Theor. Comput.
Sci. 319, 19-35. Invited tutorial paper.

Remy, D. (1993). Syntactic Theories and the Algebra of Record Terms. Technical report RR-1869.
INRIA.

Shan, C.-c. (2007) A static simulation of dynamic delimited control. Higher-Order Symb. Comput
20(4), 371-401.

Steele, G. (1978) RABBIT: A Compiler for SCHEME. Technical report. AITR-474. INRIA.

Wadler, P. (1995) Monads for functional programming. In Advanced Functional Programming.
Lecture Notes in Computer Science, vol. 925. Springer, pp. 24-52.

Wu, N. & Schrijvers, T. (2015) Fusion for free - efficient algebraic effect handlers. In MPC. Lecture
Notes in Computer Science, vol. 9129. Springer, pp. 302-322.

Wu, N., Schrijvers, T. & Hinze, R. (2014) Effect handlers in scope. In Proceedings of the 2014
ACM SIGPLAN Symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, Swierstra,
W. (ed). ACM, pp. 1-12.

Yallop, J. (2017) Staged generic programming. PACMPL 1(ICFP), 29:1-29:29.

A Appendix

Proofs of correctness of the higher-order uncurried CPS translation

Lemma 2 (Substitution). The CPS translation [—] commutes with substitution in value
terms:

WL/« =wiv /1],
and with substitution in computation terms:

(M) @ (P> (Vrers %ps)T W))[[[V]]/X]

5
= [M[V/X]]]@ (Fss Frets Yops)) =IOV /3]

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://github.com/pigworker/shonky
https://doi.org/10.1017/S0956796820000040

54 D. Hillerstrom et al.

Proof. The proof is by mutual induction on the structure of the computation term M and
the value term W. For most of the cases, the existence of the top-level frame on the stack
is not important, so we just refer to the whole static continuation stack as . Note that
we make implicit use of the fact that the parts of the continuation stack that are statically
known are all of the form of right-nested triples of reflected dynamic terms.

Case M=V"W.
(V' wl@)IV1/xl
= (definitionof [-])
(e[@[W] @ Vo) @ HI[V] /]
= (static B-conversion)
(@l @ imiv]/x]
= (definition of [—])
IV v1/xD @ (wILV1/x) @ V711V /]
= (IH 2, twice)
Vv /] @[wiv /<] @ V#71[V]/x]
= _(static B-conversion) -
G [’V /x] @ [WIV /x]] @ Vi) @ 7' [[V]/x]
= (definition of [—]) -
[TV /<D WV /xD] @ 7 [[V]/x]
= (definition of_[—])
[V Y /x1] @ 7 [[V]/x]

Case M=WT.
(v T @ MHIIV]/~]
= (definition of [-])
(e [W] @ () @ o) @ PH([V]/x]
= (static B-conversion)
([l @ @ 17)M[V]/x]
= (definition of [—])
Iilv]/x1@ () @ L7 1[V]/x]
= (IH2)
wiv/xl] @ () @ {71[V]/x]
= (static B-conversion) o
Cue. IV /31l @) @ Vie) @ #[[V]/x]
= (definition of [])
Wi /x1T] @7 ([V]/x]
= (definition oi[—])
[D /x1] @ 7 1[V]/x]

Case M =let({=x";y)=WinN.

(Dlet (¢ =x';y) = WinN] @ #)[[V]/x]
= (definition of [—]) o
(O let (€ =x;y) = [W]in [N] @) @ #)[[V]/x]

= (static B-conversion)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 55

(let (¢ =x;y) = [W]in [N] @ #)[[V]/x]
= (definition of [—]) o

let (¢ =) = [W]([V]/x] in (IN] @ #)([V]/x]
= (IH1andIH?2) -

let (¢ =x';y) = [W[V/x]] in [N[V/x]) @ #[[V]/x]
= (static B-conversion) o

(i det (¢ =x'sy) = [WIV /] in [N[V/x]] @) @ #/[[V]/x]
= (definition of [—]) -

[let (¢ =x'; y) = WV /x] in N[V /x| @ # [[V] /]
= (definition of [—]) o

[(et (¢ =x";y) = Win N)[V /x]] @ #'[[V]/x]

Case M =caseV {{x+> M;y+> N}. Similar to the M =let ({ =x;y) =V in N case.
Case M = absurd WV.

([absurd W] @ #)[[V]/x]
= (definition of [—])
((ikc.absurd W) @ #)H[[V]/x]
= (static B-conversion)
(absurd [W])[[V]/x]
= (definition of [—])
absurd [W][[V]/x]
= (IH2)
absurd [W[V /x]]
= (static B-conversion)
(Axc.absurd [W[V/x]]) @ # [[V]/x]
= (definition of [—])
[absurd W[V /x]] @ #[[V]/x]
= (definition of [—])
[(absurd W[V /x]] @ # [[V]/x]

Case M =return V.

([return W] @ #)[[V]/x]
= (definition of [—])

((e.app L [W]) @)I[V] /]
= (static B-conversion)

(app I 7 [WDIIV]/x]
= (definition of [—/—])

app L(Z[[V]/xD (IWILTV]/xD
= (IH2)

app L(Z[[V]/xD WV /x]]
= (static S-conversion) o

(rie.app Lic [V /x]]) @ #[[V]/x]
= (definition of [—])

[return (W[V/xD] @ #[[V]/x]
= (definition of [— /:])

[(return W)[V/x]] @ #'[[V]/x]

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

56 D. Hillerstrom et al.

Case M =lety < M in N. We have

([lety <~ M"in N] @ ((Vs %gt,”//opé TNV /]
= (definition of [[_ D
(40, (x™, x°P%)) Tk
[MT@ (1 (G ket fs, (B, 1%%)) =K =k in
INT@ ((1fs, (MA™, AhOS)) T 4K) 2 16), (x™L, %) T i)
@ Vs (Prets Vops)) THNV] /]
= (static B-conversion)
(IM'T @ (MG k. Yet (s, (™, 7)) TK = kin
INT @ ((1fs, (1™, 2ROPS)) T 4K))) 22 L V), Vi) = # DIV /]
= ((H1lonM)
[M'1V /<] @ (((h (o k. Tet (fs, (B, %)) =K = kin
INT @ (45, (PA™, ARPS)) 4K = L), 14) = # V] /x])
= (definition of [—/—])
[M'1V/xI) @ ((h(hy k. et (fs, (A, 5%%)) K =k in
(IN] @ (1, ThA™, hoS)) = AR DIIVD /D) 2= L (LD T/xD),s
YV = 7' 1V]/xD)
= (IH1lonN)
[M'IV /x]] @ ((1((uy k. Tet (fs, (B!, hO%)) Tk = kin
INTV /x1] @ (0, (RA, A0S T 4K)) = (WY4IIVT/xD),
llV1/x0) = (#IIV]/xD)
= (static B-conversion and definition of [—])
Mlety < M'[V /x]in N[V /x1] @ ((Zs, (Prers Pops)) = #OIIV]/x])
= (definition of [—/—])
[(ety < M in NV /x1] @ (s, (Frets Yops)) = #OIV] /D)

Case M =do (¢ W)E. We have

([do (€ WET @ (s, (Vrets Vops)) = POIIV]/x]
= (definition of [])
(00, O x) Tred)P @ (6, (I, (L0, (U™, dx ™) (1) @ die)
@ Yss Prets Vops)) W))[[[V]]/x]
= (static B-conversion)
(W Yops @ (£, (W], (30 3P rens 1 Vops)) 2 [1) @ V(Y] /x]
= (definition of [—/—])
VopslIV1/x1@%, (IWILTVT /%), WY RLTVT /L (3 Fal TV T/%D 4 Yops TV] /1)) 22 1))
@ [V]/x]
= ((H2onW)
VWopslIVI/x)@CE, (IWTV /X11s WIRLTVT /XL (3 Hral VD /314 Yops L TV]/%D)) 2 (1))
@171/
= (statlc B-conversion)
(0, O x) T ae k™ @ (6, ([TV /] (46, (x L)) 2 [0) @ V)
@(Vs Drets Vops)) W)[HV]]/X
= (definition of [—])

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations

([do € WLV IXDE) @ (Wss (Frets Vops)) == POV] /]
= (definition of [—/—_]) o _
([(do (¢ WYYV /x1] @ ((Vfs, (Prets Vops)) = #OI[V] /]

Case M = handle’ M’ with H. We make use of two auxiliary results:

Lo [H][[V]/x] = [H™[V /x]
2. [HPPIV]/x1 = [HPW /)

Proof. Suppose H™ = {returny — N}.

[HTIV1/x]
= (definition of [—]) I _

Gy ket {fs, (1, 7)) =K = kin [N]@ ({0, T, 45) =)TV] /)
= (definition of [—/—]) o

Ay klet g@’ ﬁhret’ hOpsﬁﬁk/ —kin ([[Nﬂ @(szS, zThret’ Thops_>? Tk/))[[[V]]/x]
= (IH1 forN) o

Sy et (s, (™ 1PS)) = K = kin [N[V/x]] @ (TS5, THR™, 2 HOPSTY = 4 k')
= (definition of [—])

[H™ [V /x]]

The H°® = {(£ pr+— N;)¢cx} case goes through similarly.
We can now prove that substitution commutes with the translation of handlers:

([handle’ M’ with H] @ #)[[V]/x]
= (definition of [—]) o
(e [M] @ (4[], ([H™], [H]°) T 10) @ PHI[V]/]
= (stati_c B-conversion)
(M@ (L, ([, [H]P) =)V]/
= (IH1 fori/[/)
M1V /x1] @ (L0, QT D/, [HESP IV = # 1V]/
= ((Hand2) _
M1V /x1] @ (L0, (TE DV /], [/x00°)) = # 11V] /]
= (static ﬂ-convgs_ion) B B o
(e [M'1V /x1] @ (AL, ([H DV /], [HOPV /x1)0) Ty @ #/[[V] /%)
= (definition of [—])
[handle’ M'[V /x]; with H[V /x]] @ # [[V]/x]
= (definition of [—/—])
[(handle’ M’ with H)[V /x]] @ #[[V]/x]

Lemma 8 (Type erasure).

L M@ =[M[T/«]] @ W
2. Wl=wiT/e]]

Proof. Follows from the observation that the translation is oblivious to types.

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

57

https://doi.org/10.1017/S0956796820000040

58 D. Hillerstrom et al.

Lemma 3 (Decomposition). [&[M1] @ (%, (%rer» Vops)) = #) = [M] @ ([€] @
(et Vops)) =H)).

Proof. For reference, we repeat the translation of evaluations contexts here:

[[1] = Aexe
Mletx < &in N] = 1(6, (x™, x°%)) 7 k.
[T @ ((N((hx ket (fs, (™, h°P%)) :: k' =k in
~ [N] @ ((1fs, A, HOP)) 1K) 2 16),
(x™, °"S>> K)
[handle’ & with H] = A«.[&] @ ([1, [H]®)

The proof proceeds by structural induction on the evaluation context &.

Case &=]].
[EIM @ (V=)

= (assumption)
M@ (7 =W
= (static B-conversion)
M@ (i) @ (' EH)
= (definition of =D
M@ ([E1@ (¥ W)
Case & =letx < &'[—]inN.

[EMN @ (s Wiers Vops)) = H)
= (assumption)
[[letx <~ éa/[M] mn N]] (%et» %ps)) B W)
= (deﬁn1t1on of [-])
()\ ret XOPSWTK.
[[@@ ’[M]]]@(KT((Axklet s, (B h)) K =k in
IN] @ (U5, (V™ A0PS)) T AK) 22 L6), (X, X)) k)
@(fsa 7/rets %ps W)
= (static B-conversion)
[6' M) @ ((M((Ax k.let (fs, (h hret h"ps)) k' =kin
INT @ ((4fs, A, AHP)) 4K 22 LY, Frers Vaps)) EH)
= (IH_for cg”[:])
M@ ([¢]@
(T((Axklet(ﬁv (H', h°%)) k' =kin
INT @ (U6, (AR, PR T AR 32 L V) Wrets Vi) = H))
= (static 8- conversmn)
[M] @ (G060, (™, x°P)) Tk
[é”]} @(N(x ket (fs, (h™, h°P*)) ;1 k' = kin
B [N] @ (5, [PA™, AROP)) 1K) 22 16),
(X X)) T0) @ (Vs (Prens 7/0[79 W)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 59

= (definition of [—]) o
[M] @ ([letx < &' [M1in N @ (s, (Vrets Vops)) =H))
= (as§1mpti0_n)
M] @ ([E] @ (Ffsr (Pretr Vops)) =H))
Case & = handle’ &' with H.
[EIM @V =)
= (assumption)
[handle’ &' [M]with H] @ (¥ =#)
= (definition of [—]) -
G [E' M @ (1L [H]) T o) @ (7 =#)
= (static ﬁ—ci)nversiozl)
[6' M1 @ (10, [H]?) = (7 =)
-
M] @ ('] @ (0, [H]) = (7 =)
= (sta_tic E —conver_sioil) B o
[M] @ (e [6] @ (0L [HP) To) @ (7 =#)
= (definition of [—])
[M] @ ([handle’ & with H] @ (¥ = #))
= (assumption)

M@ (1@ =) o

Lemma 4 (Reflect after reify). [M]@ (% Wets Yops) = 1) = IM] @ (s Wrers
%psﬁ_W)

Proof. For an inductive proof to go through in the presence of let and handle, which alter
or extend the continuation stack, we generalise the lemma statement to include an arbitrary
list of handler frames:

[[M]] @(z%’z%eta Aj/opsﬁ_aj/] T 7/” T T\LW)
= [M] @ (W» Fret» Vops) T W)

This is the lemma statement when » = 0. The proof now proceeds by induction on the
structure of M. Most of the translated terms do not examine the top of the continuation

stack, so we will write ¥ for (¥, (¥er, Yops)) to save space.

Case M=V W.
VW@ HG=. .. Zh YY)
= (definitionof [-])
G [V @ W] @ L)@ (%= ... =V T A
= (static S-conversion)

V1@ W] @K% ... S Z A

= (definition of |)
M@Wl@ ...V W)
= (definition of |)
V1@V @ V(567 ... T4

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

60 D. Hillerstrom et al.

= (static B-conversion) o

(s [V]@[W] @ bks) @(H ... 1, TH)
= (definition of [—])

VW @M= =W

Case M =V T. Similar to the M =V W case.
Case M =let ({=x;y)=VinN.

Met (¢ =x;3)=VinN]@ (% =... = %A H)
= (definition of [—])

(et (b =x;p)=[V]in[N]@Kk) @ (W T=... 5V H)
= (static B-conversion)

let ((=x;)=[V]in[N]@ (% =... 5 %)
= (IH)

let ((=x;)=[V]in[N]@ (%% =... 54 =H)
= (static B-conversion)

(et (t=x;9)=[V]in[N]@Kk) @ (HT...5 V= H)
= (definition of [—])

Net (¢ =x;3)=[V]in[N]]@(H=...5 %= H)

Case M =case V{{x+> M;y+> N}. Similar to the M =let ({ =x;y) =V in N case.
Case M = absurd V.

[absurd V] @ (Y= ... T 4, T4 H)
= (definition of [—])
(c.absurd [V]) @ (KT ... TV TALH)
= (static B-conversion)
absurd [V]
= (static B-conversion)
(ksabsurd [V]) @ (= ... 545 H)
= (definition of [—])
[absurd V] @ (%= ... =¥, = W)
Case M =return V.
[return V] @ (% ... = %, ALK
= (definition of [—])
(ic.app (L) [V @ (6= ... =/ Z44H)
= (static B-conversion)
app (L(H = ... TN [V]
= (definition of |)
app (V%0 2. .. o 2 W) [V]
= (definition of |)
app (L(H ... 5% =) [V]
= (static B-conversion)
Gue.app (L) [V @ (6= .. . TV EH)
= (definition of [—])
[return V] @ (Y% =... 54, W)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations

Case M =letx < M'inN.

Mletx < M in N] @ (¥, (Frets Vops)) =T

= (definition of [— ﬂ)

({0, (™ x°P)) T ae. [M'] @ ({1 (o k.l (f,

o e Te)
@Y Vrer Vops) T TSN

= (static B-conversion)
[MT @ (1 ((ox ket {f5, (e, 7)) K =i

[INT @ (16, (Mh™, 2AP)) T 4K) 2 L),

(Pret Vops)) TN TV TNH)
= (IHon M)
[M'] @ ((1((x ket {fs, (B, 1)) k' =k i

[N] @ (16, (PA, 1P T2

Srets Vops N TN T TS W)

= (static B- conversion)
(06, T,) e IM'] @ (TM(Cox kdet (fs, (

Z X ret ops Tk)))

@(z%»z%et: %psW?% _ . _”// W)
= (definition of [—])

Metx < M in N| @ (%, (Fret» Vops)) =74 T2 - .

Case M=dol V.
[do ¢ V] @ (Vs Fretr Vops) T T
= (deﬁnition of [-])

(0, (x™, xP)) Tre L x ™ @ (¢, ([V], {
@(%a 7/reta %ps)) 7/1 o 7/
= (static B-conversion)
\L%ps @ [[V]] l/%sa i«%eta \L%ps
= (deﬁnltlon of |)
~L7/ops (/ IIV]] ‘L’y/ﬁ') \l/%eta ~L7/ops>>
= (deﬁn1t1on of })

61

ST
(B, 1)) K =k;in
[INT @ (15, (1h™, hP)) T 1K) 22 16),
n
n
M) %),
(e, h"PS)) kK =k;in
[[N]] @ (1, (TH™, 2hOPS)) 1K) 2 16),
AT
VTN
\Lxret \onpsi Q)
NW)
s @I THRTENH)
) @ a2)
) @IAT.EHTEW)

YWops @ &, (V] (W50 (3P rets A Vops)) 2

= (static B-conversion)

(6, (X" X)) Tre X @ (6, ([V], (40, (U™, L x)) (1) @ dwe

@(/sa %et’ %ps)) 7/1 A// W)
= (definition of [—])
[[dO ¢ V]] @(qu/fh ij/reta yopsﬁ7 NEL T W)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

)

https://doi.org/10.1017/S0956796820000040

62 D. Hillerstrom et al.

Case handle’ M with H.
[handle’ M with H] @ (%= ... =V 5 AL)
= (definition of =D B -
e M]@ (ML [HD) i) @ (. T/ T NA)
= (sta_tic B-conversion)
M] @ (M0, [H) == Z T)
= (H)

M@ (10 [HI) =% E 0= H)
= (static B-conversion)

Gac [M] @ (A0 [HI) @ (7. .. 4 W)
= (definition of [—])

[handle’ M with H] @ (%= ... 5V = H)

Lemma 5 (Forwarding). If ¢ ¢ dom(H,) then:
[H]° @) @ (V. [Ha]®) 22)~

[[H(’psﬂa V(s, [HL]°) = 7@W

Proof.
[T @ (€, (Vs Vo)) @ (P, [H])

~s T

A/[forward((za Vp> Vrk)s ﬁl/f&‘, [[H2]]527 w

let {f5, (A", h%%)) =2 K = (Vjs, [HL]°) = W in
let ik’ = (fs, (™, hOPSﬁ Vyin
W@ (&, (Vy, 1K) @K

.
[H™ P @ (€, (Vs (Vi [HR]®) 2 Vi) @ W

o d

Lemma 6 (Handling). If¢ ¢ BL(&) and H® = {€ p r > N}, then:

1. [do ¢ V] @ ([E] @ (AL, TH]) = (P Frets Yops)) =) ~+
([[NZ]]@ %a /7/}’6[7 A//ops W)

[([V]/p, Ay ket (fs, hfet hos)) s k'

[returny] @ ([€] @ (1]

2. [do¢ V] @ ([€] @ (1L, [HTD) = (Fss (Frers
([[NE]]@ fsa %eta ’%zps W)

[[V]/p, Ay klet (s, (W', h%)) :: K = kin

[return y] @ ([€] @ ((ts, (1™, 2h5)) = 1K) /7).

10,]]_ Ut TP, RATT =)/
)

kin
[H

Proof. By the definition of [—] on evaluation contexts, we can deduce that

[E1@ OV, [HY =)=V, [= (Vo H V), [H" 57 (Al

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 63

for some dynamic value terms Vi, ..., V,, depths éi,...,8,, and handlers Hy, ..., H,,
where n > 1, H, = H, and + is (dynamic) list concatenation:

[do ¢ V] @ ([€] @ (1. [H]) = (Fss (Frets Yops)) A1)
= (deﬁn1t1on of [-])

(6, (™, 1) T ix"ps@ﬁ ({1, w_u LX) s) @ k)

{7 (40,
@([[5’]]@(A0, THD) = sy Frets Yops) =H))
(Equation A1, above)

({6, (X", X)) T ¢X°”s @ (V] o, (x™, 4 x°)) 1) @ dk)

@7, [= TVn, [[H]]‘s” (Vs Prets Vops)) =H)
= (static B- conversion)
[H T @ [[V]] T,) = >>
Ci((1 V, [H,]]5” =Yoo Drets Vops) TH)
= (deﬁmtlon of ¢)
[H"] @ [[V]] W [= [0)

@(TV [HAD) 22 (U ss (3 rers L Vops) 22 L)
~7T (£ ¢ BL(&) and repeated application of Lemma 5)
PP @, (V] (Vo [0 22 (71 [ERY) 2 0)
@ 7% i“f/mw”f/ops W/)
~T (H ={lpr>Ne))
letr =res’ ((Vy, [[Hn]]‘snz S (VG [HPY) s [D)in
let (fs, (h, h‘“”)) (i”f% (i”f/m,i"f/opm V¥ in
AN hre‘ ARP)) ARV p]

~ (U-RES?: there are two cases yielding different Z, see below)
let (fs, (B, ho%)) 2 k' = (U Vs (W rers A Vops)) 224 im
(IN] @ (155, ¢ Thret AhOPS)) TNV /P, %2 /7]
~T (U-SPLIT)
([[Nl]] @(7/]% 7/ret ’1/0;7? T\LW))[[[VH/[?,%/F]
= (Lemma 4 (Reflect after reify))
[[NZ]] @(/sa %@ta /VOPS W))[ﬂV]]/p,%’/r]

To complete the proof, we examine the resumption term % generated by the reduction of
the let » =res’ rkin N construct. There are two cases, depending on whether the handler
is deep or shallow. When the handler is deep, we have
X = Ly klet (fs, (h™, h"ps));k =kin
app ((V1, [FL]) wo. o (Va, [HAD) 2 (fs, (B B0P)) 2Ky
= (statlc B-conversion, and definition of |)
Ly ket (fs, (™', h°P%)) ;- k' = kin
(Akc.app (LK) y)
@V, TR T (N, [HRD) T 05, TOR, ARPS)) T 1K)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

64 D. Hillerstrom et al.

= (definition of [—])
Ay klet (fs, (A, h°PS)) k' =k in
[returny] @ (1V1, [ERIP) . (1 Vo, [HL D) = O6fS, TR R, 40950 1K)
= (Equation Al)
Ly ket (fs, (h™', h°P)) k' = kin
[return y] @ ([6] @ (A0 [0 = 06, TP, $RPST) 2 4K))

When the handler is shallow, we have

X = Ly klet (fs, (h™, h"ps)) tk'=kin
app (V1. [H1]™) . (Va4 fo (L hP)) K y
= (static B-conversion, and deﬁmtlon of)
Ly ket (fs, (h', h°%)) k' = kin
(hte.app (1)) @ (171, [R5 (AP - f5), TRA™ 2PS)) 72 1K)
= (definition of [—])
Ly ket (fs, (h', h°%)) k' =kin

[returny] @ (171, [FR]P) .5 (A, - f5), (PR, 2RPS)) T2 1K)
= (Equation Al)
Ay ket (fs, (B, hoP)) k' = kin
[return y] @ ([£] @ (165, (DA™, 1hoP)) 1K) O
Theorem 7 (Simulation). If M~ N, then [M] @ (V> (Vrer» Yops)) = #) ~* [N] @

(s (Pretr Vops)) TH).
Proof. The proof is by induction on the derivation of the reduction relation (~).

Case S-APP: (\x?. M) V ~» M[V /x].
[0 M) VT @ (s Frets Vo)) =H)
(definition of [—])
Cute. [P M] @ [V] @ Vi) @ (Vs (Frets Vops)) TH)
(static B-conversion)
Dot M] @ [VT @ L (Fss Frets Vops)) =)
(definition of |)
[t M) @ [V] @ (S fss (4 et A Fops)) A H)
(definition of [—])
(Owx klet (fs, (B, h°%)) = k' = k in[M]] @ ((1fs, (PH™4, AROPS)Y 22 k)
@Vl @ (7%, gi“//ret, VVops)) iAW)
(dynamic S-reduction and pattern matching, and structure of continuations)
= (Lemma 2 (Substitution))
MUV /x]] @ (Y (Fretr Vops)) TALH)
(Lemma 4 (reflect after reify))
[[M[V/x]] @(4//fsa %eta %ps W)

~sT

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 65

Case S-TYAPP: (AaX.M) T ~» M[T/a].
(A M) T] @ (Vs Frets Vops) TH)
= (definition of [—])
(e [Aa® M] @ () @ Vi) @ (W, Frets Vops)) TH)
= (static B- convers1on)
IIAO[K M]] C/ [[VH C C/ »L(%&‘; %et; %pv)) .. W)
= (definition of |)
[AdX M) @ [V] @ () @ (3T fss (4 rets A Vops)) 2 AH))
= (definition of [— ﬂ)
(Ax ket (fs, (h™, h°P)) :: k' =k in [[M]] @ (1fs, (TA™, 1ROPSY) =2 4 k))
@0) @ (Vs U rets AV aps)) 2 AW
~»T (dynamic B-reduction and pattern matching, and structure of continuations)
[M] @ (P, (Frets Vops)) ZAH)
(Lemma 8 (Type Erasure))

[[M T/O[]]@(fS %et %ps T\LW)
= (Lemma 4 (reflect after relfy))

[[M T/(X]] @(/Sa %‘eta %ps W)

Case S-REC: (recgx.M)V ~~ M[(recgx.M)/g, V/x]. Similar to the previous two
cases.
Case S-SPLIT:let ({ =x;y) = =V;W)in N ~ N[V /x, W /y].
Mlet (¢ =x;) = (€ =V; W)in N| @ (Y, Pret» Vops)) =H)
= (definition of [—]) L
G det (€, (x,y)) = (¢, ([V], W) in [N)@) @ (s Frers Vops)) = W)
(static B-conversion)
let (£, (x,)) = (€ (IV]. [W])) in [N] @ (% (Frers Vo)) TH)
~T (U-SPLIT)

(INT @ ((Fss (Frets Yops)) NIV /%, [/3]
= (Lemma 2 (Substltutlon))

NV /2, W IYT) @ ((Fos (Prets Vops)) =H)

Case S-CASE; and S-CASE;: Similar to the previous case.
Case S-LET: letx <—return Vin N ~> N[V /x].

[let x < return ¥ in N] @ ({ Vs, (Yo, "//(,pq W)
= (deﬁnltlon of [-])

(A0, (x™, x°P%)) T k.

ﬂreturn V] @ ((1((Ax k.let {fs, ("', h°P*)) k' = kin

[INT@ (16, TPR™, AR T 4K)) 2 40), Tx™, X)) T k)

@(z%, ZA//rets Ai/opsﬁ _ W)
= (static B-conversion)

[return V] @ ((1((ox k.let {fs, (W', b)) k' =k in
[N] @ (15, (PR, 2h°P5)) 2 HK) 22 4),
(%et: %ps W)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

66 D. Hillerstrom et al.

= (definition of [—])

(ic.app (L) [V]) @ (1 (G ket s, (™, k%)) 2 K = kin

[NT @ ({1, (PA™ ARPS)) T 4K))) V),
<%et %ps W)

= (static B-conversion)

app (J((1((hx k.let (s, (A", h‘””)) :k'=kin

INT@ (s, TH, A RPSYY 4K 24 5), s Vaps))) [V

= (definition of |)

app (((Ax k.let (fs, (B, %)) :: k' =k in

IND@ (s, TR ARPYY A 2 F s (4 S | Vo) 22 49 [V]

~ (U-KAPPCONS)

(x ke det (fs, (h™, b)) =K' =kin

INT@ Q3. THR™, AP) = 1K) @ [V] @ (Vo (b Frers L Fops)) 2 47)

~*+ (U-APP, U-SPLIT)

[[Nﬂ [[V]]/X]@(fss %eta ’%)ps T\LW)
= (Lemma 4 (reflect after reify))

INIUIVD/%) @ (Vss (Frets Vops)) A1)
= (Lemma 2 (substitution))

INDV /1) @ (Yr (Frets Vops)) =)
Case S-RET: handle’ (return V) with H ~ N[V /x], where H™ = {return x — N}.

[handle’ (return V) with H] @ (%, (%ret» Vops)) = #)
= (definition of [—])
(XK' [[return V]] @ (?Tﬂ, [[H]]Sy_ ’C)) @(%et’ %ps)) - W)
= (static B-conversion)
[return V1@ (111, [H1°7 = s Ders Vi) EH)
= (definition of [—])
(XK'app (‘l’K) [[V]]) @ ([[H]] (%eta %ps)) - W)
(static B- conversion)
app V(L [HD°) = (W, Frets Yops)) =) [V]
(definition of [H]]‘3 and ¢)
app ([, ([H™], [H]°)) == (WY, U rers A Vops)) A) [V]
(U-KAPPNIL)
[H] @ [V] @ (Yo (W rets A Yops)) 24 H)
(definition of [—])

(hx ket (fs, (b, h°P)) :: k' = kin [[N]}@(Tfs PR, 2 hOPSYY T 4 k))

@[[Vﬂ@(ﬁl'%mﬁi« rets \L ops \LW)
~T (U-App, U-SPLIT)

INTLIVT/X1 @ (s (Prers Pops)) TALH)

o=l I

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 67

= (Lemma 4 (reflect after reify))
NIV /X1 @ (Vs (Frets Yops)) TH)
= (Lemma 2 (substitution))
[[N[V/)C]]] @ (Z%&: Z%et» %psﬁf W)

Case S-Op: handle &[do ¢ V] with H ~» N[V /p, Ly.handle &[return y] with H /r],
where £ ¢ BL(&) and H = (£ pr+— N,}.
[handle &[do ¢ V] with H] @ (Y, (Prets Vops)) = #)
(definition of [—])
(k. [€Tdo e VII @ (L1, (A[H™T, ATHPD) T 10) @ (Fss (Frers Vops)) =)
(static B- convers1on)
[€1do ¢ VT @ (110, TN EE0, A TH) = (Fs Fiers Vops)) =)
(Lemma 3 (Decomposition))
[do ¢ V1@ (IE) @ (A THIE™L AT ™7 = s Wpers VoD EH)
~T (Lemma 6 (Handhng))
[NV /P, Ay Kdet (fs, (B, hP%)) - k' =k in
[returny] @ ([] @ (411, [H]) = (15, (HA, £A%P5)) 2 1K) /7]
@(%9 %ets %ps W)
(Lemma 3 (Decomposmon))
[NV /P, 1y kdet (fs, (B, hP%)) k' =k in
[&Treturn)] @ (P[0, [HT) = (s, CHA 44920 7 4K /r]
@(U/ﬁ, Z%etn %ps)) W)

(static B-conversion and definition of [—])

[INJUIV]/ps 2y ket (fs, (A", h°PS)) k' =k in
[handle &[return y] with H] @ ((1fs, (14", 1hP)) T 24) /7]
@ Vs Prets Vops)) =H)
= (definition of [—])
IN:LTV1/ps [»y-handle &[return y] with H]/r]1 @ (¥, (Prets Vops)) = #)
= (Lemma 2 (Substitution))
[Ne[V/p, »y.-handle &[return y] with H/r]] @ (Y, Prets Vops)) = #)
Case S-Op': handle” &£[do ¢ V] with H ~> N,[V /p, Ay.&[returny]/r], where £ ¢
BL(&) and H' = (£ pri—> Ni}.
[handle’ &[do ¢ V] with H] @ (Y, (Prets Yops)) = W)
= (definition of [—])
(e [E1do L VI @ (1 A H™DATHPT) T10) @ (Vs Pt Vops)) TH)
= (static 8- convers10n)
[£Tdo ¢ V1] @ (100, LA D, A TH TN = (W (Frers Yops)) = #)

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

68 D. Hillerstrom et al.

(Lemma 3 (Decomposition))
[do ¢ V] @ ([€] @ (L1, (P [H™T, ALHTN) = (Koo (Vreas Vops)) H))
~*t (Lemma 6 (Handlmg))
NIV /P, 2y kdet (fs, (h™, h°P%)) - k' =k in
[[ret“my]] @ ([E] @ (s, (Mh™ HhS)) T4k /]
@ s» Frets Vops)) =H)
= (Lemma 3 (Decomposition))
INLIV]/ps 2y ke det (fs, (B, hP)) = k' =k in
[return)] @ (15, (PR, 4475)) = 1K) /1]
@Y fss Prets Vops)) W)
= (definition of [—])
VLTV 1 /p. [2y-& [return 1] /] @ (Vs (et Vops)) TH)
(Lemma 2 (Substitution))
[NV /p, ry.Elreturn y]/r1] @ (Vs (Frets Vops)) TH)

B Appendix

Proof of simulation for parameterised handlers by deep handlers

Theorem 9 (Simulation of Parameterised Handlers by Deep Handlers). If M ~~ N, then
PM] ~ong Z[N].

cong

Proof. [Proof of Theorem 9] Proof by induction on M. We show only the two interesting
cases:

Case M = handle! return V with (g. H)(W) ~
N[V /x, W/q], where H™ = {return x — N}.

2 [handle? return V' with (q. H)(W)]
= (definition of Z[—])
(handle return Z[V] with Z[H],) Z[W]
~+ (S-RET with Z[H™'], = {return x — Aq.Z[N]})
(q.Z[N[[Z[V]/xD 2]
~+ (S-APP)
ZINIZ V)~ 21W]/4]

PN /x, W/q]]

Case M = handle* &[do ¢ V] with (q. H) (W)~
N[V /p, W/q, Ax, q’).handleI &[return x] with (. H)(¢")/r], where H ={€ p r+—
N}

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

Effect handlers via generalised continuations 69

P [handle &[do ¢ V] with (q. H)(W)]
= (definition of Z[—])
(handle &[do ¢ Z[V]] with Z[H],) Z[W]
~ (S-OP with Z[H"], ={€ p r> rqletr < A{x,q').rx gin Z[N][F /r]})
(Agletr < A{x,q').r x qin
Z[N|I¥ /rDI2[V]/p, Ax.handle &[return x] with Z[H],) Z[W]
= (definition of [—])
(Agletr < A(x, q').(Ax.handle &[return x] with Z[H],) x ¢’ in

ZIN][2[V]/p.¥ /D)
~ (S-Arp)
let? < A{x,q').rxq in Z[N]|[V /r, 2[V]/p, 2[V]/4q]
~ (S-LET)
ZINN2[V]/p. 2W] /4,

Ax, ¢').(Ax.handle &'[return x] with [H],) x ¢'/r]
~eong (S-APP)
Z[N2[V]/p, Z[W]/q, A(x, q').(handle &[return x] with Z[H],) ¢'/r]
= (definition of Z2[—])
PN 2[V]/p, 2[W]/q, A(x,¢'). 7 [handle! &[return x] with (q. H)(¢')] /]

PNV /p, W/q, Mx, ¢q').handle* &[return x] with (¢. H)(¢')/7]] O

https://doi.org/10.1017/50956796820000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000040

	Effect handlers via generalised continuations
	Introduction
	Modular effectful programming with effect handlers
	Abstract operations and an abstract game model
	Deep handlers and assigning strategies to players
	Multi-shot resumptions and computing game data
	Effect forwarding and cheat detection
	Handling stateful computations and instrumentation
	Shallow handlers and streaming

	Handler calculus
	Syntax of types and kinds, kinding rules
	Terms
	Typing rules
	Operational semantics

	Deep as shallow and shallow as deep
	Deep as shallow
	Shallow as deep

	Continuation-passing style for effect handlers
	Target calculus
	CPS translation for fine-grain call-by-value
	First-order CPS translations of handlers
	Curried translation
	Continuations as explicit stacks
	Resumptions as explicit reversed stacks
	Shallow handlers: Pure continuations as explicit stacks

	A Higher-order explicit stack translation
	Dynamic terms: The target calculus
	Static terms
	The translation
	Correctness

	Abstract machine
	The machine
	Correctness

	Parameterised handlers
	Syntax and semantics
	Implementing parameterised handlers
	Parameterised handlers as ordinary deep handlers

	Implementation
	Related work
	Conclusions and future work
	Appendix
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

