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Many social processes are stable and smooth in general, with discrete jumps. We develop
a sequential segmentation spline method that can identify both the location and the number
of discontinuities in a series of observations with a time component, while fitting a smooth
spline between jumps, using a modified Bayesian Information Criterion statistic as
a stopping rule. We explore the method in a large-n, unbalanced panel setting with George
W. Bush’s approval data, a small-n time series with median DW-NOMINATE scores for each
Congress over time, and a series of simulations. We compare the method to several extant
smoothers, and the method performs favorably in terms of visual inspection, residual
properties, and event detection. Finally, we discuss extensions of the method.

1 Introduction

Political processes are generally stable and smooth but occasionally explosive around crit-
ical events (Pierson 2004). Simultaneously identifying the jumps and estimating a smooth
curve pose a particular statistical challenge. In this article, we adapt a smoothing spline in
a manner that allows identification of both the location and the number of breaks in a time
series, producing a fitted function that represents both critical and secular change.

Our interest in this problem began when we noticed the “9/11 problem” while trying to fit
smoothers to George W. Bush’s approval ratings, as illustrated in Fig. 1. Smoothers, to some
extent or another, show an uptick in Bush’s approval well before 9/11. The spline in Fig. 1
would lead to the conclusion that the increase in approval began in mid August, which is
clearly incorrect. Bush’s approval was slowly trending downward until 9/10, and then by
9/12 it was up around 80% or even higher. Before 9/11, the spline estimate systematically
overestimates Bush’s approval, while systematically underestimating Bush’s approval
post-9/11.
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The 9/11 Problem
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Fig.1 Smoothing splines are dashed and our method is solid. The smoothing splines show an uptick
in Bush’s popularity in mid-July, well before 9/11.

Similarly, when using a loess smoother, optimal choice of the tuning parameter resulted
in a curve nearly identical to the generalized smoothing spline, also missing 9/11. Decreas-
ing the span until it picks up the 9/11 jump creates too much variance elsewhere. From
a time series standpoint, although presidential approval may be described well on average
as an autoregressive process (Erikson, MacKuen, and Stimson 2002), it is not everywhere
the same process. The “memory” in the process immediately post-9/11 was rather short,
whereas during more mundane times, the memory may be longer. Nathaniel Beck and
colleagues, using a Kalman filter, insert a jump at 9/11, which does leads to a far better
fit (Beck, Jackman, and Rosenthal 2006). Inserting the jump at 9/11, though, assumes the
answer to the question we are asking. While admitting 9/11 as a break seems sensical from
even a casual glance at the data, an equally strong case could be made for a wide variety of
events, such as the invasion of Iraq or Afghanistan, the events surrounding Hurricane
Katrina, and so on. We simply do not know when to stop adding jumps.

This brought to the fore the two questions central to our method. Given data with a time
component (or any natural ordering), we develop a method that identifies both the location
and the number of jumps, while fitting a smooth curve elsewhere. The method fits a smoothing
spline to the data, while using a binary segmentation algorithm to sequentially add *“jumps”
to the spline’s unpenalized space. We develop a modified Bayesian Information Criterion
(BIC) statistic as a stopping rule.

We use the method here on two different sets of observed data. The firstis George W.Bush’s
approval ratings across multiple pollsters between January 25, 2001, and October 24, 2007.
Our algorithm picks out two critical events in Bush’s term plus or minus a day or two: Sep-
tember 11, 2001, and the invasion of Iraq. We also analyze the median of the first dimension
DW-NOMINATE, both by Congress and by party. With the DW-NOMINATE medians, we
detect jumps in the Congressional median between 1910-1912 and 1874—1876, most likely
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corresponding to the rebellion against Joseph Cannon and the end of Reconstruction. We find
a jump between 1930 and 1932 for the Democratic party, corresponding to the beginning of
the New Deal. We find a jump for the non-Democratic party in 1818—1820, which is most
likely a false positive.

The method provides several advances over existing methods. Although there are several
standard methods for finding a structural break in a parameter (as in Calderia and Zorn 1998,
e.g.), ranging from the simple Chow test to Bayesian methods that estimate the location of the
change point (Western and Kleykamp 2004), most do not offer a technique for finding both
thelocation and the numberof breaks. Recent work by Arthur Spirling has addressed thisissue
explicitly, through the use of reversible jump Markov chain Monte Carlo, in finding *“‘turning
points’ incivilian casualties through the Iraq war (Green 1995; Spirling 2007b). In contrast to
Spirling, we embed our method within a nonparametric framework through the use of
smoothing splines. The method employed by Spirling allows for identification of breaks
in a given parameter in a structural model, whereas we search for a series break in the mean
function itself, rather than any particular parameter. We are able to avoid heavy parametric
assumptions about either the systematic or the random component of the model, which allows
extension to a broad array of spline models and semiparametric models (Gu 2002).

A rather straightforward change in loss function could easily allow for modeling limited
dependent variables, similar to methods that search for breaks in parameters in generalized
linear models (Spirling 2007a). This would allow for the identification of change points
within limited dependent variables. Finally, to ease interpretation, our method returns a se-
rial order of breaks and a corresponding modified BIC statistic. This allows the researcher
to present the jumps in terms of importance, as well as flexibility in the stopping decision.

2 Methods
2.1 A Brief Review of Smoothing Techniques

Our interest with the presidential polling data is in summarizing its progression over time in
a clear way while accounting for noisy measurements taken at irregular times. Any sum-
marization is a trade-off between an estimate that is too variable and too complex to
be readily interpretable and one that is too smooth and glosses over too much information.
We search in between for a parsimonious, intelligible, de-noised estimate.

In the interest of producing an interpretable, data-driven estimate of the mean function,
researchers familiar with polling data will be familiar with loess smoothing techniques for
summarizing the data (Cleveland 1979; Beck and Jackman 1997). As a generalization of
the weighted average, the loess balances the fit between a smooth curve and no smoothing
by a bandwidth parameter.

Selection, or estimation, of this bandwidth parameter is a common characteristic of
many smoothing methods. Recent work by Luke Keele (2006, 2008) has introduced a po-
litical science audience to the issues involved with semi- and nonparametric smoothing,
and we refer the reader there for background.

We wish to highlight the use of smoothing splines for obtaining a good functional estimate.
We rely here on the functions in the gss library in R (Gu 2002; R Development Core Team
2008). In this article, we use the restricted maximum likelihood (REML) algorithm to esti-
mate the smoothing parameter throughout (Krivobokova and Kauermann 2007).

Given data (y;, x;), we assume that y; is linear in a smooth function of x; and a mean-zero
error term that is independently and identically distributed with finite fourth moment. We
also assume that the function is sufficiently “smooth,” in that [ {f"}*dr<oo.
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yi :f(X[)+8i. (1)
E(e) = 0. (2)
var(g;) = oy (3)

The cubic smoothing spline fits a function that has two components. The first, unpen-
alized component is the linear trend to the data. The second, penalized component allows
for a nonlinear fit. Controlled by a smoothing parameter, A, the estimator is a compromise
between the least squares line (A — o) and complete interpolation of the data (A = 0). The
cubic smoothing spline minimizes the penalized residual sum of squares:'

fis = miny > (=7 (x)) 42 [y 4)
i=1

The second component is the penalty on the “nonlinear” part. If fis the sum of a linear
part and a smooth (C*) nonlinear part, for example, by admitting a Taylor expansion, then
the linear part of the function will have second derivative zero and hence is not considered
in the penalty. The smoothing parameter A controls the trade-off between smoothness and
the least squares regression line. The smoothing spline is widely applied, and software
packages implementing cubic smoothing splines are common (Wahba 1990; Gu 2002).

2.2 A Different Kind of Function

These methods are applicable when we believe that the true function underlying our data is
a smooth function measured with some noise. The 9/11 problem, though, highlighted an
aspect of Bush’s approval data that the smoothing spline could not handle. We are inter-
ested in a function that is everywhere smooth except for a small number of discontinuous
jumps. We develop a method for identifying discontinuous shifts in the mean function,
fitting a single smooth function but modeling breaks in the intercept. Discontinuities of
this form represent a problem for smoothers. They can be viewed as a form of model mis-
specification or omitted variable bias. The smoother, when it smooths over the jumps, will
leave a distinct residual pattern: residuals will be systematically above on one side of the
jump and below on the other. Figure 2 illustrates the residual pattern around 9/11 for both
the smoothing spline and a smoothing spline with a partial spline added at 9/11.

This misspecification creates a problem for selecting the smoothing parameter. Con-
sider the jumps as sustained shifts in the mean from one part of the function to another.
Residual variance estimates will be overstated, by adding part of the “‘jump-to-jump’’ var-
iance to the true residual variance.

If we knew the location of jumps in a function, we might add them directly to the unpen-
alized space of the spline. This would augment the unpenalized space, resulting in a partial
spline (Gu 2002). If @(x) = I{x > “9/11”’}, then the partial spline is the minimizer

s =argmin > (=f ) =B ()42 [ (0 . 5)

i=1

'We formulate the problem in a least squares framework, but distributional assumptions could be added so as to
characterize the data-generating process (see Gu 2002 for an extensive discussion with examples). This would
result in a penalized likelihood rather than penalized regression.
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The 9/11 Problem
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Fig. 2 The top shows the fit around 9/11; the bottom shows the residual pattern.

That is, known functions are not penalized and are accounted for in the fit directly. One
might think of them as being initially subtracted out, and the remainder smoothed.

“Breaks” in the residuals can be detected by eyeball and automatically. We suggest the
application of binary segmentation procedures (Sen and Srivastava 1975), which look for
breaks in a constant mean function.

Let é,...,é, be the estimated residuals from the smoothing spline fit, after removing
the linear trend. Define the partial sums S; = é;+ ... +¢;. Under the assumption of homo-
geneity and known variance, Sen and Srivastava derive the uniformly most powerful test
for a break point. They show that the most likely break point can be found at the maximal
t statistic Z = max; < ; < ,|Z;]| for

11 \ Y/ 8,8
Zi= |-+ - 7_4.“ . (6)
i n—it+l i n—i+tl
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We propose a slightly adjusted statistic. Denote 6; as the estimated standard error of the first
i residuals and 6;- as the standard error of the last i residuals. Let Z* = max; < ; < ,|Z;*| for

—12(8;=5% S, — 84 — Se=S
zZ' = ( +6& 52 —) i n=i+1 | 7
NG i n—i+1 (7)

Z* greatly outperformed Z in both the simulations and the observed data. We developed
Z* to account for the “messiness’” in data normally encountered by political scientists.
The residuals to the left and right of a given break point may be neither mean zero
nor homoscedastic, and Z* accommodates these possibilities, whereas Z does not. This
better captures the nature of observational data, but our test is no longer uniformly most
powerful, due to the unbalancedness of the design and ambiguity of degrees of freedom in
the variance estimate.

Since we are not as interested in the inference problem, we need only assume that the
data are reasonably symmetric about the mean function. The statistic Z* serves to locate
the most likely position of the discontinuity. It considers, at each possible break point, the
extent to which the residual immediately to the left is above the mean to the left and the
residual immediately to the right is above the mean to the right. The more these two terms
differ, the more likely a discontinuous break occurs at each point. The weight term in front
comes from the variance estimate, and experimentation revealed it effective in regulating
erratic behavior at the boundaries.

This is a rough approximation. The pattern of residuals about the jump is not constant,
but in the interest of finding a single break, binary segmentation is a reasonable, compu-
tationally simple approximation. As our examples below show, it is also quite feasible. We
had experimented with modeling the strength of the break through a weighted average that
aligns with residual patterns (e.g., wavelets, exponentially damped sine curves) as well as
more exotic variable selection methods (Efron et al. 2004, e.g.), but the additional com-
plexity of method added little to the performance of the algorithm. When choosing jumps,
the simple statistic above performed as well as its more complex competitors.

2.3 Stopping Rules

Since this is an automated process, we require a stopping rule. We consider several here.
The first is a modified BIC statistic, with & G an estlmate of residual variance, n the sample
size, n* the number of randomly selected knots and k the number of jumps:

arg mm

2] {fn ( )} dt-f—k log(n)—glog(n*)-kglog(Zn). (8)

Appendix A contains a derivation of the traditional BIC statistic and our modification of
it. Note how, in the event that the spline is fit to every observed data point (n = n*), this
statistic reduces to the traditional BIC statistic. The term with the log(2m) is asymptotically
negligible since it does not grow in n or n*, but simulations revealed that the term was
helpful in reducing the false-positive rate for our smallest simulation (n = 100, n* =
30). It did not make a large impact on the power of the larger simulations (n = 250, 500).

2Splines select a random subset of knots due to computational difficulties in inverting large matrices. Even with
relatively few knots, estimates are quite stable and accurate.
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The first term is increasing in k through both the numerator and the denominator. As
more jumps are added, the spline has to bend less in order to accommodate the jumps, so
the spline fit is more linear and the numerator increases. The penalty in the numerator is left
unit-free by dividing through by the residual variance estimate. As well, the residual es-
timate decreases with the addition of more jumps, decreasing the denominator. The same
logic motivating BIC then leads to a ““cost” of log (n) — %log (n*) for the addition of each
additional jump, in order to ensure convergence to the true model as n — . The spline
penalty term serves the role of the log-likelihood, acting as a measure of the divergence
between the “‘true” model and the fitted values.

As a means for balancing model fit and size, the BIC provides an estimate to the Bayes’s
factor. The BIC approximates the posterior probability that a given model is the true model,
given a uniform prior over all candidate models. The statistic is not interpretable on its own
but is useful in model selection. The most preferred model with the sequential smoothing
spline is the one with the smallest modified BIC statistic as given by equation (8).

A second stopping rule comes from the logic of hypothesis testing. Although we rec-
ommend our modified BIC statistic, we present the following below. The reference dis-
tribution for the maximal Z is usually determined by permutation. This creates problems,
though, because the reference distribution of each subsequent break must be conditioned
on the selection of all previous breaks. The permutation method will increase in complexity
rather quickly. As a simplification, we suggest considering the models as a sequential series
of nested models. This suggests an approximate y* statistic to consider among them:”

Aca 2
AP O 8
~2 Cokr
GE
where ¢* is the critical value of the y? statistic, with family-wise error rate o and number of
breaks k:

*

P
C . = Y -
o, k '{1701//8‘

Using Bonferroni’s adjustment of o, the term 1 — o/k keeps the probability of making
at least one type I error among all breaks below o. This approach has a noticeably lower
threshold even at small sample sizes of 100 for the first several jumps; for this reason, we
remain wary.

The final suggestion is using a combination of expert evaluation and common sense. As
heuristics, we suggest a few options. First, if a selection may be a false positive, explore the
selections afterward. If several selections after it are known jumps, the jump under question
is more plausible. If there are no known jumps afterward, then its selection is less plausible.
If the researcher has a specific prior distribution proportional to weights w; over all possible
jumps, the statistic w1|Z;‘ ‘ may of course be used instead. Similarly, known breaks can be
incorporated into the unpenalized space directly, and our method consequently imple-
mented.

Second, we noticed that sometimes the BIC may be quite flat around the minimum. This
may limit the discussion to the range of acceptable jumps, such as 3-5, even if the strict
minimum occurs at 4. Similarly, the first few jumps result in a large decrease in the penalty

3Since we are not making any distributional assumptions about the error term, the x* statistic is only an
approximation.
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term, but the effect decreases dramatically. Using either rule above, some jumps are clearly
reasonable, some are questionable, and some are unreasonable. We suggest reporting either
the BIC statistic or x> p-values along with the data, and the researcher may decide to take
the first of the “questionable” jumps as the stopping points. If computational power per-
mits, resampling methods may be used, but we have been satisfied with the performance of
choosing the modified BIC-minimizing number of partial splines. That is the rule we use
throughout the remainder of the article.

Finally, with reasonably large data sets, the cubic splines are fit only using a random
subset of the data as “‘knots.”” This introduces variance into the stopping rule statistic, so we
recommend exploring either adding to the number of data points selected or a resampling
method to help get a sense of the variance of the test statistics described here. With large
data sets, of over 1000, increasing the number of knots can aid in detection, making the
acceptance level of our BIC statistic less stringent. Increasing the number of knots, though,
is not computationally prohibitive. Bush’s approval data discussed below have an n of
1533, and ssanova selects only 52 knots. Computation took about 12 s on a Pentium D
processor. Using our algorithm with 200 subsampled data points lengthened the time
to only 2 min and 11 s.

These guidelines may sound arbitrary, but, as illustrated below, our method is never
“too”” wrong. It is conservative, in that it rarely overestimates the number of jumps,
and even with reasonably small sample sizes and in the presence of autocorrelated noise,
the method is powerful.

2.4 Procedure Statement
We suggest the following recursive procedure for finding these jumps in smooth functions:

1. Fit a cubic smoothing spline using the REML algorithm to estimate the smoothing
parameter.

. Remove the linear trend from the residuals.
. Search the residuals for a break point, using the binary segmentation algorithm.
. Add the corresponding break to the partial spline’s unpenalized space.

[ I SN OS E )

. Repeat from 1 until the BIC stopping rule ends the procedure.

This will result in breaks o1, ..., 0, and a mean function estimate of the form
A k A
i = flxi)+ Z Bl (xi>3)),
j=1

where f is a smooth spline estimate. The estimate Bj gives the estimated magnitude of
the discontinuity and is reported when fitting partial splines. The standard errors on this
coefficient will be wrong, though, since they do not account for the sequential nature of
the selection and fitting. Were this magnitude of interest, and confidence intervals
desired, we recommend a parametric bootstrap. Our algorithm sequentially augments
the unpenalized space of the spline, fitting fixed jumps at specific points. Although
estimating the number of jumps simultaneously may be preferred, and in more than
one dimension is most certainly preferable, we are happy with the performance
of the method in one dimension. We illustrate the procedure below on two observed
data sets, Bush’s approval and DW-NOMINATE scores, as well as through a series of
simulations.
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3 Case 1: George W. Bush’s Approval

The data in this section are 1533 estimates of George W. Bush’s approval, from 33 different
houses, between January 25, 2001, and October 24, 2007. We observe polls on 1041 dates
over the total 2463 dates. Although the polls are taken over multiple days, we consider the
date range to be the end date on which the poll is conducted. The approval estimates range
from 27% to 89%. The data are all publicly available.

Figure 3 shows the fit to each of the different methods, each in R. We use a moving
average with a 2-week window, loess with spans .1 and .01 with command loess in library
stats, the smoothing splines from command ssanova in library gss, a structural time series
model using a Kalman filter from command StructTS in library stats, and our sequential
segmentation method.

Results from each of the methods are shown in Fig. 3. Our sequential segmentation method
outperforms, in terms of mean squared error (MSE), both the loess with span .1 and the
smoothing splines. Our method performs worse, in terms of MSE, than the Kalman filter
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[} ¢ | (=)
. i ‘ .
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Fig. 3 A comparison of fits to the data among the different smoothing methods.
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Splines vs. Our Algorithm
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Fig. 4 Spline fit is dashed; our method fit is solid.

and the loess with span .01, but the improvement in MSE comes at the cost of a rather
jagged fit. Figure 4 shows a larger graph, comparing splines to the sequential segmen-
tation method. Notice how splines smooth over ‘“‘nonsmooth” events. For example, the
bump in Bush’s ratings after 9/11 could not have started before the event; people had no
expectations that the events would occur on a certain date and so they did not start re-
vising their opinions of Bush upward before then. Note also how the “‘rally around the
flag” effect, whereby a President’s popularity increases upon starting a war, is imme-
diate. During the run-up to the war, Bush’s approval dropped regularly, but immediately
upon the invasion, he got a bump up that then proceeded to erode. Our algorithm selected
the “rally around the flag” effect as instantaneous, even when the invasion of Iraq was
clearly expected.

Just as important, note how our method follows the spline method in areas after the
events. From about mid-2004 on, our method follows the smoothing spline almost exactly.
Our sequential segmentation method acts like a smoothing spline when appropriate.

The real payoff for the sequential segmentation method comes from looking at auto-
correlation and the quantile-quantile (QQ) plots. Figure 5 shows the QQ plots, compared to
a normal distribution, for the residuals using each of the six methods earlier. The other
methods tend to do passably well in either having normally distributed errors (the second
loess fit) or having low autocorrelation (the moving average, Kalman filter, and splines).
Only our algorithm does well on both counts and noticeably better than the other methods.

Next, we consider the events selected as “jumps’ in approval. The jumps and their
corresponding BIC statistics are listed in Table 1. The trouble with evaluating whether
these jumps are valid is two-fold. First, we have no idea what the ““true’ curve is or even
if the concept of such a curve is theoretically coherent. We conceive of this curve, instead,
as the consensus of approval ratings among pollsters. Looking at the dates chosen and
seeing if anything happened involving approval considerations of Bush lead to a problem,
though: given any day, you can find something of import that might affect approval toward
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Fig. 5 QQ plots, for a normal distribution, for each of the smoothing methods. “p” gives the
correlation in the residuals with lag 1. For ease of interpretation, the last five plots are on the same y
axis.

Bush. Unfortunately, there is no objective listing, serial or otherwise, to which we can
compare these results.

That said, we are confident in the dates selected. We are counting the date of each poll as
the last day it was administered, so we look for critical events a few days before the breaks
selected by our method. The two dates selected, September 12, 2001, and March 20, 2003,
clearly correspond with major events that would plausibly affect approval scores in the
Bush presidency (9/11, the invasion of Iraq on 3/17). Since we are taking the date of
the poll as the final day of its administration, the method selects dates a few days past
the event of interest.
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Table 1 The first five events in Bush’s term selected by the sequential segmentation spline

Selected date Event Actual date BIC
Spline only XX XX 78.05
September 12, 2001 9/11 September 11, 2001 68.62
March 20, 2003 Invade Iraq March 20, 2003 60.78
September 21, 2001 Bush’s post 9/11 address September 21, 2001 63.67
to Congress
January 22, 2004 Bush’s State of the Union January 22, 2004 72.17
October 04, 2006 7 7? 78.12

Note. The BIC criterion selects the first two events. We include the next three events to illustrate behavior of the
BIC statistic.

The primary substantive conclusion is that presidential approval and quite likely other
public mood trends are not smooth. Whereas recent theoretical work on macropolitical
evolution views presidential approval as a smooth, AR(1) time series in Gallup approval
(Erikson, MacKuen, and Stimson 2002), we find that future empirical work should search
for and model multiple structural breaks.

4 Case 2: Congressional Ideology

The data in this section are three time series: the median estimates of the first dimension of
DW-NOMINATE ideology scores by Congress and party. We consider two parties, the
Democrats and the non-Democrats, a pooling of Republicans and Whigs for the sake
of this article. We have data on each Congress from 1788 to 2004,4 the non-Democratic
Party from 1800 to 2004, and the Democratic Party from 1794 to 2004. Higher scores are
commonly interpreted as being more “‘conservative” on economic issues, whereas lower
scores mean that the Congressional median is more “liberal”” on economic issues (Poole
and Rosenthal 1997). The data are publicly available.

Unlike Bush’s approval data, the median DW-NOMINATE data are evenly spaced
through time, although with only one data point per Congress. Relative to Bush’s ap-
proval, this is a relatively small-n test of the method, with only 109 data points, versus
1533 above.

A second key difference is that, in these data, no apparent discontinuities appear. The
raw data for the entire Congress can be found in the upper left-hand corner of Fig. 6, with
fits from various methods in the subsequent boxes. We notice nothing in these data com-
parable to the “9/11” problem above.

Despite the lack of visually obvious jumps, a long literature has debated as to whether
some elections may be “critical” (Key 1955, 1959; Mayhew 2002). Most Congressional
elections are “‘secular,” reflecting slow gradual change, whereas some scholars consider
a select few as ““critical,” in that they result in rapid, sustained shifts in partisan compo-
sition of the public. This dynamic, as expressed through Congress members, captures the
nature of the “smooth + jump”—type function that we are estimating here.

As suggested by the realignment literature, we rely rather heavily on our model’s
assumptions: that median NOMINATE score is the sum of a smooth and discontinuous

“For clarity, we refer to each Congress by the year in which it was elected rather than its number, that is, <2006
rather than “110th.”
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Fig.6 A comparison of fits to the median DW-NOMINATE score by Congress among three different
smoothing methods.

part. Comparing the fit of our method to the spline and time series method highlights how
statistical findings are dependent on the assumptions under the statistical model. A re-
searcher searching for smooth cycles in Congressional history may prefer either of the
bottom two graphs. A researcher searching for a smooth curve with a few jumps would
prefer our model. Our algorithm, though, is both consistent with the data and reduces to
a spline in the limiting case.

Most of the discovered jumps, as shown in Table 2, are easily attributable to commonly
accepted shifts in Congressional behavior. The two shifts selected for the entire Congress
via BIC are 1910-1912 and 1874-1876. The first can be attributed to the rebellion against
Speaker Joseph Cannon, which shifted power from the Speaker to the committee chairs.
The second can be attributed to the end of Reconstruction. The next few dates, 1932, 1896,
and 1860, though not selected by BIC, have long been considered the canonical dates for
“realignment” (Mayhew 2002). The 1930-1932 break for Democratic median votes is
clearly attributable to the New Deal. A single shift, in 1818-1820, was selected for the
non-Democratic party. We worry this may be a false positive and may be a random artifact
of pooling all non-Democratic parties.
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Table2 The first few events in Congressional history selected by the sequential segmentation spline

Date Event BIC

Entire congress None Spline only 23.79
1910-1912* Joseph Cannon Rebellion 22.31

1874-1876* End of Reconstruction 21.58

1932-1934 New Deal Realignment 23.11

1896-1898 1896 Realignment 26.87

1860-1862 Civil War 29.74

Non-Democratic party None Spline only 20.90
1818-1820* Possible false positive? 19.67

1852-1854 7? 22.79

1856-1858 7 25.05

Democratic party None Spline only 14.92
1930-1932* New Deal Realignment 14.59

1892-1894 Populist Realignment 17.53

1954-1956 7 19.87

Note. Dates marked with an asterisk are selected by our BIC criterion.

The algorithm performed well, even in this noisy, imprecise setting. Plotting the data
revealed no apparent, obvious jumps, and condensing the NOMINATE scores down to 109
points is a gross oversimplification of Congressional behavior and evolution. Given all this,
our method yielded reasonable results, selecting only one false positive and a series of dates
otherwise that correspond with well-known shifts in Congressional makeup and behavior.

5 Simulations

We conduct 24 separate simulations in order to evaluate our method. We assume two dif-
ferent systematic components, where fis a Bessel function of the second type and x in the
interval [0, 1000]. We ran each simulation 1000 times each, comparing our algorithm to
both smoothing splines (function ssanova in R library gss) and a Kalman filter (function
StructTS in R library stats). The characteristics of the simulations are below.

Model specifications:
siMjump (x7) = —2f (x;/100) +81 (x; > 200) —41 (x; > 500) +21 (x; > 800) +u;,
Simnojump (Xi) = —2f(x,/100) +u;.

Variance specifications:

Gaussian noise : var(;) € {1,4};cor(u;,u;—1) =0,
AR(1) noise : var(y;) € {1,4};cor(u;, u;—1) = 4.
Sample sizes used:

n € {100,200, 500}.

Figure 7 contains an example of the simulation with jumps as well as one of our fits to it.
The first jump is significant at the 5% level in all situations. The second jump is significant
only in our less noisy simulations, and the third jump is never significant at 5%.

We vary the simulations by sample size, error variance, and variance structure. Table 3
contains a list of each of the simulations we conduct for both simj,m,, and Simyejump, as well
as the percent of times each number of jumps was selected by our algorithm. The simu-
lations all contain either independent, Gaussian noise or AR(1) noise, with correlation .4.
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Fig. 7 An example from a run of the simulation, with n = 200, Gaussian noise, and var(x;) = 1.

Our simulations demonstrate four desirable aspects of our algorithm. First, as shown in
the bottom half of Table 3, the algorithm has a low false-positive rate when there are no
jumps in the model. When there are no jumps, the algorithm will reduce to the spline, with
an acceptable false-positive rate. For small sample sizes, and in our less noisy scenarios, the
false-positive rate is approximately 10%, but the false-positive rate drops dramatically as
the sample size gets to 500. False-positives rates are acceptably low in the other simula-
tions, even for n = 100. The method is robust against error misspecification, and the false-
positive rate drops to zero as the sample size increases. When there are no jumps in the true
function, our method uncovers false positives at an acceptable rate.

Second, the method is powerful. Table 4 shows the percent of the time each of the three
breaks was selected. The largest break, at x; = 200, is selected the most. By n = 500, our
algorithm selects the first break between 89% and 99% of the time. The next two breaks are
selected less than the first break, as expected, since they are smaller in magnitude. The
discovery rate of each of the smaller breaks, though, is clearly increasing in n. All these
results are robust to error misspecification. Just as importantly, the false-positive rate is
acceptable, always below 5.5 and well below 1% in 5 of the 12 specifications with jumps.

Third, the algorithm provides, on average, gains in squared error, and at best, the al-
gorithm results in only modest losses versus the smoothing splines and time series
method, as illustrated in Table 5. We calculated squared error as the sum of the squared
difference between the fitted and true values. As shown in the top half of Table 5, our
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Table 3 Percent of times each number of breaks was chosen, by simulation

n var(u;) 0 1 2 3 4 5 6

Simulations with jumps

Gaussian noise 100 1 63.2 27.2 6.6 2.4 0.6 0.0 0.0
200 1 7.0 56.8 36.2 0.0 0.0 0.0 0.0
500 1 0.8 7.5 89.2 2.5 0.0 0.0 0.0
100 4 68.9 18.6 12.5 0.0 0.0 0.0 0.0
200 4 36.3 39.2 24.5 0.0 0.0 0.0 0.0
500 4 7.2 74.5 18.3 0.0 0.0 0.0 0.0
AR(1) noise 100 1 67.6 23.2 6.5 2.1 0.6 0.0 0.0
200 1 19.6 32.7 39.6 7.3 0.8 0.0 0.0
500 1 8.3 5.5 454 39.0 1.8 0.0 0.0
100 4 34.1 41.9 20.6 2.9 0.5 0.0 0.0
200 4 22.8 48.8 25.5 2.5 0.4 0.0 0.0
500 4 10.3 33.3 51.1 4.7 0.6 0.0 0.0
Simulations without jumps
Gaussian noise 100 1 89.2 10.8 0.0 0.0 0.0 0.0 0.0
200 1 88.9 8.8 1.3 0.6 0.3 0.1 0.0
500 1 99.4 0.2 0.1 0.0 0.3 0.0 0.0
100 4 100.0 0.0 0.0 0.0 0.0 0.0 0.0
200 4 96.9 1.8 0.8 0.2 0.3 0.0 0.0
500 4 99.9 0.1 0.0 0.0 0.0 0.0 0.0
AR(1) noise 100 1 92.8 6.5 0.7 0.0 0.0 0.0 0.0
200 1 98.2 1.6 0.2 0.0 0.0 0.0 0.0
500 1 99.7 0.3 0.0 0.0 0.0 0.0 0.0
100 4 91.6 7.8 0.5 0.1 0.0 0.0 0.0
200 4 92.3 7.4 0.3 0.0 0.0 0.0 0.0
500 4 96.8 3.2 0.0 0.0 0.0 0.0 0.0

Note. There are three jumps total, two of which are easily discernible and one which is not.

method performs well relative to the other methods. The Kalman filter proves marginally
better, about 4%, in 2 of the 12 simulations with jumps. Improvements in squared error over
the Kalman filter and splines in the remaining simulations range between 1% and 55%. Of
the 12 simulations with jumps, our algorithm outperforms the Kalman filter by more than
20% 9 of the 12 times. Our algorithm similarly outperforms the splines by more than 20% 6
of the 12 times.

The bottom half of Table 5 illustrates the results when the systematic component does
not contain jumps. In every instance, our algorithm outperforms the Kalman filter, ranging
between 6% and 83% gains in squared error loss. Our method performs comparably to the
smoothing spline. The only exception is in the smallest, least noisy simulation, where
splines outperform our algorithm by 19%. Of the remaining 11 simulations, the spline
never provides an improvement of more than 6%, and in 6 of the 12 simulations, our
algorithm differs from the smoothing spline by less than 1%.

Finally, the method is robust with respect to correlated errors. While our algorithm
is less powerful in the presence of AR(1) noise around the discontinuous, smooth function,
by modest sample sizes of 200, the algorithm performs well. Even with AR(1) noise,
our method maintains a small false-positive rate. In the presence of breaks and AR(1)
noise, our algorithm outperforms splines in each case, and in the absence of breaks, splines
never provide more than a 6% advantage in squared error over our algorithm. In 2 of the
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Table 4 Percent of the time each break was identified and the false positive rate, by simulation

n var(u;) 1D 200 ID 500 1D 800 False-positive rate
Gaussian noise 100 1 84.4 14.8 0.0 0.6
200 1 93.0 36.2 0.0 0.0
500 1 99.2 91.6 24 0.2
100 4 30.7 11.4 0.0 1.5
200 4 63.6 22.1 0.0 2.5
500 4 92.8 17.8 0.0 0.5
AR(1) noise 100 1 34.0 7.9 1.1 1.9
200 1 83.0 47.7 5.8 0.5
500 1 93.5 86.2 40.1 0.7
100 4 67.3 20.4 0.8 53
200 4 77.4 27.3 0.9 3.3
500 4 89.8 55.8 4.1 2.3

12 simulations with AR(1) noise, our algorithm performs comparably to the Kalman filter;
in the remaining 10, it provides substantial improvement, ranging between 25% and 86%.

6 Extensions of Method

Our method admits several interesting and useful extensions. First, we have presented it so
far as a modeling, rather than inferential, tool, although resampling methods could provide
confidence intervals. Since the search for breaks is sequential, the nature of the distribution
under the null hypothesis is not clear; each subsequent break is conditioned on the occur-
rence of the earlier breaks. Entering unpenalized covariates of interest into the nonpenal-
ized space also allows for inference in a semiparametric setting.

Second, our method can extend to a broad array of spline models.” These include ex-
tensions to higher dimensions, through thin-plate splines (Pearce and Wand 2006). Our
method can help find jumps in geographic data or any situation in which the context dic-
tates estimating a functional form that is smooth with breaks. Since the spline is a limiting
case, and our cases above show that the method can “act like a spline”” when it needs to, we
hope to generalize the algorithm to where it can be useful across a broad array of data sets
and questions.

Third, we have so far characterized our jump covariates as a series of indicator func-
tions. The result is a form of a sequential cumulative sum tests, with a spline fit in between
each identification of a jump. The jumps, though, could instead contain covariates that are
of interest to the researcher. For example, using our Bush data, we could look for jumps in
approval as a function of economic news, Congressional approval, etc. This would require
simply ordering the outcome by a different covariate than time and using our sequential
segmentation spline along this dimension.

Finally, we have developed the method so far with few constraining distributional
assumptions about either the systematic component or the error. Stronger assumptions
can be made, as necessary, in order to characterize a likelihood that could handle choice
models, count models, and other limited dependent variable models.

SSpecifically, any function that lives in a Hilbert space and has a reproducing kernel. See Wahba (1990) for
extensions.
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Table 5 MSE across simulations

MSE, MSE, MSE, our % Improvement, % Improvement,
n  var(u;) Kalman spline algorithm versus Kalman versus spline

Simulations with jumps

Gaussian noise 100 1 0.609  0.696 0.632 —3.83 9.20
200 1 0.481 0.513 0.380 20.89 25.86
500 1 0.338  0.355 0.158 53.16 55.42
100 4 1.549 1.234 1.192 23.05 3.44
200 4 1.156  0.879 0.718 37.85 18.28
500 4 0.763  0.566 0.347 54.59 38.73
AR(1) noise 100 1 3.641 3.648 3.601 1.10 1.30
200 1 0.356  0.453 0.368 —3.38 18.85
500 1 0.306  0.330 0.166 45.85 49.79
100 4 1.316  1.036 0.937 28.82 9.57
200 4 1.138  0.753 0.590 48.20 21.74
500 4 0.942  0.506 0.287 69.56 43.27
Simulations without jumps
Gaussian noise 100 1 0.168  0.069 0.082 51.31 —18.43
200 1 3.631 3434 3.405 6.21 0.84
500 1 3.527 2978 2.970 15.80 0.27
100 4 0.444  0.260 0.261 41.36 —0.05
200 4 13.867 12369 12.336 11.04 0.27
500 4 13.897 11.080 11.084 20.24 —0.04
AR(1) noise 100 1 0.215  0.076 0.080 62.70 —5.62
200 1 0.174  0.044 0.045 74.17 —2.44
500 1 0.137  0.019 0.019 86.03 0.18
100 4 0.723  0.265 0.273 62.31 —3.01
200 4 0.600  0.145 0.151 74.81 —4.21
500 4 0.494  0.065 0.067 86.38 —3.45

Note. The last two columns show the average percent improvement of our algorithm over the other two methods.

7 Conclusion

This project began with the goal of estimating house-level effects on presidential approval.
In estimating these effects, it quickly became apparent that extant smoothing methods
missed the underlying dynamic of presidential approval. In fact, within much political data
of interest, “smoothing” appears to be presumptuous. Many processes are a mixture of
both slow-moving change and immediate jumps due to rapid shocks. Smoothers miss
the nature of the underlying function, whereas structural break tests offer no stopping cri-
terion. This led us to consider first, how to think about these processes and, second, how to
find the breaks and when to stop doing so.

Our method has performed well both in simulations and on observed data. Within
a dense presidential approval data set, our method discovered breaks that correspond with
clearly identifiable shocks. Within a relatively sparse Congressional data set, it was equally
successful at highlighting important dates. The simulations further reenforce our faith in
the method.

The ““smooth + jump” function we describe here could apply to a wide variety of
political processes that face critical events. The algorithm allows a flexible means to
model other social and physical processes of interest. Examples include change point
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models or any model that must accommodate some smooth curve with the occasional
persistent shock. In the face of a known exogenous shock, but uncertainty over the par-
ticular timing of the impact of the shock, our sequential segmentation spline will allow
for estimation of the existence and most likely location of the discontinuity.

Testing for the existence of a structural break at a given point is straightforward.
Here, we provide a method for solving a far harder problem: searching through all
possible breaks, adding jumps sequentially, and stopping at a reasonable point. We
plan to extend the method in the future to limited dependent variables and higher
dimensional settings.

Appendix A: Derivation of the BIC and Our Modified BIC

This appendix provides a derivation of the modified BIC statistic used as our stopping rule.
We follow the presentation by Adrian Raftery (1995), whereas a more technical discussion
can be found elsewhere (Tierney and Kadane 1986).

Given observed data D, candidate models M,, i i {1, ..., m}, and associated parameters
0,, the posterior can be written as

p(DIM;) = / P(D]6;, M;)p(6,]M;)d0;. (A1)

Letting g(0;) = log {p(D|0)p(0)}, we now expand g(0) around the posterior mode, 0;:

1

5(0-8)" g7 ®)(0-B)+o(|[0-0][),  (A2)

2(0) = g(0)+(0-0) g’ (0)+

g’ and g” denote the gradient vector and Hessian matrix of g with respect to 0. Since 0 is
the posterior mode, we know that the linear term above is zero, since g’ (0) = (. This leaves
the approximation

2(0) ~ g(0)+(0-0)" ¢" (8)(6-0). (A3)

Exponentiating both sides and noting that the integral is proportional to the integral of
a multivariate normal give the result (MacKay 2003)

D)~ expe(®) [ exp(5- (0-8)"& @0~ ) (A%

= exp (g (e)) (2n)?|A| 2. (A5)

Assume that A approaches infinity as some nA,, with A, the asymptotic information
matrix. Then log|A| approaches infinity as log|nA,| = log(n®|Ao|). Substituting this into
the equation above and dropping all terms that are not changing in n or i leave

A1
lim logp(D) ~ lim logp(D\Gi)—Elog|A| (A6)
~ im log p(DI6) ~log(n’ o)) (A7)
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~log p(D[0)~ log(n). (A8)

The first term on the right-hand side above is the log-likelihood, whereas the second is a mea-
sure of the dimensionality of the model. BIC is an asymptotic result, balancing the trade-off be-
tween model likelihood and dimensionality, with the model corresponding to the highest BIC
generally selected. Often, it is written as —2-log-likelihood + d-log(n), in which case the model
with the smallest BIC would be selected. The BIC provides an estimate of the posterior prob-
ability given a uniform distribution across all candidate models. If the correct model is a can-
didate, it will be chosen with probability one as the sample size approaches infinity.

We modify the BIC to account for the fact that the generalized smoothing spline fits a spline
to a random subset of knots, due to the difficulties involved in inverting large matrices. As-
sume, with sample size n, that the spline is fit to n* knots, chosen at random. This leads to
covariance matrices |A|and |A*|,each of which approaches the same |A¢|, as n and n* increase.

Taking the approximations,

nA =~ n*A*, (A9)
LA~ A (A10)
n
* n\4
log|A*| ~ log{ (n_) |A}. (Al1)

Given that A grows as nA,, this leaves

d
log|A*| ;:zlog{(%) |nAo|} (A12)
I’lz d
=log <—*) Ao (A13)
n
= 2dlog(n)—dlog(n*)+log|Ay|. (A14)

Substituting equation (A 14) into equation (A6) leaves our modified BIC statistic, where
the first term in the sum is the divergence of the sampled data, y*, which is sampled from
the complete set of observed outcomes, y:

BIC(n, n*,i) = logP(y*|0;) —dlog(n) +glog(n*) +§10g(2n).

Rather than a likelihood, we use the penalty on the nonlinear part as the measure of
divergence. The logic carries through identically upon noting the correspondence between
the cubic smoothing splines used here and penalized regression (Pearce and Wand 2006).
Note how, as n* gets closer to n, our modified BIC approaches the actual BIC. Simulations
with n = 100 and n* = 30 indicated that the term with log(27) was necessary to maintain
a small false discovery rate in such a small sample. This asymptotically negligible term did
not affect the power in the larger-n simulations, though.

We use this statistic as a stopping rule throughout our analysis and simulations.
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