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1. Introduction. The d-simplicity of commutative rings was the subject of several
papers in the 1970s and early 1980s, at least partly because of its applications to
the construction of simple noncommutative noetherian rings [12, Proposition 1.14].
Although little was published on it from the mid 1980s to the mid 1990s, the subject has
known something of a revival in recent years, fuelled perhaps by the construction of
new examples of derivations with respect to which the ring of polynomials is d-simple
[5], [2], [16], [13], and also by the application of these derivations to the construction
of new families of simple modules over rings of differential operators [4], [9].

Despite these advances, some aspects of the theory have progressed very little since
the 1980s. One of these is the construction of new examples of d-simple rings. The only
examples known up to now were the ones already given in J. Archer’s PhD thesis [1];
namely, coordinate rings of affine spaces, tori, quadrics, and products of these varieties
with affine space.

This is precisely the question that we tackle in this paper. As an application of
the theorems proved in Section 3, we give several new examples of smooth surfaces
whose coordinate rings are d-simple. Two of these lead to new families of nonholonomic
simple D-modules over surfaces. One of these families is particularly interesting because
all the previous examples of simple nonholonomic D-modules required the affine
surface to have trivial Picard group. However, the surface of Example 4.1 is the product
of an elliptic curve E with an affine line, so its Picard group, which is isomorphic to
Pic(E), must be nonzero. As a bonus we construct, in Example 4.4, an irreducible
nonholonomic P-module over an explicit surface of C3, taking a singular derivation
as our starting point.

I wish to thank D. Levcovitz, A. Gongalves, and the referee for their many helpful comments. During the
preparation of the paper I was partially supported by grants from CNPq and Pronex (commutative algebra
and algebraic geometry).
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2. Preliminaries. We begin by fixing some notation. Throughout the paper, K
will be an algebraically closed field of characteristic zero. The coordinate ring of an
affine variety X will be denoted by O(X). If x is an indeterminate over K then a, will
stand for the partial differential operator 9/9x.

An ideal I of a commutative K-algebra A4 is stable under a derivation d of A4 if
d(I) C 1. If I is generated by f, then we also say that f is stable under d. The algebra 4
is d-simple if there exists a derivation d of 4 with no stable ideals apart from {0} and
A. In this case, d is called a simple derivation of A.

Since we will be discussing modules over a ring of differential operators in section
4, we review some basic facts about these rings before we proceed. Let X be an
irreducible, smooth, affine variety over a field K of characteristic zero. The ring of
differential operators D(X) is the K-subalgebra of EndxO(X) generated by O(X) and
its module of K-derivations Derg(X). The ring D(X) admits a filtration, defined by

Co=O(X), C=OX)+Derg(X)and C =Cf if k> 0.

An operator d € D(X) has order k if d € Ct\Ci—1. It follows from [14, Proposi-
tion 15.4.5] that the graded ring associated with this filtration is isomorphic to the
symmetric algebra on Derg(X). We denote this algebra by S(X). Let SK(X) be the
k-th homogenous component of the symmetric algebra. The symbol map of order k,
denoted by oy, is the composition

ok : Cr = Ci/Cr_1 — SF(X).

If d € Ci \ Cx_1 then its principal symbol is o(d) = or(d). Given an ideal I of D(X),
denote by o (/) the ideal of S(X) generated the principal symbols o(d) of all d € I.

The algebra S(X) has an additional structure of Lie algebra. Let f] and f> be
homogeneous elements of S(X) of degrees r; and r,. There exist a;, a; € D(X) of
orders r; and r, respectively, such that o,,(a;) =f;. The Poisson bracket of fi and f is
defined by

1.2} = o —1([ar, @),

where [a;, a;] denotes the commutator in D(X). This is easily extended, by linearity, to
all of S(X). An ideal of S(X) is involutive if it is closed under the Poisson bracket. Note
that if 7 is a left ideal of D(X) then o (/) is an involutive ideal of S(X).

We finish this section with the problem of constructing simple D(X)-modules over
a smooth variety X. The key assumption will be that O(X) is d-simple with respect to
a derivation d. Our first result appeared as Theorem 2.1 of [4]. However, as has been
pointed out by D. Levcovitz, the proof given there works only when O(X) is a unique
factorization domain. Since we need the same result in a more general setting, we give
a new proof below.

THEOREM 2.1. Let X be an irreducible, smooth, affine variety over K. Suppose
that there exists a derivation d of O(X) with respect to which this ring is d-simple. Let
& C O(X)\ {0} be amultiplicative set and put M = D(X)/D(X)(d + f), where f € O(X).
Suppose that d(&) C G.

(1) If N is a nonzero submodule of M then Ng is a nonzero submodule of M.

(2) If M is a simple D(X)g-module then M is a simple D(X)-module.
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Proof. Suppose that J is a left ideal of D(X) which contains D(X)(d + f) properly.
To prove (1) it is enough to show that

DX)s(d+/) G Je.

Assume, by contradiction, that these ideals are equal after the localisation has been
performed. Thus, given a nonzero element a of J there exists s € & such that sa €
D(X)(d + f). Taking symbols, we have that so (a) belongs to the ideal of S(X') generated
by o(d). Since S(X) is noetherian and commutative, the set

Gy={se€&:50(a) € S(X)o(d) forall aeJ}

must be nonempty. Now, if s € &, then, using the involutivity of S(X)o (d), we have
that

{so(a), o(d)} = o(a){s, o(d)} + s{o(a), o(d)} € S(X)o(d).

However, o(J) is involutive, so that {o(a), o(d)} € o(J). Hence, s{o(a),o(d)} €
S(X)o (d), because we chose s € &. Therefore,

d(s)o(a) = {o(d), slo(a) € S(X)o (d).

Since this holds for every a € J, it follows that d(s) € &¢. Hence, &/(s) € &g forallj > 0.
However, the ideal of O(X) generated by /(s), forj > 0, is stable under d. If 0 # s € K,
then we are done; otherwise, since O(X) is d-simple, there exist by, . . ., by € O(X) such
that

bos + byd(s) + - - - + bpd"(s) = 1.
Thus,
o (a) = bosa(a) + bid(s)a(a) + - - - + brd"(s)0(a) € S(X)o(d).

Now takea € J \ D(X)(d + f) to be an element of smallest possible order. Since o (a) =
o(b)o(d), for some b € D(X), it follows that a — b(d + f) € J has smaller order than
a. Thus a — b(d + f) € D(X)(d + f), and so a € D(X)(d + f), a contradiction. This
proves (1).

To prove (2) we must show that D(X)(d + f) is a maximal left ideal. Let J be as
above; then D(X)/J isa homomorphic image of M. Since M g is simple and localisation
is an exact functor, it follows from (1) that Jg = D(X)g. Thus & N J # @. In particular,
O(X) N J is a nonzero ideal of O(X). Butd + f € J, and so if a € O(X) N J, then

[d + f, d] = d(a) € O(X)N J.

Thus O(X) N J is a nonzero d-ideal of O(X). Since O(X) is d-simple, we conclude that
1 € J. Hence D(X)(d + f) is a maximal left ideal, as we wanted to prove. ]

As usual, we denote the nth complex Weyl algebra by 4,,. In other words, 4, is the
ring of differential operators over the complex nth affine space. We will often use the
following result from [9, Theorem 2.1].
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THEOREM 2.2. Let a be a polynomial, and d = 3, + ad, a derivation of C[x, y].
If Clx, y] is d-simple, then there exists f € Clx, y] such that A>/Ay(d + f) is a simple
nonholonomic left A,-module.

Recall that, if 7 is a left ideal of D(X), then the module D(X)/! is nonholonomic if
the symbol ideal o (/) has dimension greater than dim(X). In particular, if 7 is cyclic
and dim(X) > 1 then D(X)/I is nonholonomic, because dim(o(/)) =2 dim(X) — 1 in
this case. For more details on holonomic and nonholonomic modules see [3, chapters
10 and 11].

3. Derivations on surfaces. Throughout this section we will assume that n > 2 is
an integer, and that g € K[x, y]. Let S be the affine surface with equation z” — g = 0 in
A3(K).

PROPOSITION 3.1. S is smooth if and only if the curve g = 0 is smooth in A*(K). In
particular, if S is smooth then g is squarefree.

Proof. Let f =z" — g(x, ). If p=(x0, yo, z0) € A3(K) is a singular point of S, then

so that f(p) = Vf(p) = 0 is equivalent to

zo = g(xo, y0) = Vg(xo, yo) = 0.
But such a (xq, o) exists if and only if the curve g = 0 is not smooth in A%(K). O

The main result of this section is an application of the idea of lifting a holomorphic
foliation by a finite projection. Since the surfaces we are dealing with are fairly special,
we will be able to prove a result that is far sharper than [15, Theorem 1].

THEOREM 3.2. Let d = ad, + bd, be a derivation of K[x, y] with no stable ideal of
height 1 and let g € K[x, y]. If S is smooth then,

nz"~'d + d(g)9.

induces a derivation A on O(S) that does not have any stable height 1 ideals. Moreover,
the singularities of A are the zeros of the ideal (z, g, d(g)) - (" — g, a, b). In particular, A
has a finite number of singularities.

Proof. A simple computation shows that
(nz""'d + d(2)3.)(=" — g) = 0,

so that nz"~'d + d(g)d. induces a derivation A over O(S). Now, let 7 #0 be a prime
ideal of O(S) that is stable under A. It is convenient to split the proof into three parts.

FIRST PART: If I N K[x, y] is not stable under d then (g, d(g)) < 1.

Since O(S) is finite over K[x, y], it follows that 7 N K[x, y] # 0 is a prime ideal of
K][x, y] of the same height as /. But / is stable under A, so that

nz"'d(I N K[x, y]) = AU NK[x,y]) € I.
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Since [ is prime, either z € I or I N K[x, y] is stable under d. Also we are assuming that
the latter does not occur, and so z € 1. Thus,

dig)=A(z) el and gel,

which completes the proof of the first part.

SECOND PART: No height one ideals of O(S) are stable under A.

Suppose, now, that 7 is a height one prime ideal of O(S). Hence, I N K[x, y] must
be a height one prime ideal of K[x, y]. Thus, there exists an irreducible polynomial p
which generates I N K[x, y]. But, by the first part,

(g.d(g)) € INK[x,y]l = (p).

Let g = ph, for some h € K[x, y]. Since S is smooth, p cannot divide 4. But

d(g) = hd(p) + d(h)p € I N K[x, y] = (p),

implies that p divides d(p), which contradicts the hypothesis on d. Therefore, I cannot
have height one and be stable under A at the same time.

THIRD PART: We compute the singularities of A.

If p € K3 is a singularity of A, then either p belongs to the plane z =0, or pis a
singularity of d. Moreover, in the first case, p must also be a zero of g and d(g). Thus,
the singular set of A is equal to the zero set in K> of the ideal

I = (27 g, d(g)) : (Zn — &4, b)

Since this ideal is stable under A, it cannot have height one by the second part of the
proof. In particular, the set of zeros of 7 in S is finite. ]

COROLLARY 3.3. If K[x, y] is d-simple and (g, d(g)) = K][x, y], then
(1) O(S) is A-simple;
(2) the module of Kdhler differentials of S is free of rank two.

Proof. The first part is an immediate consequence of the theorem. The second part
follows from the first and from the following result of J. Archer [1, Theorem 2.5.18,
p. 101].

Let S be a smooth surface in A (K). The module of Kdhler differentials of S is
free of rank two if and only if Derg(S) contains a nonsingular derivation. ]

The second corollary combines the results above on derivations with the theorems
of Section 2.

COROLLARY 3.4. Let f € K[x, yl andn > 1 be an integer. If
(1) K[x, y) is d-simple,
(2) deg(g) > 1,
(3) (g.d(©) = Klx, )],
(4) deg(a) # deg(b), and
(5) Ax(d + f) is a maximal left ideal of A,
then D(S)/D(S)(A + nz""'f) is a simple nonholonomic D(S)-module.

https://doi.org/10.1017/50017089507003370 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089507003370

16 S. C. COUTINHO

Proof. The proof consists in reducing the problem to the 4>-module 4,/ A4>(d + f),
using Theorem 2.1. However, to do this, we must introduce an adequate multiplicative
set of O(S). Consider

S={Zh:0<j<n—1and heK[x y\K}U{z"!}.
Since
(211—1)2 — Z” . Zn—2 — an—2 e 6,

it is easy to check that & is a multiplicative set of O(S). However, we must also show
that it is stable under A in order to apply Theorem 2.1. Recall, first of all, that A is
simple by Corollary 3.3; so there exists no /# € K[x, y]\ K such that A(k) = 0. Now,
deg(g) > 1 implies that

A =m—1)"2d(g) € 6.
Moreover,
A(h) = nz""Yd(h) € &,

even when d(h) € K \ {0}. Thus, we need only show that A(Zh) € & for somej > 1 and
h € K[x, y] \ K. But, under these hypotheses,

A = 2~ (nz"d(h) + jd(g)h) = 2 (ngd(h) + jd(g)h),

in O(S). Hence, the right hand side of this equation belongs to & if and only if
ngd(h) + jd(g)h is not a constant. Since this constant cannot be zero, we may assume,
without loss of generality, that

ngd(h) + jd(g)h = 1.

Thus,

d(i"g’) = W' g’~(ngd(h) + jd(g)h) = h"'g'~".
However,

deg(h"~'g’~") = (n — 1) deg(h) + (j — 1) deg(g),
while

deg(d(i"g’)) > ndeg(h) + j deg(g) + min{deg(a), deg(h)} — 1.
Comparing the last two equations, we conclude that
deg(g) + deg(h) < 1,

which is a contradiction because deg(gh) > 2. Therefore, d(&) € S, as required by
Theorem 2.1.

Now, let M = D(S)/D(S)(A + nz""'f). Since O(S) is A-simple by Corollary 3.3,
it follows from Theorem 2.1 that M is simple if and only if Mg is simple. Therefore,
we need only prove that Mg is a simple D(S)s-module.
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Denote by L and L the quotient fields of O(S) and K[x, y], respectively. Since

(7+)

N = D(Ly)/D(Lo)((n 2" ™) A + f) = D(Lo)/D(Lo)(d + ).

=d+/,

D(Lo)

it follows that

But this last module is a localization of 4,/ A»(d + f), which is simple by hypothesis.
Therefore, N is a simple module contained in

D(L)/DL)((n™ "2 A +f) = Me.

But this implies that Mg is simple, by the proof of [4, Theorem 2.2(2), p. 408]. This
completes the proof. ]

4. The examples. The following notation will be in force throughout the section.
Given an integer n > 2, a polynomial g € K[x, y], and a derivation d of K[x, y], the
surface of A3(K) with equation z” — g = 0 will be denoted by S and A will stand for
the derivation of O(S) induced by nz"~'d — d(g)d.. We begin with the example of a
simple nonholonomic module mentioned at the introduction.

ExAMPLE 4.1. Let g(x) € K[x] be a squarefree polynomial of degree 3. Then,
(1) Pic(S) # 0, and
(2) there exist nonholonomic simple modules over D(S).

Proof. Let E be the curve of A3(K) with equations y = z> — g = 0. Then, S =
E x Al. Thus,

Pic(S) = Pic(E) # 0,

since E is an elliptic curve. This proves (1). In order to prove (2), choose a derivation of
K[x, y] of the form d = 8, + h(x, y)d,, with respect to which K[x, y] is d-simple; see [1],
[4], [16] or Example 4.2. Then, by Theorem 2.2, there exists f(x, y) € K[x, y] such that
Ax(d + f) is a maximal left ideal of 45, the Weyl algebra over K[x, y]. Now consider
the module

M =D(S)/D(S)(A + nz""'f).
Since g is squarefree in one variable, it follows that

(g, d(g)) = (g, dg/dx) = (1).
Therefore, M is simple by Corollary 3.4. O

A similar construction can be made by taking the simple derivation defined in [16]
as a starting point. Instead of that, we give a more general example in the same vein.

ExAaMPLE4.2. Let gy, g1 € K[y] be nonzero polynomials with deg(g;) > deg(go) > 1
and no common roots. If g = xg; + go and d = 3, + g9,, then

(1) K[x, y]is d-simple;

(2) O(S) is A-simple, and
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(3) there exists f € K[x,y] such that D(S)/D(S)(A +nz""'f) is a simple
nonholonomic D(S)-module.

Proof. Throughout the proof we denote the derivative of a polynomial ¢ € K[y]
with respect to y by ¢’. We have that

(g.d(g)) = (g. &1 + xgg] + 28y) = (2. g1) = (1. 80) = (1),

because these polynomials in one variable have no common roots. Thus, (2) follows
from (1) and Corollary 3.3, whilst (3) follows from (1), Theorem 2.2 and Corollary
3.4. Hence, it is enough to prove (1). The proof follows the approach introduced by D.
Jordan in [10].

We proceed by contradiction. Suppose that d has a stable nonconstant irreducible
polynomial /" € K[x, y], and write

S =a()x"+ -+ a(y)x + ao(y),
where a,, . .., ay € K[y]. Thus, d(f) = if, for some h € K[x, y]. If n = 0 then

 _ .
g@_wa

which implies that f* divides g. But this is a contradiction since g is an irreducible
polynomial. Therefore, n > 1. Thus,

d<£> _f (h . d(“”)> . 4.1)
a, a, a,

In other words,? = f/a, € K(y)[x] is stable under d. Let

F=X"4by x4+ bix+ by,
where b; = a;/a, € K(y). The term of degree n of d(}"\) as a polynomial in x is
glb;,lxn,

which has degree » in x. Since degx(_f) = n, it follows from (4.1) that & — d(a,)/a, must
have degree zero as a polynomial in x. In particular, 4 € K[y].
However, the term of degree n of d(f), as a polynomial in x, is

1
gra,x"t,

whilst /f has degree » in x. Since g; # 0, it follows that a/, = 0. Therefore, we may
assume, without loss of generality, that a, = 1.

Equating the coefficients of the terms of degree j in x on both sides of d(f) = /f,
we obtain

(U + Daj1 + g1y + god; = ha. (4.2)
For j = n, this implies that # = gya/, . Taking this into (4.2) we have that

(J + Dajr1 + 14,y + goa; = g14,,_,4;. (4.3)
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Suppose first that a,,_; € K. Hence,

h=ga, ,=0.

Taking this into (4.3) with j = n — 1, we get

n+gia, , =0,
which implies that » = 0, a contradiction. Thus, we may assume from now on that
a, , #0.
We will now prove, by induction on k, the equality

deg(ar) = (n — k) deg(a-1), (E(K))

for all —1 <k <n—1. Since E(n) and E(n — 1) are obviously true, we show that
E(j — 1) holds whenever E(k) is true forallj <k <n— 1.

From E(j) and E(j+ 1) we get that deg(a;y1) < deg(a;), and since deg(gi) >
deg(go) > 1, it follows that

deg(aj1) < deg(goa)) < deg(g14,_,4)).

Hence, deg(gla]’.fl) = deg(g14a,_,a;), so that
deg(a;_;) = deg(a,_,) + deg(a)).
Thus, by the induction hypothesis,
deg(aj1) = deg(ap—1) + deg(a)) = deg(ap—1) + (n — j) deg(a,1),
from which E(j — 1) is an immediate consequence. However, E(—1) gives
deg(a-1) = (n+ 1) deg(a,-1),

which is a contradiction, since f is a polynomial. Therefore, d does not have a stable
polynomial with a,,_, # 0, and the proof is complete. ]

ExAMPLE 4.3. Let B € Clx, y] be a generic homogeneous polynomial of degree
k > 3, and let g be a linear factor of 8. If b € C\ {0} and d = ((x + y)B + b)d, + B9,
then O(S) is a A-simple ring.

Proof. Let . = x + y. By [5, Corollary 4.3, p. 460] the polynomial ring C[x, y] is
d-simple. Since B is generic, we may assume that g = a;x + any, where oy, ap € C and
ay # 0. Thus,

(g.d(g) = (g, 1(AB + D) + Ba2).
Since g divides 8, it follows that

(g.d(g) = (g, a1b) = (1),
because a1 b € C \ {0}. The result now follows from Corollary 3.3. ]

Finally, we give an example where the singularity set of the derivation is nonempty.
Compare this with [7].
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ExXAMPLE 4.4. Suppose that #n > 5 is prime, and let
g= xynfl +y+xn71.

If d is a derivation of C[x, y] without any stable height one ideals, but whose singular
set is nonempty, then there exists / € O(S) such that

M =D(S)/D(S)(A + nz""'f)

is a simple nonholonomic D(S)-module.

Proof. An easy computation shows that S is a smooth surface. Moreover, we know
from Theorem 3.2 that A is a derivation of S, without stable height one ideals, whose
singular set is finite. However, since the singular set of d is nonempty, then so is that of
A. Finally, the result follows from [6, Theorem 3.5, p. 350] because by [17, Theorem 4.1,
p. 312] the Picard group of the surface S is zero. We need to know that 7 is prime in
order to apply this last result; see [17, Equation (4.7), p. 313]. O

The best known example of a derivation satisfying the conditions of Example 4.4
is

0/ 'x = Dax + 0F = ¥,

which was originally proposed by Jouanolou in [11, p. 157]. One can also produce such
examples using a computer, as shown in [8].
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