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Abstract

In this paper we prove Caristi’s fixed point theorem using only purely metric techniques.

2010 Mathematics subject classification: primary 47H09; secondary 47H10.

Keywords and phrases: fixed point, Caristi fixed point theorem, nonexpansive mapping, contraction.

1. Introduction
We consider Caristi’s fixed point theorem in its standard version.

Theorem 1.1 (Caristi, 1976 [2]). Let (M, d) be a complete metric space and assume
that ϕ : M → R+ is lower semicontinuous. Suppose that the mapping T : M → M
satisfies

d(x,T x) ≤ ϕ(x) − ϕ(T x) (1.1)

for every x ∈ M. Then there exists x0 ∈ M such that

T x0 = x0.

It is easy to see that Caristi’s fixed point theorem is a generalisation of the Banach
contraction principle by defining ϕ(x) = (1 − k)−1d(x,T x), where k < 1 is the Lipschitz
constant associated with the contraction T from Banach’s principle. As proved by
Kirk in [12], the validity of Caristi’s fixed point theorem characterises completeness
of M, while this is not the case with Banach’s theorem (see [3] for a comprehensive
discussion of this topic).

It has been proved that Caristi’s fixed point theorem for nonlinear maps acting in
complete metric spaces is equivalent to many results seemingly not related to fixed
point theory, including the Ekeland variational principle [6] (see, for example, [14]).

Theorem 1.2 (Ekeland, 1974 [6]). Let (M, d) be a complete metric space and assume
that ϕ : M → R+ is lower semicontinuous. Define a partial order ≤ on M as follows:

x ≤ y⇔ d(x, y) ≤ ϕ(x) − ϕ(y), x, y ∈ M.

Then (M,≤) has a maximal element.
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Let us note in passing that the equivalence between Ekeland’s and Caristi’s results
requires the assumption of some form of the axiom of choice. For an extensive
discussion of this topic, we refer the reader to Kirk’s recent retrospective paper on
metric fixed point theory [13] and to an earlier paper by Jachymski [8]. See also
some comments in the final section of the current paper. Caristi’s fixed point theorem
has been extended and generalised in many directions (see, for example, [3–5, 9] to
mention just a few).

The original proof by Caristi invoked an iterated use of transfinite induction. Most
later proofs of Caristi’s fixed point theorem were based on the use of Zorn’s lemma and
the axiom of choice (or Zermelo’s fixed point theorem) applied to the Brøndsted partial
order [1]. As recently as 2014, Khamsi [10] (see also [11]) stated that “there are some
trials of finding a pure metric proof of Caristi’s fixed point theorem (without success
so far)”. In the current paper we propose such a proof. Its pure metric character is
understood in the following sense.

(1) The proof uses only standard methods of metric spaces.
(2) The proof uses standard properties of the set of all real numbers.
(3) The proof uses mathematical induction for the construction of a sequence in a

metric space.
(4) No partial order considerations are applied (the natural order in R is the only

order used).
(5) No direct use of the axiom of choice, Zorn’s lemma or equivalents are used.

A brief discussion of these restrictions against a broader axiomatic background is
provided in the concluding section of the paper.

The next section is devoted to providing the metrical proof of Theorem 1.1 as
announced above. The final section of the paper contains an analysis of this proof.

2. Proof of Caristi’s theorem

First let us notice that from (1.1) it follows immediately that for every x ∈ M,

ϕ(T x) ≤ ϕ(x). (2.1)

For x ∈ M, set
Π(x) = {y ∈ M : d(x, y) ≤ ϕ(x) − ϕ(y)}.

Observe that Π(x) , ∅ because x ∈ Π(x) and T x ∈ Π(x). Note also that Ty ∈ Π(x) if
y ∈ Π(x), which follows from the following calculation:

d(x,Ty) ≤ d(x, y) + d(y,Ty) ≤ ϕ(x) − ϕ(y) + ϕ(y) − ϕ(Ty). (2.2)

By the nonemptiness of Π(x) for each x ∈ M and by the nonnegativity of ϕ, the
following function p : M → [0,∞) is well defined:

p(x) = inf{ϕ(y) : y ∈ Π(x)}.
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It is immediate that for any x ∈ M,

0 ≤ p(x) ≤ ϕ(T x) ≤ ϕ(x).

Let us define by induction the following sequence {xn} of elements of M. Fix
arbitrarily x1 ∈ M and assume that xn has been constructed. From the definitions of
p(xn) and Π(xn), it follows immediately that there exists xn+1 ∈ Π(xn) with

ϕ(xn+1) ≤ p(xn) +
1
n
.

Since xn+1 ∈ Π(xn),

0 ≤ d(xn, xn+1) ≤ ϕ(xn) − ϕ(xn+1).

Hence {ϕ(xn)} is a nonincreasing sequence of nonnegative numbers and therefore there
exists r ≥ 0 such that

lim
n→∞
ϕ(xn) = r. (2.3)

Therefore, {ϕ(xn)} is a Cauchy sequence of real numbers. Hence, for every k ∈ N, there
exists Nk ∈ N such that for every pair of natural numbers m, n with m ≥ n ≥ Nk,

0 ≤ ϕ(xn) − ϕ(xm) <
1
k
.

Since
ϕ(xn+1) ≤ p(xn) +

1
n
≤ ϕ(xn) +

1
n
,

it follows that
lim
n→∞

p(xn) = r. (2.4)

We claim that for m ≥ n ≥ Nk,

d(xn, xm) ≤ ϕ(xn) − ϕ(xm) <
1
k
. (2.5)

Since (2.5) is trivial for m = n, it is enough to prove it for m > n. In that case,

d(xn, xm)≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)
≤ ϕ(xn) − ϕ(xn+1) + ϕ(xn+1) − · · · − ϕ(xm) = ϕ(xn) − ϕ(xm). (2.6)

From (2.5), it follows that {xn} is a Cauchy sequence and, by completeness of M, there
exists x0 ∈ M such that

lim
n→∞

d(xn, x0) = 0. (2.7)

Hence, for every n ∈ N,
lim

m→∞
d(xn, xm) = d(xn, x0).

Using this, (2.6) and the lower semicontinuity of ϕ,

d(xn, x0) = lim
m→∞

d(xn, xm) ≤ lim sup
m→∞

[ϕ(xn) − ϕ(xm)]

≤ ϕ(xn) − lim inf
m→∞

ϕ(xm) ≤ ϕ(xn) − ϕ(x0), (2.8)
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which implies that x0 ∈ Π(xn) for every n ∈ N, and therefore that

p(xn) ≤ ϕ(x0) ≤ ϕ(xn) − d(xn, x0) (2.9)

for every n ∈ N. By letting n→∞ in (2.9) and using (2.3), (2.4) and (2.7), we conclude
that

ϕ(x0) = r. (2.10)

Since, as proved above, x0 ∈ Π(xn) for every n ∈ N, (2.2) implies that T x0 ∈ Π(xn)
for every n ∈ N. Therefore, by (2.1), we conclude from (2.10) that

p(xn) ≤ ϕ(T x0) ≤ ϕ(x0) = r. (2.11)

Letting n to infinity in (2.11) and using (2.4), we obtain ϕ(T x0) = ϕ(x0). By (1.1)
again,

0 ≤ d(x0,T x0) ≤ ϕ(x0) − ϕ(T x0) = 0.

Hence T x0 = x0, as claimed.

3. Analysis of the proof

A brief analysis of the proof in the preceding section shows that, unsurprisingly,
it depends mainly on the Caristi property (1.1), which, combined with the critical
triangle property of the metric, gives the telescoping effect. Take as an example the key
inequality (2.6), which, as we showed, gives immediately the Cauchy property of the
constructed sequence and hence by completeness its limit x0, which clearly becomes
a candidate for a fixed point. This procedure parallels a quest in other proofs for a
maximal element in the sense of the Brøndsted partial order. The lower semicontinuity
of ϕ and the continuity of d with respect to itself taken together finish the job by
proving (using simple analytical arguments in (2.8)) that x0 ∈ Π(xn) for every n ∈ N.
The rest follows through almost automatically. The only point which remains to be
added is the inherent importance of the lack of symmetry in the Caristi property, which
immediately gives unusually strong properties (critical for the proof’s success) of the
function ϕ, such as the monotonicity of the sequence {ϕ(xn)}, the fact that ϕ(T x) ≤ ϕ(x)
and finally its role in showing that T x0 = x0.

Much has been said in the literature about the role of the axiom of choice in
the proof of Caristi’s theorem. While this discussion is not the main subject of
our considerations in this paper, we have to make a few comments related to this
topic. As per the above dissection of the proof, all points characterising the ‘pure
metric proof’ as described in the introductory section have been fulfilled. We have
not used any partial order or transfinite induction based arguments and we have
completely restricted our proof to the standard methods of the theory of metric spaces
and real numbers including the supremum axiom of R (or equivalently the Dedekind
completeness of R). However, our application of mathematical induction to define
the sequence {xn} requires some attention here. This method is commonly used in
standard analysis and indeed its validity does not require any defence. However, it has
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to be noted that it actually requires some form of the axiom of choice. Typically in
such situations a strictly weaker axiom than the axiom of choice (AC), the axiom of
dependent choice (DC), is invoked. This fact is not surprising since DC is sometimes
called the ‘axiom of inductive definition of sequences’ (see, for example, discussions
in [7, 13, 15]), and that is exactly what we did in our proof.
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