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Abstract

Let a compact orientable manifold be immersed as a hypersurface of constant mean curvature in an
Einstein space. It is shown that the immersion is totally umbilical if and only if there exists a
conformal variation of the immersion whose variation vector is nowhere tangential to the hyper-
surface.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 C 42, 53 C 40.

1. Introduction

A theorem of Liebmann (1900) states that the only ovaloids of constant mean
curvature in Euclidean 3-space are spheres. The proof uses an integral formula of
Minkowski and so to generalise Liebmann's theorem one can begin by developing
integral formulas for hypersurfaces in a Riemannian space. To do this one needs
a replacement for the position vector which plays an important part in the
Euclidean case. One method of doing this is to assume the existence of a vector
field on the enveloping space with certain specified properties. For example we
have the following theorem (Katsurada (1964)).

THEOREM. Let Rm+X be an Einstein space, Vm a closed orientable hypersurface
with Ht = constant in Rm+]; we suppose that there exists a continuous one-parame-
ter group G of conformal transformations of Rm+l such that the scalar product
p = «'£, of the normal vector n of Vm and the vector | belonging to G does not
change the sign (and is not = 0) on Vm. Then every point of Vm is umbilic.
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A problem arises when immersed hypersurfaces are considered since it is quite
easy to construct totally umbilical immersions in an Einstein space for which no
conformal vector field satisfies the hypotheses of the theorem. Hence Katsurada's
theorem does not provide necessary conditions.

EXAMPLE. Let Mb be the subset of E3 (Euclidean 3-space) defined by
Mb= {(*> y>z) <EE3\-l^x*sil,-2<y,z<2}.

The subset {(x, y, z) e Mb \ x
2 + y2 + z2 — 1} is the image of the two sphere S2

under some map /: S2 -* Mb. Now form a flat Einstein manifold M from Mb by
taking M to be the quotient space under the identification (-1, y, z) ~ (1, y, z)
for all y, z G. (-2,2). Denote the projection by w: Mb -> M. The map m ° f:
S2 -> M is a totally umbilical immersion of S2 in the Einstein space M.

If V is a vector field on an open set U C E3 containing Mb then we can define
a vector field V on Mb by letting V = V \ Mb. In order for TT*(F) to be a vector
field on M it is necessary and sufficient that t>"(-l, y, z) = u"(l, y, z), where v",
a = 1,2,3, are the components of V. This condition results in the group of
conformal transformations of M being only 4 dimensional, rather than 10
dimensional as in the case of E3. In fact, a vector field on M is conformal if and
only if it is of the form

/ 9 L 3 8 ,/ 3 3 \\
*\ dx dy dz \ dz dy J /

where a, b, c and d are arbitrary constants.
It is now easy to check that if N is a unit normal vector field over m ° / (we

explain this concept below) and if W is a conformal vector field on M then
(N,W) is either identically zero on (w ° /)(S2) or (N,W) changes sign on
(IT a f)(S2). Here (, > denotes the natural inner product on M.

Katsurada's theorem is inapplicable to this simple example. To derive an
applicable theorem we need a replacement for the requirement involving the
conformal vector field. We now show how to do this.

2. Conformal variations

In what follows we use the notation of Kobayashi and Nomizu (1963) pages
313-314, unless stated otherwise. Let/: M -> M' be an immersion of a manifold
M a s a hypersurface of a Riemannian manifold M'. We give M the induced
metric. A vector field over the map f is a smooth map

W:M^ T(M')
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such that
W(p)GTf(p)(AT) for allp G M.

Since / need not be injective it is possible to have distinct points p, q G M with
f(p) = / (?) b u t W(p) = W{q), so that W need not be the restriction to/(A/) of
any vector field on Af'.

Let Wbe a vector field over/. For each/; G Af we write H/T(/7) (resp. W1- (p))
for the component of W{p) tangential (resp. normal) to/(A/). For each/7 G M
there exist open neighbourhoods V of p and £/ of f(p) with /(K) C U and a
smooth vector field W o n t / such that W(/(^)) = W(q) for all ^ G F . Then

(1) (Lwg)(X,Y) = (DxW,Y)+(D'YW,X),

where A" and Y are tangent to f(M), Z)' denotes covariant differentiation on Af'
and g or ( , ) denotes (according to convenience) the metric on M'.

Let N: M-> T(M') be a vector field over / with N(p) = N±(p) and
(N(p), N(p))= 1 for all p & M. The evaluation of tensor quantities at any
particular point is a purely local matter, and since an immersion is locally an
imbedding it simplifies matters to assume that / actually is an imbedding and to
identify M and /(Af). We shall do this unless (as in the example above) it is
necessary to distinguish between an immersion and an imbedding. The following
results hold (Kobayashi and Nomizu (1969) page 15):

D'XN = -ANX (Weingarten's formula),

D'XY= DXY+ (ANX, Y)N (Gauss' formula),

where D denotes covariant differentiation on Af, AN is the second fundamental
tensor and X, Y are tangent vector fields on Af. Applying these results to (1)
yields

(2) (Lwg)(X, Y) = {DX\T , Y)+ <Z)y»r, A">- 2(ANX, Y)(N, W).

The significance of this equation is that the right hand side depends only on W
and not the particular extension W of W. Hence we can unambiguously write
(L wg)( X, Y) for (Ly/gX X, Y) if X and Y are tangent to Af.

We say that a vector field W over / is a conformal variation of /(Af) if
{Lwg){f^X, f+Y) - 2tf»(fit:X, fjf) for some scalar <j> and any vector fields X
and Y on Af.

Our main result is the following theorem.

THEOREM. Let f: M -> M' be an immersion of a compact orientable manifold as a
hypersurface ofann+ 1 dimensional Einstein space M', and suppose that the mean
curvature of /(Af) in M' is constant. A necessary and sufficient condition that the
immersion be totally umbilical is that there exist a conformal variation W of /(Af)
which is nowhere tangent to /(Af).
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PROOF. Necessity is easily disposed of; put W = N. Then by equation (2)

(LNg)(X,Y) = -2(ANX,Y).

Since the immersion is totally umbilical we have ANX = - <j>X for some scalar <>.
Hence

(LNg)(X,Y) =

so that N is a conformal variation of/(A/).

3. Two integral formulas

Let {e,,. . . ,en, N} be an orthonormal moving frame on an open set of M. By
) we have(2)

(3)
a=\

where

1 "
H\ =~ 2 (ANeoc>ea)

a=\

is the first mean curvature of M in M'. If we assume that the variation W is
conformal and that M is compact and orientable then Stokes' theorem yields

(4) f[Hl(N,W)+4>]dA = 0.
JM

We remark that if the distinction between M and/(Af) is made, then W in (3)
by abuse of notation really denotes the unique vector field Z on M such that
/ * Z = W^. It is to this vector field Z that Stokes' theorem is applied to yield (4).
Similar considerations apply to our next integral formula.

On some open set V of M choose an orthonormal moving frame {ex,...,en,N}
such that ea is an eigenvector with eigenvalue Xa (a = l,...,n) for the self-ad-
joint operator AN. We define a vector field P E T(V) by letting

(P, X)= (D'XN, W), XGT(V).

Then

divP = 2 (DeP, O = 2 [ea«P, O ) " (P> Dtea)],
a=\

so that by Weingarten's formula

(5) divP =
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To evaluate the first term on the right hand side of (5) we note that

= {D'eD'eN,W)+ (D'eN, D'eJV),

and using the Gauss and Weingarten formulas we find

(6) ea((P,ea)) = -(Dtm(\fa),W)- (Xaea, DeVT).

From Codazzi's equation (Kobayashi and Nomizu (1969) page 25) we have

(R'(ett, W*)ea, N)= (DeB){ea, VT) - {Dw,B){ea, ea),

where fi(X, Y) = (ANX,Y). Hence if M' is an Einstein space

0 = - R i c ' i V T , N )

so that

0 = 2[ea{B{ea,lV)) - B(Dtea,W*)

-B(ea,DeHr)+2B(D^ea,ea)],

where we have assumed that nHx — 2 B(ea, ea) is a constant. Hence from (7)

Substitution of (6) into (8) yields

2ea((P, ea)) = - 2 [{ANVfT , Deea)+ (Xaea, Dt

so that from (5)

(9) divP = - 2 X a ( e a , Z ) e ^ > .

On the other hand from (2)

lK(L*g)(ea, O = 22 [K(ea, DeW*)- Xa(\aea, ea)(N, W)]

Using

gives us the result

2Xa(L^g)(ea, ea) = 2^[\a(ea, DeVfT)] - («2//,2 - n(n - l)H2)(N, W).
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Substitution of this result into (9) gives

divP = - (n2H2 - n{n - \)H2)(N, W)- \^Xa{Lwg){ea, ea).

If the variation W is conformal and M is compact and orientable then

(10) j [(/iff,2 - (n - l)H2)(N,W)+<j>Hl] dA = 0 .

Multiplication of equation (4) by ff, (= constant) and subtraction from (10)
yields

[ (n - l)(i/,2 - H2)(N, W)dA=0.
JM

If W is nowhere tangent to M then (N, W) is of constant sign and H\ — H2 — 0,
from which we find X , = A 2 = - = X n and the immersion is totally umbilical.
This completes the proof of the theorem.
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