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ON TRANSITIVE PERMUTATION GROUPS
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Abstract

We assign names and new generators to the transitive groups of
degree up to 15, reflecting their structure.

1. Introduction

The classification of transitive permutation groups has been pursued for over a century since
the 1860 Grand Prix of the Académie des Sciences (announced in 1857 [1]). An account of
early work is given in [3] and [12]; a very readable historical outline can be found in [16,
Appendix A].

This work led to a classification of the groups up to degree 15 [10], [11], [9]. Having
achieved these results, development stopped for some time and was taken up again with the
arrival of symbolic computation. The last twenty years have seen extensive work in this area
[2] [14], [4] noting errors in earlier tables. Recent work by one of the authors [7] confirms
these results, and extends the tables to higher degrees.

Previous workers have given arbitrary generators and a few properties of the groups. For
practical work it is desirable to give inherently meaningful names to these groups, as well
as generators reflecting more properties.

With this aim we have devised a naming scheme for transitive permutation groups, and
apply it to the groups of degree up to 15. Based on the names, we try to find new, “better”
generators for the groups, simultaneously confirming the correctness of the names.

Finally, the process of finding names is, to some extent, an actual construction process
without tests for conjugacy. So the naming process might be regarded as another test for
completeness of the lists.

As usual we speak of “the transitive groups”, meaning “the equivalence classes up to
permutation isomorphism”, namely “a set of representatives for the conjugacy classes of
transitive groups in the symmetric group”.

2. Taxonomy

In this section we present a scheme for assigning names to transitive permutation groups,
based on their permutational structure. Whereas the goal of assigning an unique name to
each individual transitive permutation group cannot be achieved for all degrees, the scheme
presented here is powerful enough for individual naming of all groups of degree up to 15.
Conversely, we do not attempt to give names so explicit that one can deduce a generating
set for every group based solely on its name. It should be possible, however, to identify
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On Transitive Permutation Groups

the group belonging to a name in a list of representatives of the transitive groups without
having to determine the correspondence of the whole list to the catalogue printed here.

As we need to distinguish betweenpermutation isomorphism typesandnames, we denote
names or parts of names used by enclosing them thus:〈〈G〉〉.

2.1. Modifications to the ATLAS notation
As a basis we use the notation of the ATLAS [5], to which we refer also for the names

and definitions of the simple groups. The name of a group reflects its subnormal structure,
written from left to right in ascending order. The subnormal series is chosen to be compatible
with permutational structures, namely kernels of block operations.

Direct products are denoted by “×”, split extensions by “:” and nonsplit extensions by
“ ·”. A dot itself “.” is used only to separate a normal subgroup and its factor without giving
further information about the extension structure.

To such a name, additional information is added in brackets to denote permutation
specific information. A group name followed by a numbern in round brackets ‘(n)’ denotes
that the group operates transitively onn points, or respectively that a point stabilizer has
index n in the group. Square brackets “[, ]” denote normal structures corresponding to
permutational concepts. Curly brackets “{, }” give further information (“hints”) towards the
construction. For example, several nonisomorphic transitive representations of one group
might be distinguished by a hint towards the point stabilizer of the form〈〈X(n{stab})〉〉. We
explain the hints given after a description of the basic names (Section2.5).

2.2. Natural names
Some families of groups containing one member for each degree are given natural names.

A name of the form〈〈X(n)〉〉 denotes then-th member of this family as a permutation group
on n points. The same group is denoted by〈〈Xn〉〉 if it occurs as an abstract group but
not necessarily with this action. Exceptions are dihedral and Frobenius groups, for which
traditionally thesizeis indicated by an index. Thus〈〈D(4)〉〉 = 〈〈D8(4)〉〉 is the dihedral
group of size 8. We sum up the names used in the following list:

A Alternating F Frobenius E Elementary
S Symmetric AL Affine linear C Cyclic
M Mathieu D Dihedral

In addition, we use〈〈L(n)〉〉 to denote groups derived from linear groups as defined in Table
1.

2.3. Group products
If G acts transitively on�, andH on1, the direct product has a transitive representation

on� × 1. This is denoted by〈〈G[×]H 〉〉.
A subdirect product (see [13]) corresponding to two epimorphismsα: G→→F and

β: H→→F with |F | = m is denoted by〈〈G[ 1
m

]H 〉〉. If several subdirect products exist,
further information is given in hints towards the epimorphisms:〈〈G{α}[ 1

m
]{β}H 〉〉. If F is

abelian, there is a special subdirect product ofn copies ofG, which is the “augmentation
ideal” construction

〈〈 1
m

(Gn)〉〉 = {(g1, . . . , gn) | g
α1
1 · · · · · gαn

n = 1F }.
Again a hint,〈〈 1

m
{α}Gn〉〉, can be given to the defining homomorphism(s).
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Table 1: The permutation groupsL(n)

Name Size Type
L(6) 60 PSL(2, 5) = A5(6)

L(7) 168 PSL(3, 2)

L(8) 168 PSL(2, 7)

L(9) 504 PSL(2, 8)

L(10) 360 PSL(2, 9)

L(11) 660 PSL(2, 11)(11)

L(12) 660 PSL(2, 11)

L(13) 5616 PSL(3, 3)

L(14) 1092 PSL(2, 13)

L(15) 20160 PSL(4, 2) = A8(15)

We need to describe intransitive actions of (iterated) (sub)direct products, as an intransi-
tive permutation groupG × H — and therefore all subdirect products ofG with H — can
be represented on the disjoint union� ] 1.

We now take a groupA acting on� and consider the direct productAm = A1×· · ·×Am

acting on�1 ] · · · ] �m. If U is a subgroup ofA then〈〈Um〉〉 is the direct product, acting
with each componentUi in the same way on�i . Fork < m the group〈〈Uk〉〉 also acts on
all orbits in the same way. Ifu ∈ Uk acts asui on�i (and thusu = ∏

ui), thenui = u
αi,j

j

whereαi,j is a permutation isomorphism (depending only onUk and not onu) mapping
Uj to Ui . So, as an intransitive group, the augmentation ideal is denoted by〈〈Am−1〉〉.

Analogous rules apply to groups of the form〈〈Uj .V k〉〉 whenU.V is a subgroup ofA.

2.4. Imprimitive constructions
By the embedding theorem [8] imprimitive groups can be embedded into suitable wreath

products. We will use these wreath products to describe imprimitive groups: letC be a
transitive group of degreel and H a permutation group of degreem; then the wreath
productC oH = W is a semidirect productCm

oH with H acting onCm by permuting the
m components according to the permutation action. We denote the complement toCm in
W by Ĥ . It is an intransitive group, acting onl orbits withH acting simultaneously on the
points. When embedding an imprimitive group intoW , the kernelK of the action on the
blocks embeds intoCm as an intransitive group acting on every orbit like a normal subgroup
A of C.

For an intransitive subgroup,〈〈K〉〉 of Cm, as defined in the last section〈〈[K]H 〉〉 is the

split extension
〈
K, Ĥ

〉
; so the permutational wreath productA oH is denoted by〈〈[Am]H 〉〉.

When there are epimorphismsβ: K→→F andγ : H→→F and|F | = m, then〈〈 1
m

[K]H 〉〉
is the subgroup of[K]H consisting of those elementskh for which kβ = hγ . Again hints
can be placed before the groups to give information aboutβ andγ , leading to names of the
form 〈〈 1

m
{β}[K]{γ }H 〉〉.

Other groups with the same actionH on the blocks may differ in the part ofH for which
a complement inĤ exists. This complementable part is called the “bodily part” ofH . A
group of this type will be called〈〈[K]H {bodily}〉〉.

Similarly, the kernel of the block operation may partially intersect with theK given in
the name (the reason being that the proper kernel is not readily described). This leads to the
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indication of a bodily part ofK, and names of the form〈〈[K{bodily}]H{bodily}〉〉.
When the index of the bodily part suffices to distinguish groups, it is given as an index to

the group names, for example〈〈[Ki]Hj 〉〉. Instead of writing a number, a division sign ‘÷’
can be used as an index to denote “fractional part” if this suffices to distinguish the groups.
The bodily part ofH is maximized if several possible embeddings exist.

The groups 17-20 of degree 10 may serve as examples: we take subdirect products of
the Frobenius groupF(5) of order 20 and degree 5 with itself, in which we “glue” together
the factor groups of order 4. We arrange the points 0-9 in the following scheme

0 2 4 6 8
5 7 9 1 3

with both factors of the subdirect product acting on one row to get orbits (which will become
block systems of a transitive group later) via congruences. According to this scheme, the
standard subdirect product is

52 : 4 = 〈(0, 2, 4, 6,8), (5,7,9,1,3), (2, 4, 8,6)(7,9,3,1)〉 .

If we apply the outer automorphism of the factor group, we get another subdirect product.
Its intersection with 52 : 4 has size 50. In other words, the bodily part has index 2. Thus the
group is

52 : 42 = 〈(0, 2, 4, 6,8), (5,7,9,1,3), (2, 4, 8,6)(7,1,3,9)〉 .

We extend these two intransitive groups by a factor group of order 2 so that the extension be-
comes transitive. The standard element of order 2, permuting the blocks, is the complement
of the wreath product:

a = (0, 5)(2, 7)(4, 9)(6,1)(8,3).

Extending both subdirect products by this element gives the groups[52 : 4]2 and[52 : 42]2.
For both subdirect products we take an elementx of the direct product not in the subdirect

product, such that(xa)2 is contained in the subdirect product. Then, extending the subdirect
products byxa, we get a group that is transitive while its order has doubled; therefore, the
subdirect product is the base group of this new group. The factor group 2 is not bodily, as
otherwisex would be in the base group. Takingx = (2, 8)(4, 6)(7,9,3,1), we get the third
group[52 : 4]22; for the other subdirect productx = (7,3)(1,9) yields the fourth group
[52 : 42]22. (Instead of writing[52 : 42]22 we could have written[52 : 42]2÷, but there is
no advantage in doing so.)

2.5. Hints
Hints are given only if they are necessary to distinguish between different groups arising

from the same general construction. A hint usually relates to the kernel of an homomorphism,
the point stabilizer, or a bodily part. If the index of this subgroup suffices, it is given as an
index. If there are two epimorphisms, one which is associated with the identity mapping of
the image and one associated with a unique non-identity automorphism of the image, they
are distinguished by indices “+” and “−”. (An omitted index always reads as “+”.)

We use single (non-capital) letter abbreviations for other frequent hints referring to
subgroups. When standing alone these are written without surrounding hint brackets.

c central or cyclic d odd or dihedral
e even or elementary
i intransitive t transitive
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The first three letters are reminiscent of the proper normal subgroups of the dihedral group,
D8(4), of order 8, that can be denoted by 4c = 〈(1,2, 3,4)〉, 4d = 〈(1, 3), (2, 4)〉, 4e =
〈(1, 2)(3,4), (1,3)(2, 4)〉 and 2c = 〈(1,3)(2, 4)〉.

A hint of the form{n〈ind〉} after the group name indicates that the group has index〈ind〉
in its normalizer in the full symmetric group.

3. Lists

3.1. Description of the tables
The points are numbered from 0 todeg − 1. (When groups may not act on 0, one should

replace 0 bydeg.) This permits us to arrange the numbers in such a way as to identify
one block system per group, with congruence classes modulo the number of blocks. For
two block systems with coprime block size we can even arrange the numbers to identify
both block systems with congruence classes. The example in Section2.4 typifies these
arrangements.

If 0 is not available (for example on a computer), the numbers should not be shifted by
1, but 0 should be replaced by the appropriate degree of the permutation group to keep the
congruence information.

We list the groups according to degree in the order in which they were published [2],
[14] (as used inMagma[6]) and [4]. The same names and arrangements are used inGAP
[15].

For each group we try to recreate a new set of generators that reflects the structure
indicated by its name. We give these generators, and ensure that the new generators are
correct by testing properties of the groups generated.

The groups and their properties are listed inAppendix A, in two sets of tables. The first
set lists the groups and their properties. For each group, we give an index number which is in
italic if the group is minimally transitive, namely if all its proper subgroups are intransitive.
For each group we also give its name, size, parity (whether it is subgroup of the alternating
group), the identification number of the normalizer inSn as a transitive permutation group
in this list, and the identification number of the 2-closure (the largest subgroup ofSn which
has the same orbits on pairs of points, acting by(x, y)g := (xg, yg)). The column S gives
information about the orbits of the point stabilizer: a fractiona

b
denotes an orbit of sizea

for which the action on this orbit is of typeb (as a transitive group of degreea). Fixed points
are omitted. Multiplicities are indicated by exponents. Finally, we give the generators and
— if applicable — representatives for all block systems. To save space we give multiple-use
blocks and generators at the beginning of each degree.

For example, letG be the 21st group of degree 8. It is generated by

h = (1,5)(3,7), oe = (1,4, 5,8)(2, 3)(6,7), c = (0, 2)(1,3)(4, 6)(5,7).

It has four block systems, namely

2 = {{0, 4}, {1,5},{2, 6},{3,7}} , x = {{0, 2, 4, 6}, {1, 3, 5, 7}} ,

x = {{0, 3, 4, 7}, {1, 2, 5, 6}} , x = {{0, 1, 4, 5}, {2, 3, 6, 7}}
which are determined by their blocks containing 0. These are abbreviated as 2, 4a, 4d and
4b respectively. The blocks of size 2 lead to the name1

2[24]E(4): Arrange the points 0 to
3 in the first row and 4-7 in the second row of a 2× 4 array. The columns correspond to
the blocks. The action on the blocks is equivalent to that ofE(4), so we can embedG into
2 o E(4). The base group 23 of G is generated byh and its conjugate images. Together with
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x = (1,5) it generates the whole 24. The standard base complement in 2oE(4) is generated
byb = (0, 1)(2, 3)(4, 5)(6,7)andc. However, inG a factor 2 of 24 is “glued” with a factor
of theE(4). So we get, instead ofx andb, the productxb = oe as generator in addition to
h andc.

All block systems with blocks of size 4 have a kernel which is a subdirect product ofD(4)

with itself, with a common elementary abelian factor of order 4. As there are different iso-
morphisms of the factor groups, there are|GL(2, 2)| = 6 possible subdirect products of this
type. The products are generated by the normal subgroup kernels〈(0, 2)(1,3), (4, 6)(5,7)〉
together with representatives of cosets generating the factor group. In the standard subdirect
product these coset representatives form a subset of the diagonal. This leads to a group name
[1

4D(4)2]2 for the 22nd group of degree 8, but it does not appear in the tables because it
already has two better names. In fact, this subdirect product is a kernel ofG corresponding
to block system 4a; however, in this case, the extension does not split and the factor group is
not bodily. So again there is an additional potential name,[1

4D(4)2]22, which we disregard
because there are better ones.

Two of the possible factor isomorphisms yield subdirect products that do not allow a
transitive action of the normalizer. The remaining three subdirect products can be identified
by the fact that the factor isomorphism identifies only one of the three subgroups of size 4
(denoted by “c”, “d ” and “e”) with itself. For example, in the above block arrangement, the
product1

4dD(4)2 is generated by

〈(0, 2)(1,3), (4, 6)(5,7), (1,3)(5,7), (0, 3)(1,2)(4, 5,6,7)〉 .

This group is permutation isomorphic to the kernel ofG corresponding to the block sys-
tems 4b and 4d (which fuse under the action ofNS8(G)). This explains the second name
[1

4dD(4)2]2. (The two remaining products lead to the 15th and 19th groups of degree 8.)
Of course, the generators cannot reflect this name as well.

The groupG is of size 32, and contains elements (namelyoe) which are not contained
in the alternating group. The normalizer ofG in S8 is of type 24D(4), the 35th group; the
2-closure is of type 24E(4), the 31st group of degree 8. The point stabilizer has 3 orbits of
size 2 and the action on each orbit is of typeS2. Every proper subgroup is intransitive.

The second set of tables indicates isomorphism classes within the lists. For each group
we give the number of isomorphic groups in the list. To improve clarity, entries in a sequence
of the same isomorphism type are denoted by a long dash (——).

4. Final remarks

The names and new generators having been defined, all further computations were done
with the aid ofGAP. The tables were then created in a largely automated way, to reduce the
possibility of errors when copying data.

For reference purposes we suggest the name “TPG1” for this scheme.
We finally list in Table2 the numbers of transitive groups of degrees up to 31, as given

in [7]. The increase in the numbers with degree 16 shows that a continuation of our work
to higher degrees would be substantially harder. We thank Heiko Theißen for providing a
program to compute the 2-closures for degree 15. The second author would like to thank
CICMA at Concordia University, Montréal for the hospitality during his stay in early 1995.
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Table 2: Transitive groups of degree up to 31

Degree 2 3 4 5 6 7 8 9 10 11
primitive 1 2 2 5 4 7 7 11 9 8
transitive 1 2 5 5 16 7 50 34 45 8
Total 2 4 11 19 56 96 296 554 1593

Degree 12 13 14 15 16 17 18 19 20 21
primitive 6 9 4 6 22 10 4 8 4 9
transitive 301 9 63 104 1954 10 983 8 1117 164

Degree 22 23 24 25 26 27 28 29 30 31
primitive 4 7 5 28 7 15 14 8 4 12
transitive 59 7 26813 211 96 2382 1852 8 5712 12

Numbers in italics are preliminary, and not yet confirmed.

Appendix A. Classification tables

The classification tables are provided as a separate file, as a special electronic appendix
to this paper. This appendix is available to journal subscribers at:

http://www.lms.ac.uk/jcm/1/lms96001/appendix-a/.

Appendix B. Program for generating the tables

A program file, used to produce the tables inAppendix A, is available to journal sub-
scribers at:

http://www.lms.ac.uk/jcm/1/lms96001/appendix-b/.
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