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Abstract. The primary purpose of this paper is to provide general sufficient
conditions for any real quadratic order to have a cyclic subgroup of order n € N in
its ideal class group. This generalizes results in the literature, including some seminal
classical works. This is done with a simpler approach via the interplay between the
maximal order and the non-maximal orders, using the underlying infrastructure via
the continued fraction algorithm. Numerous examples and a concluding criterion
for non-trivial class numbers are also provided. The latter links class number one
criteria with new prime-producing quadratic polynomials.

1. Notation and preliminaries. We will be considering arbitrary real quadratic
orders, so we first introduce the notions of arbitrary discriminants and radicands.
Let Dy # 1 be a square-free integer, and set

Ag — D() if D() =1 (mod 4),
"= 14D, otherwise.

Then Ay is called a fundamental discriminant with associated fundamental radicand
Dy. Let fo € N, and set A = 3 Ag. Then

A= D if Dy =1(mod4) and f, is odd,
" | 4D otherwise,

is a discriminant with conductor f», and associated radicand

D— (fa/2)?Dy if Dy = 1(mod4) and f, is even,
| fADo otherwise,

having underlying fundamental discriminant A with associated fundamental radi-
cand Dy.
Let A be a discriminant with associated radicand D. Then

" _{(1+J5)/2 if A=D=1(mod4),
271\ VD if A =0(mod4),

is called the principal surd associated with A. This will provide the canonical basis
element for our orders. First we need notation for a Z-module:

[a, Bl = {ax + By : x,y € Z},
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where «, g € K = Q(v/A) = Q(y/Dy), the real quadratic field of discriminant Ay and
radicand Dy. For this reason, fundamental discriminants are often called field
discriminants.

In particular, if we set O = [1, wa], then this is an order in K. Also, the index
|On, : Oal = fa is the conductor associated with A, where O,, is the maximal order
in K, sometimes called the ring of integers of K. In other words, the maximal order in
K is the order with conductor fp = 1, having square-free radicand Dy and funda-
mental discriminant Ay. We also need to be able to distinguish those Z-modules that
are ideals in O,; (see [1, pp. 9-30]).

THEOREM 1.1 (Primitive ideals and norms). Let A be a discriminant, and let
1#(0) be a Z-submodule of Oa. Then I has a representation of the form
I=[a,b+ cwpl, where a,c € N and b € Z with 0 < b < a. Furthermore, I is an ideal
of Ox if and only if this representation satisfies cla, c|b, and ac|N(b + cwp). (For
convenience, we call I an Oa-ideal.) If ¢ = 1, then we say that a non-zero ideal I is a
primitive Oa-ideal. If 1 is a primitive Oa-ideal, then a is the least positive rational
integer in I, denoted N(I) = a, called the norm of I.

An Op-ideal 1 is called reduced if there does not exist any nonzero element o € 1
such that both |a| < N(/) and |&'| < N(I), where « is the algebraic conjugate of «.
It is convenient to have an easily verified sufficient condition for reduction; (see

[1, p. 19)).

THEOREM 1.2. If A > 0 is a discriminant and I is an O s-ideal with N(I) < /A2,
then I is reduced.

The following special case of the Continued Fraction Algorithm will prove to be
a highly useful tool in the next section. (See [1, Exercise 1.5.9, p. 29, Theorem 2.1.2,
p. 44, and Theorem 3.2.1, pp. 78-80].) In the sequel, we let Cx denote the ideal class
group of the order Op, and its order /i, the class number of O5. We denote the class
of principal ideals in Cp by 7~ 1.

THEOREM 1.3. Let A > 0 be a discriminant with associated radicand D = > + r
for t e Nand |r| = 1,4. If I ~ 1 in Ca, with N(I) < ~/A/2, then one of the following
holds.

1. N(I) =t/2, where r =1 and t is even.

2. N(I) =4, where r = 4 and t is even.

3. NI)=1t—2, where r = —4 and t is odd.
4. N(I) = 1.

A formula for the class number of an order is given by

ha = hag¥a,(fa)/u, (1.1)

where f, is the conductor associated with A,

Yno(fa) = fa ﬂ(l - (A°/”)),
Pl p
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with (/%) being the Kronecker symbol, and with the product ranging over all dis-
tinct prime factors of fa. Finally, u is the unit index of Op in Oy, namely ex = &} ,
where g5 is the fundamental unit of O, and e,, is the fundamental unit of the
maximal order O,, having class number /,,; (see [1, pp. 23-30]). Also, it will be
useful in the next section to have a criterion for the invertibility of integral ideals in
canonical form; (see [1, Proposition 1.5.1, p. 25]).

THEOREM 1.4 (Criterion for invertibility). Let A be a discriminant, and let
I=[NU),(b+~A)/2] be a primitive On-ideal. Then I is invertible if and only if
gcd(N(I), b, ¢) = 1, where ¢ = (b* — A)/(4N(I)). Consequently if gcd(fa, N(I)) = 1,
then I is invertible.

COROLLARY 1.1. Let n € N. If I =[a, (b + ~/A/2] is an invertible O -ideal, and
ged(a, b) = 1, then I = [d", (b + ~/A) /2], for any n € N such that a"|N((b + vA)/2).

For background, proofs, further details and historical information, see [1], and
for information on these topics with applications, see [2].

2. Results. In this section, we are going to prove results concerning cyclic
subgroups of the ideal class groups in real quadratic orders. Throughout, we main-
tain the notation A to mean the fundamental discriminant, with associated radicand
Dy, underlying a given discriminant A with associated radicand D. Also, O, will be
the underlying maximal order.

In the vast majority of papers in the literature, the assumption is made that the
radicand under investigation is square-free, namely a field radicand as described in
the preceding section. Therefore, consideration of radicands of type

D = & + r where lr] =1, 4,

called narrow Richaud-Degert types or simply narrow R-D types (see [1, p. 77 ff]) is
quite restrictive. However, if no assumption is made upon the square-freeness of D,
then consideration of radicands of this type is no restriction whatsoever. To see this,
we observe that if Ay is a fundamental or field discriminant with association radi-
cand Dy, and ex, = (T+ Uy/Dg)/o is the fundamental unit of O,,, then
T? — U’Dy = %1, £4. Thus, D = U?Dy = T + r where |r| = 1, 4. Furthermore, by
raising the fundamental unit to arbitrary powers, we see that there are infinitely
many such radicands D of narrow R-D type. Hence, we may consider arbitrary
discriminants A of narrow R-D type without loss of generality. Furthermore, we
make the following crucial observation.

Suppose that I is a primitive Ox-ideal, of order n in Ca, with norm relatively
prime to the conductor, namely ged(N(1), fa) = 1, and with

ged(n, Ya,(fa)/u) = 1. (2.2)

Then n|h,,, by Formula 1.1. In particular, this holds for discriminants of R-D type
with any given underlying field discriminant.

In view of the above, in order to prove that there is a real quadratic field of
discriminant Ay with n|h,, for any given n € N, it suffices to prove that there is an
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associated discriminant A of narrow R-D type having an ideal I of order # in Ca,
satisfying Equation 2.2, with ged(N(/), A) = 1. (Note that A =3 A¢. See the dis-
cussion at the beginning of the preceding section.) This approach simplifies what has
been done classically in such works as that of Yamamoto [9], Shanks-Weinberger
[4], and more recent works such as Washington-Xianke [6], and Xianke [8]. In the
sequel, we use the above method to prove a variety of results that yield classical and
recent results with a certain ease missing in the literature thus far.

THEOREM 2.1. Suppose that A is a discriminant with associated radicand
D=7F+1, teN. Assume that there exist m,n,NeN, with N,n> 1, and
t € {2m,2m — 2} such that

(2.3)

0| dmt —4m? 4+ 1 if D= 1(mod4),
m(t+1)—m?> —1/2 if D=1(mod4).

Moreover, if A # Ay, assume that gcd(N, A) = 1. Then Ca has a cyclic subgroup of
order n. Furthermore, if Equation 2.2 is satisfied, then n|hy,.

Proof. Let

oy 2m—t++/D if D % 1(mod4),
“lem—t—1+/D)/2 if D=1(mod4).

Therefore, N(w) = —N". Thus, I =[N, «] is a primitive Ox-ideal with norm N, by
Theorem 1.1. In order to be able to invoke Corollary 1.1, we need to establish two
claims.

Claim 1. gcd(A,N) = 1.

If A is not fundamental, this is part of the hypothesis, and so we assume that A
is fundamental. Also, since N is odd when A = 0(mod4), then we need only show
gcd(D, N) = 1. Suppose that p is a prime such that p|N and p|D. Assume first that
A = 0(mod 4). Therefore, by Equation 2.3, we have

4mt = 4m* — 1 (mod p?)

since n > 1. Therefore, by squaring: 16m?#> = (4m? — 1)* (mod p?), and by adding
16m? to each side we get

16m*D = 16m* + 16m* = (4m* — 1)* + 16m* = (4m* + 1)* (mod p?).

Since p|D, we have 16m”>D = 0(mod p?). But p does not divide 4m and so p?|D,
contradicting the fact that D is fundamental. Now assume that A = D = 1 (mod 4).
Then by considering Equation 2.3 in this case we get

2m® + t = 2m(t + 1) (mod p?).

Squaring yields: 4m* + 4m%t + 1 = 4m*(1 + 1)* = 4m>D + 8m?t (mod p?), and by
rewriting, (2m? — 1)> = 4m2D (mod p?). Since p|D, we have p*|(2m? —1)>, and so
p*14m>D. However, p is odd in this case, and ptm since pit, so that p?|D, again
contradicting the fact that D is fundamental. This establishes Claim 1.
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Set

b= 4m — 2t if D # 1(mod4),
“|2m—t—1 if D=1(mod4).

Claim 2. ged(b, N) = 1.

Since N(«) = —N", the result follows from Claim 1.

By Claims 1-2, we may invoke Corollary 1.1 to get I" =[N",a] = (0) =
((b 4+ +/A)/2), so that I'" ~ 1. Suppose that I’ = [N, ] ~ 1 for some j € N dividing n.
We now show that j = n is the only possibility.

Claim 3. N'* < \/A)2.
Suppose that N*? > /A/2. First assume that D = A = 1(mod4). Then
N'=m(t+ 1) —m?> —t/2 > AJ4 = (* + 1)/4, or by rewriting,

0>dm> —dmit+1)+204+72+1=Qm—1—17

a contradiction. Next, assume that A = 0 (mod 4). Then
N'=d4mt—4m*> +1> A/4=D =1 +1,

or by rewriting, 0 > 12 — 4mt + 4m* = (1 — 2m)?, a contradiction that secures Claim 3.
By Claim 3, and Theorem 1.3, either NV =1, or N = t/2, where ¢ is even. If
N/ =1, this contradicts the assumption that N > 1 in the hypothesis. If ¥V = /2,
then D = 1 (mod4). Therefore, from Equation 2.3,
N'=mQN +1)—m?> — N,
or by rewriting, m*> — 2N/ + 1)m + N" + N/ = 0. Thus, by the quadratic formula,

2N 4 1 VANT AN
- 5 :

This means that 4NY —4N"+1>1 and so N¥ > N". Since jjn, then j=n/2 is
forced. Hence, either m = N> = t/2, or m = N'/> 4+ 1 = t/2 + 1. In the former case
this is # = 2m, and in the latter case this is t = 2m — 2, both of which are excluded by
the hypothesis. Therefore, j = n, and so (/) must be a cyclic group of order nin Cx. []

ExaMPLE 2.1. Let t =43, N=5, and m =n=4. Then D = 1850 =2 - 5% . 37,
and N" =5 =4mt —dm?> + 1 =4.4.43 —4.4% + 1 = 625. Thus, C, has a cyclic
subgroup of order 4. Here fo =5, Do =2-37 =74, and Ay = 296. Theorem 2.1
does not apply to Ca, since ged(n, ¥a,(fa,)/u) = ged(4, 4) = 4, where u = 1. In fact,
from Equation 1.1, hx = hay¥a,(fa)) =2-4=28.

ExaMpLE 2.2. If m=3, n=6, +=28, and N=2, then N' =20 =64 =
mit+1)—m?—1/2=328+1)—3>—14, and A=D=28"+1=785=5-157.
Thus, Ca has a cyclic subgroup of order 6. In fact, iy = 6.

In order to complete the overall picture, we now prove results for the remaining
general discriminants A = > £ 4 and A = > — 1. We lose no generality by assuming
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that ¢ is odd in the following results, since if # were even we could divide D by 4 and
be in the case covered by Theorem 2.1.

THEOREM 2.2. Let A = 2 + 4 be a discriminant with t an odd natural number.
Suppose that there is an m € N such that

N'=mt —m® + 1, (2.4)

for some integers N > 1 andn > 1. Also, if A # Ay, assume that gcd(N, A) = 1. Then
Ca has a cyclic subgroup of order n. Furthermore, if Equation 2.2 is satisfied, then
nlha,. (For the case m = 1, see [7].)

Proof f «a = (2m —t+ \/A7)/2, then N(o) = —N". By the same reasoning as in
the proofs of Claims 1-3 in Theorem 2.1, we show that 7 =[N, «] is an invertible
ideal, and I" = [N", &, with N"/? < /A /2 (observing that N(I) # /2 since ¢ is odd).
Suppose that there is a natural number j # n dividing n such that I/ ~ 1. Since N <
N2 < /A /2, we have by Theorem 1.3, N(I/) = 1, a contradiction to the hypothesis
that N > 1. Thus, j = n, and the result follows as in the proof of Theorem 2.1. []

ExaMPLE 2.3. If m = 3316, t = 3905, n =9 and N = 5, then

A = 15249029 = 3905% + 4 =[5’ + 10995855)/3316]* + 4
is prime and C, has a cyclic subgroup of order 9. In fact, in =171 =9-9.

THEOREM 2.3. Suppose that A is a discriminant with associated radicand
D = > — 1, for some integer t > 1. Assume that there is an m € N such that

N" = dmt — 4m* — 1, (2.5)

forintegers N > 1 andn > 1. Furthermore, if A # A, assume that gcd(N, A) = 1. Then
Ca has a cyclic subgroup of order n. Moreover, if Equation 2.2 is satisfied, then n|ha,.

Proof. If @ = 2m — t + +/D, then N(o) = —N". Also, by similar reasoning to that
in the proof of Theorem 2.1, gcd(N, 2m — t) = 1 = ged(A, N). (Observe that A = D
is not possible since D # 1 (mod4).) Thus, I =[N, «] is a primitive Ox-ideal and
I" =[N",a]. If I/ ~ 1, for some natural number j # n dividing n, then since it can be
shown using Equation 2.5 that NV < N"/? < /A/2 = /D, we get N/ = 1 from The-
orem 1.3, a contradiction. Hence, n = j and the result follows as in Theorem 2.1. []

ExaMpLE 24. If m=1, N=3=n and r=8, then D=63=32.7=
((3* +5)/4> —1 =282 — 1. Since hy =2, then there is no subgroup of order 3.

Hence, gcd(N, A) =3 > 1, and we cannot apply Theorem 2.3. However, if we take
m=1, N=7,t=287, and n = 3, then

D=7568 =2%.11-43 = (7 +5)/4° — 1 =87" — 1,
and A =2°.11-43 with fy =23, ha = 12 and ha, = 3, where Ag = 11-43 =473 =

Dy. To see this from Formula 1.1,
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, 473 X
hia _hAO/A<1 - <T>/2>/u —3.25(1-1/2) = 12,

since =1 given that ex = 87 + ~/24-473 = 87 +4+/473 = ¢5,. Hence, both Cp
and C,, have subgroups of order 3.

In our next result, we lose no generality in assuming that ¢ is odd since division
of A by 4 would bring us into Theorem 2.3 if A were even.

THEOREM 2.4. Let A = > — 4 be a discriminant, where t > 2 is an odd integer.
Suppose that there are integers m, n, N with N,n > 1 such that

N'=mt —m® — 1. (2.6)

Also, if A # Ay, assume that gcd(N, A) = 1. Then Ca has a cyclic subgroup of order n.
Furthermore, if Equation 2.2 is satisfied, then n|ha,.

Proof. If & = (2m — t + +/A)/2, then as in the above proofs, I =[N, «] is a pri-
mitive Ox-ideal and I" =[N",«] ~ 1. By the same reasoning as above, both
ged(A, N) = 1, and N2 < /A /2. If there is a natural number j such that j # n and j
divides n with I/ ~ 1, then by Theorem 1.3, either N/ =1, a contradiction, or
N = (t — 2)|A, a contradiction. ]

EXAMPLE 2.5. Let m =8, N=7,n =3 and ¢ = 51; then

A =2597 =512 —4="7>.53 =[(7* + 65)/8) — 4,

and so Ch has a subgroup of order 3. Here, iy =3, but hp, =1, since
Va,(fag)/u = ¥s3(7)/2 = 3, with ged(N, A) = 7.

We engage in some remarks about other papers in the literature concerning
cyclic subgroups, and how those results also follow from the above techniques. For
instance, the Washington-Xianke paper [6] looks at general R-D types of radicands,
namely those of the form D = > 4 r where r|4t, which have been widely studied (see
[1, pp. 77-95]). They consider only square-free D, namely only the field case. Their
main result is [6, Theorem 2, p. 3], which has eight parts, and these are repeated in
[8]. We give a generalization and simple proof of one of their cases, and show how
the technique used in the proof of Theorem 2.2 can be used to yield any such result.
The reader may easily develop generalizations of the balance of the results in [6], [8]
based upon the following template.

THEOREM 2.5. (Washington-Xianke [6], Xianke [8]). Suppose that A = 1> + 4r is
a discriminant with t e N odd, r > 0, r|t, r # t, and

t=N"+r—1,

for integers N > 1 and n > 1. Furthermore, if A # Ag, assume that gcd(c, A) = 1.
Then Ca has a cyclic subgroup of order n. Also, if Equation 2.2 is satisfied, then n|h,.
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Proof. If « = (1 + 2 + +/A)/2, then N(«) = N". Hence, by similar techniques to
those developed in previous proofs above, I =[N, «] is a primitive invertible Ox-
ideal and I" =[N",a] ~ 1. If ¥ =[N/, a] ~ 1 for any natural number j|n and j # n,
then as above, N < N"/2 < \/A/2, so that F is reduced. Hence, by [1, Theorem
2.1.2, p. 44, and Theorem 3.2.1, Case B(b), pp. 78-80], N =r. However,
rlt = N* +r— 1, so that N = 1, a contradiction. Thus, j = n and the results follow as
in previous proofs. []

EXAMPLE 2.6. f A=924+4=85witht=9, N=3,n=2, and r = 1, then Cu
has a subgroup of order 2 since t = N" + r — 1. In fact, hp = 2.

We also get the main result of [5], which is stated with a number of conditions
that we can boil down to a simpler version, which we prove based upon the above
techniques.

THEOREM 2.6. (Uchara [5]). Let A = 4D be a discriminant with associated radi-
cand D = > —r, where r > 0, r|t, r # t, and

N' =4t +4r +1,

for some integers N > 1 and n > 1. Also, if A # Ag, assume that gcd(A, N) = 1. Then
Ca has a cyclic subgroup of order n. Additionally, if Equation 2.2. is satisfied, then n|h,.

Proof. If o =2t + 1 +2+/D, then N(a) = N, so that as above, I =[N, o], and
I" =[N, a] ~ 1. If there is a natural number jln such that I/ =[N/, a] ~ 1, then
¢/ < N'? < /A/2 = /D. Thus, by [1, Theorem 3.2.1, Case A(d), pp. 78-80], NV =r
or NV =2t —r — 1, both of which lead easily to contradictions. Hence, j = n, and the
results follow as above. []

ExampLE 2.7. If Ag = 3596, then Dy =899 =29-31. If N=15, n =3, t = 30,
and r = 1, then N" = 41+ 4r + 1, and so Cx, has a subgroup of order 3. In fact, Ca,
is the product of a group of order 3 and one of order 2.

The invocation of Theorem 2.1.2 of [1] in the above proofs of Theorems 2.5-2.6
is just another implementation of the continued fraction algorithm, a special case of
which we isolated in Theorem 1.3 for narrow R-D types. One of the primary pur-
poses in the writing of this paper is to bring these ideas to the fore, with the imple-
mentation of the quite general and new results summarized in Theorems 2.1-2.4,
which can also be used indirectly to achieve results such as that in Theorem 2.5 via
non-maximal orders of narrow R-D type. This general approach is most often
overlooked. Consequently, more difficult techniques with less favourable results are
often used. In [6], for instance, a special case of [1, Theorem 3.2.1] was used, and
their results were less precise since they had to exclude finitely many cases. The
technique used above is simpler and more accurate. Also, in [6], the authors discuss
the work of Shanks-Weinberger [4] in the exploration of class numbers of maximal
orders divisible by powers of 3. They mention that if Ay = s® 4 4 is square-free, then
empirical evidence shows that 9|/14,. They go on to say that the multiple of 3 divid-
ing hy, is explainable, but “the extra 3 is unexpected. We do not have a good
explanation for this phenomenon.” The explanation is given by Theorem 2.2, which
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applies whenever ¢ = xs® — x> + 1 has a solution ¢, x € N for given s € N (and [3,

Theorem 4, p. 265] says that there are only finitely many). If there is such a solution,
then Cx has a cyclic subgroup of order 9. Since Theorem 2.2 does not require a
maximal order, then there are infinitely many possible such Diophantine equations
to try, and via the above results, may account for the high density of such A, having
91ha,, as discussed via the Cohen-Lenstra heuristics in [6].

We conclude with a result that will show the reader how to use the above tech-
niques to develop an algorithm for showing that a class number is bigger than 1. We
only prove the result for one of the types of discriminant, but the reader may use this
as a template for developing similar results for the other types.

THEOREM 2.7. Suppose that A = 1> + 4 is a discriminant, where t € N is odd. If
there exists an meN such that mt—m*>+1=NeN is composite, and if
ged(fa, N) =1, then hpy > 1.

Proof. If a =Q2m —t+ /K)/Z, where mt —m?> +1 =N > 0 is composite for
some m € N, then N(x) = —N. Set N = ¢jc; with 1 < ¢ < ¢,. Since ged(fa, N) =1,
then by Theorem 1.4, I =|[c;, «] is a primitive invertible Ox-ideal. We now show
that [ is not principal. First we prove that N < A/4. If N> A/4, then
4N = dmt — 4m? + 4 > 1> + 4, or by rewriting, we obtain

0> 1* —dmt + 4m* = (1 — 2m)*,

a contradiction. Hence ¢; < N'/? < /A/2. Therefore, by Theorem 1.3, if I ~ 1, then
N(I) = c¢; = 1, a contradiction. ]

A result that is immediate from Theorem 2.7 is related to class number one cri-
teria developed by this author over a decade ago (see [1, pp. 138-143, and 158-163]).

COROLLARY 2.1. If A = 2 + 4 is a discriminant with hy = 1, then
fix)y=—x>+1x+1
is prime, for all natural numbers x < t. Also, if m = 1, and t is composite, then /5 > 1.

The largest known discriminant Ag=/+4 with /5y =1 s
Ao =293 = 17> + 4. Notice that 17m — m?> + 1 is prime for all m € N with m < 17.
This is related to class number one criteria established for fundamental R-D types
by this author; (see [1, pp. 158-163]).
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