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Abstract . Some results of analysis of lunar ranging data of 1969-1995 are pre­
sented. A relevant dynamic theory has been constructed by numerical integration 
of the equations of motion of the major planets and the Moon and of lunar li-
bration equations. To make the dynamical theory completely self-consistent an 
optional approach is tested in which the equations of Earth rotation are integra­
ted simultaneously. Partial derivatives with respect to estimated parameters are 
also obtained by numerical integrations of variational equations. Preliminary re­
sults of evaluation of a large set of parameters involved in the lunar ranging data 
are presented. 

1. Introduct ion 

Lunar laser ranging observations (LLR) take a special place among other 
observational techniques of high precision as they provide valuable data for 
multi-disciplinary investigations. Firstly, LLR contributes to geodynamics 
making it possible to monitor Ear th rotation, especially on the long-term 
time scale. Secondly, LLR-derived selenodynamical results make it possible 
to simplify reduction of astrometric observations of the Moon. 

While modelling LLR observations the most serious difficulties arise due 
to complicated features of the lunar dynamics. In the lunar and planetary 
DE/LE ephemerides the problem has been overcome by a straightforward 
and efficient approach based on simultaneous numerical integration of the 
equations of lunar orbital and rotational motion. The main ideas of the 
approach are documented in the paper (Newhall et al., 1983) which becomes 
a millstone for further investigations. 

The aim of this work is to develop a similar approach in the frame of 
the applied program package ERA (Krasinsky et al, 1989; Krasinsky and 
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Vasilyev, 1996) designed for multi-disciplinary applications of astronomical 
observations of high precision, and then to process available LLR data as 
a first step to combined treating lunar and planetary observations. 

2. M a t h e m a t i c a l M o d e l and Observat ions U s e d 

There are 4 active reflectors on different places on the surface of the Moon. 
The data used in this analysis are presented in Table 2. The 5 t h column of 
the table gives the mean apriori errors of the observations of each group. 
These values were calculated according to an algorithm proposed by Ne-
whall (1995) from apriori errors as they are given by observers. 

The dynamical model has been constructed by a simultaneous nume­
rical integration of the orbital motion of the Moon and planets and the 
equations of the rotation of the Moon. In comparing with the method used 
in DE102/DE200 ephemerides as described in Newhall (1983) the following 
amendments were made: 

1. The influence of the Earth 's gravitational potential on the lunar or­
bit is computed taking into account all harmonics of the potential up to 
4 t h order (both zonal and tesseral). Analysis shows that tesseral harmonics 
generate short-periodic perturbations of the elements as well as an addi­
tional secular trend in the lunar mean longitude of the order 0.8"/century. 
The amplitude of the semi-diurnal perturbations is of about 0.03 mas that 
corresponds to 5 cm in the coordinates. 

2. Perturbations of lunar librations from the nonsphericity of the lunar 
gravitational potential may be computed by taking into account spherical 
harmonics of any order. In fact, the integration was carried out with harmo­
nics up to 4 t h order, but from analysis of observations, Stokes' coefficients 
for harmonics of 5 t h order were also estimated. 

3. The equations of motion of the planets, the Moon and the lunar rota­
tion were integrated simultaneously with the Poisson equations of motion 
of the Earth 's rotational kinetic moment. 

Differential equations for lunar physical librations depend on the princi­
pal moments of inertia of the Moon A, B, C and on the Stokes coefficients 
of the gravitational field of the Moon Ckj and Skj- Parameters of lunar 
physical libration /3,j can be written in terms of A, B, C as: 

/? = (C-A)/B 

7 = (B-A)/C. (1) 

The constants f3,~f are related with C2Q1C22 m the following way: 

a = (4C2 2 - 2 C 2 0 ) / g 

P (4C2 2 + 2C 2 0 ) / 5 + 2 

7 = 4C22/<7, (2) 
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where g = C/mR^, and where m and RM represent the mass and mean 
radius of the Moon. The coefficients Ckj and Skj appear in the equations of 
motion in the form of Ckj 19 and Skj/g only; just these combinations can be 
evaluated from LLR observations. So, we have fixed the value of g and adju­
sted the parameters Ckj, Skj. The adopted value is g = 0.390689526131941. 

Note, tha t the values of /?,7 and C201C22 recommended by the IERS 
Standards (McCarthy, 1992) disagree since they don't satisfy the relations 
(2). For integration, the values of j3,7 were taken from the IERS Standards 
but the corresponding values of C20C22 were computed according to (2). 

The integration was carried out by Everhart 's method (which is built-in 
to the ERA package) with the automatically operated choice of the step 
of integration. For computing partial derivatives with respect to estimated 
parameters the variational equations were simultaneously integrated. The 
set of parameters include the lunar initial coordinates and velocities, libra-
tion angles and their velocities, Stokes coefficients of the selenopotential, 
the angle of the tide delay, and the elements of the Earth 's orbit. 

3. S o m e Resu l t s from LLR-Analys i s 

The main goal of the current stage of the investigation is to test the ma­
thematical model used in ERA for the analysis of LLR data. The initial 
values of the equations of motion of the Moon and major planets were ta­
ken from DE200-ephemeris. Initial values for equations of rotation of the 
Moon are known to a rather high degree of uncertainty. Probably that is 
the reason why initial residuals were significant and sometimes exceeded 
200 ns. Thus, as the first step a reference orbit was constructed which fits 
all the observations with a minimum number of the estimated parameters. 
While constructing this reference ephemeris the following parameters were 
estimated: (1) coordinates and velocities of the Moon for the initial Ju­
lian date 2460000.5; (2) Euler angles of the selenocentric coordinate system 
(and corresponding time derivatives) for 2460000.5; (3) coordinates of LLR-
stations and reflectors; (4) delay angle S of the tidal bulge and the Stokes 
coefficients of the selenopotential C20 and C22', (5) time delay biases for all 
the stations excluding MLRS2. 

Because LLR observations are not sensitive to rotations of the coordi­
nate frame, the parameters cannot be evaluated all together. So, the seleno­
centric longitude and latitude of Apollo-15 were not fitted. An unexpected 
outcome of the research is a statistically significant estimate of the Stokes 
coefficients C21 and S22 which due to this reason also have been included to 
the set of unknowns. Four iterations were carried out to reach coincidence 
between pre- and post-fit residuals for the reference orbit. Table 1 gives the 
starting value of the tide-delay angle S and the estimated value for the refe-
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rence orbit obtained after the iterations. The table presents corresponding 
value for the tidal lunar deceleration TIM calculated in accordance with the 
well-known relation: 

hM = - 4 . 5 (m/{m + M)) (RE/rMf n2
M k2 sm(26) (3) 

where g = C/mR\f, and where m and RM represent the mass and the 
mean radius of the Moon, respectively. RE is the Earth 's radius, TM is the 
lunar distance, UM is the lunar mean motion and k2 is the Love number 
for the Earth. Table 1 gives also the estimates obtained for the Stokes 
coefficients of the selenopotential. 

TABLE 1. Tidal parameters and coefficients of selenopotential. 

6 (deg) 
hM (7cy2) 

C20 
C22 
C21 

S22 

Adopted value 

2.332 
-24.41 

-0.0002021505 
0.0000222697 

0.0 
0.0 

Estimated 

2.525 
-26.43 

-0.0002021203 
0.0000222883 

0.00000000758 
0.000000000158 

value 

±0.062 
±0.64 

±0.0000000013 
±0.0000000006 
±0.00000000007 
±0.000000000010 

Random square errors of residuals are presented in Table 2 for each 
group. Column 6 corresponds to the reference orbit, column 7 to the post-
fit residuals of a more complete analysis in which the following additional 
parameters were estimated: (1) the coefficients of the lunar gravitational 
potential up to degree 5; (2) corrections to the precession and nutation 
angles, in-phase and out-of-phase coefficients for 18.6-year, 9.3-year, annual, 
semi-annual, monthly and fortnight terms in the nutation; (3) linear trend 
in sidereal time. 

Comparison of the residuals for the reference ephemeris with the post-fit 
residuals shows a reduction of the rms by a factor of 2. As an illustration 
in Figure 1 there are plots of the residuals for CERGA (all observations of 
the reflector Apollo-15). 

Comparing the post-fit rms in Table 2 with apriori estimated accuracy 
one can see that the former are 4-5 times larger. Probably that is due to 
some unmodelled effects of the dynamical theory. More detailed analysis 
shows that the signatures in rms are short-periodic on the level about 0.5 
ns (see Figure 2, where the pat tern of residuals for a 48-hour time interval 
are given for the MLRS2 station). The short-periodic effects are considera­
bly less in the post-fit residuals but nevertheless they are clearly seen. Since 
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TABLE 2. Observational data and residuals. 

Station Ref. Time-span Num.of 
obs. 

(To 
(ns) 

RMS(ns) 
pre-fit 

RMS(ns) 
post-fit 

McDonald 

MLRS 

CERGA 

Haleakala 

MLRS2 

1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

1970-1982 
1971-1982 
1971-1985 
1973-1981 
1986-1988 
1986-1987 
1985-1988 
1986-1987 
1984-1995 
1984-1995 
1984-1995 
1984-1995 
1985-1989 
1985-1988 
1984-1990 
1985-1988 
1988-1995 
1988-1995 
1988-1995 
1988-1995 

468 
495 

2356 
132 
10 
26 

236 
3 

419 
414 

3577 
221 
20 
23 

633 
18 
66 
82 

790 
11 

1.038 
1.114 
0.974 
1.105 
0.105 
0.121 
0.180 
0.134 
0.235 
0.248 
0.231 
0.341 
0.248 
0.202 
0.174 
0.319 
0.163 
0.173 
0.181 
0.158 

5.443 
5.248 

10.396 
10.502 
2.350 
3.970 
1.450 
2.940 
3.087 
2.745 
1.732 
2.487 
2.122 
2.782 
1.413 
1.578 
3.678 
3.682 
1.848 
2.678 

6.432 
6.505 
4.271 
4.745 
2.195 
1.659 
0.849 
1.300 
1.373 
1.868 
0.677 
1.436 
1.254 
1.028 
0.947 
0.748 
1.505 
1.401 
0.745 
0.876 

1 - Apollo-11, 2 - Apollo-14, 3 - Apollo-15, 4 - Lunochod-2 

Figure 1. Global solution. Residuals for Apollo-15, CERGA. 

geodynamical parameters generate signatures of the same type, the obtai­
ned estimates of these parameters may be corrupted by systematic errors 
and cannot be considered as reliable. 
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Figure 2. Global solution. Short arc residual pattern. 

4 . Conclus ion 

Here, we present just the initial results of the analysis of LLR da ta obtained 
with the universal applied-program package ERA. The investigation has 
proved a necessity of some refinement of the lunar dynamical model. In 
particular, it is necessary to take into account effects of energy dissipation of 
lunar rotation and find out a source of the marked short-periodic signatures. 
That is why at this stage we do not present results for geo- and seleno-
dynamics. 
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