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1. Introduction. A famous open problem in functional analysis is whether there
exists a Banach space X such that every (bounded linear) operator on X has the form
λ + K where λ is a scalar and K denotes a compact operator. This problem is usually
called the “scalar-plus-compact” problem [14]. One of the reasons this problem has
become so attractive is that by a result of N. Aronszajn and K. T. Smith [7], if a Banach
space X is a solution to the scalar-plus-compact problem then every operator on X
has a non-trivial invariant subspace and hence X provides a solution to the famous
invariant subspace problem. An important advancement in the construction of spaces
with “few” operators was made by W. T. Gowers and B. Maurey [16], [17]. The ground
breaking work [16] provides a construction of a space without any unconditional basic
sequence thus solving, in the negative, the long standing unconditional basic sequence
problem. The Banach space constructed in [16] is Hereditarily Indecomposable (HI),
which means that no (closed) infinite dimensional subspace can be decomposed into
a direct sum of two further infinite dimensional subspaces. It is proved in [16] that if
X is a complex HI space then every operator on X can be written as λ + S where λ is
a scalar and S is strictly singular (i.e. the restriction of S on any infinite dimensional
subspace of X is not an isomorphism). It is also shown in [16] that the same property
remains true for the real HI space constructed in [16]. V. Ferenczi [10] proved that if
X is a complex HI space and Y is an infinite dimensional subspace of X then every
operator from Y to X can be written as λiY + S where iY : Y → X is the inclusion
map and S is strictly singular. It was proved in [17] that, roughly speaking, given an
algebra of operators satisfying certain conditions, there exists a Banach space X such
that for every infinite dimensional subspace Y , every operator from Y to X can be
written as a strictly singular perturbation of a restriction to Y of some element of the
algebra.

The construction of the first HI space prompted researchers to construct HI
spaces having additional nice properties. In other words people tried to “marry” the
exotic structure of the HI spaces to the nice structure of classical Banach spaces.

∗The present paper is part of the Ph.D thesis of the second author which is prepared at the University of
South Carolina under the supervision of the first author.
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The reasons behind these efforts were twofold. First, by producing more examples
of HI spaces having additional well understood properties we can better understand
how the HI property effects other behaviors of the space. Second, there is hope that
endowing an HI space with additional nice properties could cause the strictly singular
and compact operators on the space to coincide giving a solution to the scalar-plus-
compact problem.

An open problem that has resisted the attempts of many experts is whether there
exists a weak Hilbert HI Banach space. Recall that an infinite dimensional Banach
space X is a weak Hilbert Banach space [19], [20] if there exist positive numbers δ, C
such that every finite dimensional space E ⊂ X contains a subspace F ⊂ E such that
dim F ≥ δ dim E, the Banach-Mazur distance between F and �dim F

2 is at most equal to
C and there is a projection P : X → F with ‖P‖ ≤ C, (�n

2 denotes the Hilbert space of
dimension n). Operator theory on weak Hilbert spaces has been studied in [19], [20].
In particular, the Fredholm alternative has been established for weak Hilbert spaces.

Recall some standard notation: Given a Schauder basis (ei) of a Banach space, a
sequence (xn) of non-zero vectors of Span(ei)i is called a block basis of (ei) if there exist
successive subsets F1 < F2 < · · · of �, (where for E, F ⊂ �, E < F means max E <

min F), and a scalar sequence (ai) so that xn = ∑
i∈Fn

aiei for every n ∈ �. We write
x1 < x2 < · · · whenever (xn) is a block basis of (ei). If x = ∑

i aiei ∈ Span(ei)i then
define the support of x by supp x = {i : ai 	= 0}, and the range of x, r(x), as the smallest
interval of integers containing supp x.

Some of the efforts that have been made in order to construct HI space possessing
additional nice properties are the following. Gowers [15] constructed an HI space
which has an asymptotically unconditional basis. A Schauder basis (en) is called
asymptotically unconditional if there exist a constant C such that for any positive
integer m, and blocks (xi)m

i=1 of (ei) with m ≤ x1 (i.e m ≤ min supp x1) and for any signs
(εi)m

i=1 ⊂ {±1} we have

∥∥∥∥∥
m∑

i=1

εixi

∥∥∥∥∥ ≤ C

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ .

Maurey [18, pp. 141–142] asked whether there exists an asymptotic �p HI space
for 1 < p < ∞ and Gowers conjectured the existence of such spaces in [15, p. 112].
Recall that a Banach space X having a Schauder basis (en) is called asymptotic �2 if
there exists a constant C such that for every m ∈ � and all blocks (xi)m

i=1 of (en)n with
m ≤ x1 we have

1
C

(
m∑

i=1

‖xi‖2

) 1
2

≤
∥∥∥∥∥

m∑
i=1

xi

∥∥∥∥∥ ≤ C

(
m∑

i=1

‖xi‖2

) 1
2

.

In the present paper we construct an HI Banach space which is asymptotic �2. Our
approach closely uses the methods and techniques of the paper [12] of I. Gasparis. The
norm of our space X satisfies an upper �2-estimate for blocks (i.e. there exists a constant
C such that for all blocks (xi)m

i=1 of (en)n we have ‖∑m
i=1 xi‖ ≤ C(

∑m
i=1 ‖xi‖2)

1
2 ). In

particular our result strengthens a result of N. Dew [9] who constructed an HI space
which satisfies an upper �2-estimate (but not a lower estimate for blocks (xi)m

i=1 with
m ≤ x1).
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S. A. Argyros and I. Deliyanni [2] constructed an HI space which is asymptotic
�1. Recall that a Banach space X having a Schauder basis (en) is called asymptotic �1

if there exists a positive constant C such that for every m ∈ � and all blocks (xi)m
i=1 of

(en)n with m ≤ x1 we have

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ ≥ C
m∑

i=1

‖xi‖.

Ferenczi [11] constructed a uniformly convex HI space. Argyros and V. Felouzis
[3] showed that for every p > 1 there exists an HI space Xp such that �p (or c0 when
p = ∞) is isomorphic to a quotient of Xp. In particular the dual space X∗

p is not an HI
space since it contains an isomorph of �q (for 1/p + 1/q = 1). Argyros and A. Tolias
[6] have constructed an HI space whose dual space is saturated with unconditional
sequences.

Finally we mention that a Banach space Y such that every operator on Y can be
written as λ + S with S strictly singular, has to be indecomposable (i.e. the whole space
cannot be decomposable into the direct sum of two infinite dimensional subspaces)
but not HI. Indeed, Argyros and A. Manoussakis [4], [5] have constructed such spaces
Y not containing an HI subspace.

Note. After the submission of the current manuscript, the authors became aware of
an HI asymptotic �p Banach spaces (for 1 < p < ∞) constructed independently by
Deliyanni and Manoussakis [8]. Their construction and methods are different from
ours. In particular the selection of special functionals in the two constructions is
different.

2. The construction of the space X . In this section we construct a Banach space
X . We shall prove in Section 3 that X is asymptotic �2 and in Section 4 that X is HI.
The construction makes use of the Schreier families Sξ (for ξ < ω) that are defined in
the following way, See [1]. Set S0 = {{n}} : n ∈ �} ∪ {∅}. After defining Sξ for ξ < ω,
set

Sξ+1 = {∪n
i=1 Fi : n ∈ �, n ≤ F1 < · · · < Fn, Fi ∈ Sξ

}
,

(here we assume that the empty set satisfies ∅ < F and F < ∅ for any set F). Important
properties of the Schreier families are that they are hereditary (i.e if F ∈ Sξ and G ⊂ F
then G ∈ Sξ ), spreading (i.e if (pi)n

i=1 ∈ Sξ and pi ≤ qi for all i ≤ n then (qi)n
i=1 ∈ Sξ ),

and they have the convolution property (i.e. if F1 < · · · < Fn are each members of Sα

such that {min Fi : i ≤ n} belongs to Sβ then ∪n
i=1Fi belongs to Sα+β). For Ei ⊂ � we

say (Ei)n
i=1 is Sξ -admissible if E1 < E2 < · · · < En and (min Ei)i ∈ Sξ .

Let [�] denote the collection of infinite sequences of positive integers and for
M ∈ [�] let [M] denote the collection of infinite sequences of elements of M. Let c00

denote the vector space of the finitely supported scalar sequences and (en) denote the
unit vector basis of c00.

Using Schreier families we define repeated hierarchy averages as in [12]. For ξ < ω

and M ∈ [�], we define a sequence ([ξ ]Mn )∞n=1, of elements of c00 whose supports are
successive subsets of M, as follows.
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For ξ = 0, let [ξ ]Mn = emn for all n ∈ �, where M = (mn). Assume that ([ξ ]Mn )∞n=1
has been defined for all M ∈ [�]. Set

[ξ + 1]M1 = 1
min M

min M∑
i=1

[ξ ]Mi .

Suppose that [ξ + 1]M1 < · · · < [ξ + 1]Mn have been defined. Let

Mn = {
m ∈ M : m > max supp [ξ + 1]Mn

}
and kn = min Mn.

Set

[ξ + 1]Mn+1 = 1
kn

kn∑
i=1

[ξ ]Mn
i .

For x ∈ c00 let (x(k))k∈� denote the coordinates of x with respect to (ek) (i.e. x =∑
k x(k)ek). For M ∈ [�], ξ < ω and n ∈ � define (ξ )M

n ∈ c00 by (ξ )M
n (k) = √

[ξ ]Mn (k)
for all k ∈ �. It is proved in [13] that for every M ∈ [�] and ξ < ω, sup{∑k∈F [ξ ]M1 (k) :
F ∈ Sξ−1} < ξ/ min M. From this it follows that

for every ξ < ω and ε > 0 there exists n ∈ � such that for all M ∈ [�] with

n ≤ min M we have that sup
{(∑

k∈F

(
(ξ )M

1 (k)
)2

) 1
2

: F ∈ Sξ−1

}
< ε. (1)

DEFINITION 2.1. Let (un)n be a normalized block basis of (en)n, ε > 0 and 1 ≤ ξ <

w. Set pn = min supp un for all n ∈ � and P = (pn).
(1) An (ε, ξ ) squared average of (un)n is any vector that can be written in the form∑∞

n=1(ξ )R
1 (pn)un, where R ∈ [P] and sup{(∑k∈F ((ξ )R

1 (k))2)
1
2 : F ∈ Sξ−1} < ε.

(2) A normalized (ε, ξ ) squared average of (un)n is any vector u of the form u =
v/‖v‖ where v is a (ε, ξ ) squared average of (un)n. In the case where ‖v‖ ≥ 1/2,
u is called a smoothly normalized (ε, ξ ) squared average of (un)n.

In order to define the asymptotic �2 HI space X we fix four sequences M = (mi),
L = (�i), F = ( fi) and N = (ni) of positive integers that are defined as follows. Let
M = (mi)i∈� ∈ [�] be such that m1 > 246 and m2

i < mi+1 for all i ∈ �. Choose L =
(li)i∈� ∈ [�] such that and 2li > mi for all i ∈ �. Now choose an infinite sequences
N = (ni)i∈�∪{0} and F = ( fi)i∈� such that n0 = 0, lj( fj + 1) < nj for all j ∈ �, f1 = 1
and for j ≥ 2,

fj = max

⎧⎨
⎩

∑
1≤i<j

ρini : ρi ∈ � ∪ {0},
∏

1≤i<j

mρi
i < m3

j

⎫⎬
⎭ . (2)

We now define appropriate trees.

DEFINITION 2.2. A setT is called an appropriate tree if the following four conditions
hold:

(1) T is a finite set and each element of T (which is called a node of T ) is of the
form (t1, . . . , t3n) where n ∈ �, t3i−2 ∈ M ∪ {0} for 1 ≤ i ≤ n (these nodes are
called the M-entries of (t1, . . . , t3n)), t3i−1 is a finite subset of � for 1 ≤ i ≤ n,
and t3i is a rational number of absolute value at most equal to 1 for 1 ≤ i ≤ n.
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(2) T is partially ordered with respect to the initial segment inclusion ≺, i.e. if
(t1, . . . , t3n), (s1, . . . , s3m) ∈ T then (t1, . . . , t3n) ≺ (s1, . . . , s3m) if n < m and ti =
si for i = 1, . . . , 3n. For α, β ∈ T we also write α � β to denote α ≺ β or α = β.
For α ∈ T the elements β ∈ T satisfying β ≺ α (respectively α ≺ β) are called
the predecessors (resp. successors) of α. If (t1, . . . , t3n) ∈ T then the length
of (t1, . . . , t3n) is denoted by |(t1, . . . , t3n)| and it is equal to 3n. There exists
a unique element of T which has length 3 and it is called the root of T ,
and it is the minimum element of T with respect to ≺. Every element α ∈ T
except the root of T has a unique immediate predecessor which is denoted by
α−. If α is the root of T set α− = ∅. If (t1, . . . , t3n) ∈ T then (t1, . . . , t3�) ∈ T
for all 1 ≤ � ≤ n. The nodes of T without successors are called terminal. If
α is terminal α = (t1, . . . , t3n) then t3n−2 = 0 and t3i−2 ∈ M for 1 ≤ i < n. If
β = (t1, . . . , t3k) is non-terminal then t3i−2 ∈ M for 1 ≤ i ≤ k. If α ∈ T is non-
terminal, then the set of nodes β ∈ T with α ≺ β and |β| = |α| + 3 are called
immediate successors of α. Also Dα denotes the set of immediate successors
of α.

(3) If α ∈ T then the last three entrees of α will be denoted by mα, Iα and γα

respectively. If α is the root of T then mα (resp. Iα) is called the weight of T ,
denoted by w(T ), (resp. the support of T denoted by supp (T )). If α is a terminal
node of T then Iα = {pα} for some pα ∈ �. If α is a non-terminal node of T
then Iα = ∪{Iβ : β ∈ Dα} and for β, δ ∈ Dα with β 	= δ we have either Iβ < Iδ

or Iδ < Iβ .
(4) If α ∈ T is non-terminal and mα = m2j for some j, then (Iβ)β∈Dα

is Sn2j -
admissible and

∑
β∈Dα

γ 2
β ≤ 1.

Now set

G = {T : T is an appropriate tree}.
We make the convention that the empty tree belongs to G.

If T1, T2 ∈ G then we write T1 < T2 if supp (T1) < supp (T2). If T ∈ G and I is
an interval of integers then we define the restriction of T on I , T |I , to denote
the tree resulting from T by keeping only those α ∈ T for which Iα ∩ I 	= ∅ and
replacing Iα by Iα ∩ I for all α ∈ T such that Iα ∩ I 	= ∅. It is easy to see that T |I ∈ G.
It α ∈ T set Tα = {β\α− : β ∈ T , α � β} (for α = (t1, . . . , t3n) ≺ β = (t1, . . . , t3m) let
β\α = (t3n+1, . . . , t3m)). Clearly Tα ∈ G. For T ∈ G and α0 the root of T , define −T by
changing t3 to −t3 in every node (t1, t2, t3, . . . ) of T and keeping everything else in T
unchanged.

Define an injection

σ : {(T1 < · · · < Tn) : n ∈ �, Ti ∈ G (i ≤ n)} → {m2j : j ∈ �}
such that σ (T1, · · · , Tn) > w(Ti) for all 1 ≤ i ≤ n.

DEFINITION 2.3.
(1) For j ∈ �, a collection (T�)n

�=1 ⊂ G is called Sj admissible if (supp T�)n
�=1 is

Sj-admissible.
(2) A collection of Sn2j+1 -admissible trees (T�)n

�=1 ⊂ G is called Sn2j+1 -dependent if
w(T1) = m2j1 for some j1 ≥ j + 1 and σ (T1, · · · , Ti−1) = w(Ti) for all 2 ≤ i ≤ n.

(3) Let G0 ⊂ G. A collection of Sn2j+1 -admissible trees (T�)n
�=1 ⊂ G is said to admit

an Sn2j+1 -dependent extension in G0 if there exist k ∈ � ∪ {0} , L ∈ � and
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R1 < · · · < Rk+1 < · · · < Rk+n ∈ G0, Sn2j+1 -dependent where Rk+i|[L,∞) = Ti

for all 1 ≤ i ≤ n.
(4) We say that G0 ⊂ G is self dependent if for all j ∈ �, T ∈ G0 and α ∈ T is

non terminal such that mα = m2j+1, the family {Tβ : β ∈ Dα} admits an Sn2j+1 -
dependent extension in G0.

A set G0 ⊂ G is symmetric if −T ∈ G0 whenever T ∈ G0; G0 is closed under
restriction to intervals if T |J ∈ G0 whenever T ∈ G0 and J ⊂ � an interval.

DEFINITION 2.4. Let � be the maximal self-dependent, symmetric subset of G closed
under restrictions to intervals such that for every T ∈ � and α ∈ T , with mα = m2j+1 for
some j ∈ � and Dα = {β1, · · · , βn} the sequence (γβi )

n
i=1 is a non-increasing sequence

of positive rationals satisfying
∑n

i=1 γ 2
βi

≤ 1. (Such a maximal set � is obtained by
considering the union of all subsets of G satisfying the properties mentioned in this
definition.)

NOTATION 2.5. Let T ∈ � and α ∈ T .
(1) Define the height of the tree T by o(T ) = max{|β| : β ∈ T }.
(2) Let m(α) = 
β≺αmβ if |α| > 3, while m(α) = 1 if |α| = 3.
(3) If mα = mi for some i ∈ � set nα = ni. Also set n(α) = ∑

β≺α nβ if |α| > 3, while
n(α) = 0 if |α| = 3.

(4) Let γ (α) = 
β≺αγβ if |α| > 3, while γ (α) = 1 if |α| = 3.

Let (e∗
n)n denote the biorthogonal functionals to the unit vector basis of c00. Given

T ∈ �, set

x∗
T =

∑
α∈max T

γ (α)γα

m(α)
e∗

pα

where max T is the set of terminal nodes of T and Iα = {pα} for α ∈ max T .
Let N = {x∗

T : T ∈ �} and define X to be completion of c00 under the norm
‖x‖ = sup{|x∗(x)| : x∗ ∈ N }.

Note that for each T ∈ � there is a unique norming functional x∗
T ∈ N ⊂ {x∗ :

‖x∗‖ ≤ 1} thus set w(x∗
T ) = w(T ) and supp (x∗

T ) = supp (T ). We will often refer to the
range of x∗ ∈ N , r(x∗), which is the smallest interval containing supp (x∗). If x∗ ∈ N
and I is an interval of integers, define the restriction of x∗ on I , x∗|I , by x∗|I (ei) = x∗(ei)
if i ∈ I and x∗|I (ei) = 0 if i 	∈ I . It is then obvious that if T ∈ � and I is an interval of
integers then x∗

T |I = x∗
T |I . For j ∈ � and T1, · · · , Tn ∈ � we say that (x∗

T�
)n
�=1 is Sn2j+1 -

dependent (or it admits an Sn2j+1 -dependent extension) if (T�)n
�=1 is Sn2j+1 -dependent (or

admits an Sn2j+1 -dependent extension). Also, we say that a collection (xi)n
i=1 ⊂ c00 is Sj

admissible if (supp xi)n
i=1 is Sj-admissible.

The maximality of � implies the following result.

REMARK 2.6.
(1) e∗

n ∈ N for all n ∈ �.
(2) For each T ∈ � and α ∈ T the tree Tα = {β\α− : β ∈ T , α � β} is in �.
(3) For every x∗ ∈ N with w(x∗) = m2j for a some j ∈ � we can write

x∗ = 1
m2j

∑
�

γ�x∗
�
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for γ� = γα0γβ�
where α0 is the initial node of the corresponding tree, β� ∈ Dα0 ,

x∗
� = x∗

Tβ�
/γβ�

, (γβ�
)� are rationals and in c00 with

∑
� |γβ�

|2 ≤ 1 and x∗
� ∈ N

where (supp x∗
�)� is Sn2j -admissible.

(4) For every x∗ ∈ N with w(x∗) = m2j+1 for some j ∈ � we can write

x∗ = 1
m2j+1

t∑
�=1

γ�x∗
�

for γ� = γα0γβ�
where α0 is the initial node of the corresponding tree, β� ∈

Dα0 x∗
� = x∗

Tβ�
/γβ�

and (γβ�
)� are positive non-increasing rational scalars in c00

with
∑

� γ 2
β�

≤ 1. Furthermore there exists k ∈ � ∪ {0},L ∈ � and y∗
1 < · · · <

y∗
k+1 < · · · < y∗

k+t where (y∗
�)� is Sn2j+1 -dependent and y∗

k+i|[L,∞) = x∗
i for all

i ≤ t.

Observe that the converses of (3) and (4) also hold. To see this for (3), let
(x∗

�)� be Sn2i admissible and let scalars (γ�)� such that
∑

� |γ�|2 ≤ 1 then we have
1/m2i

∑
� x∗

� ∈ N .

3. Preliminary estimates. In this section we make some estimates similar to those
in [12] that will be important in the proof that X is H.I. First we show that X is
asymptotic �2. Obviously (en)n is a bimonotone unit vector basis for X since the linear
span of (en)n is dense in X and for finite intervals I, J of integers with I ⊂ J and scalars
(an)n we have ‖∑

n∈I anen‖ ≤ ‖∑
n∈J anen‖ (this follows from the fact that � is closed

under restrictions to intervals).
We now introduce a short remark.

REMARK 3.1. Let i ∈ � and x ∈ Span(en)n. Let (x∗
j )j ∈ N be Sni -admissible if i

is even and admit Sni -dependent extension if i is odd, and (γj) ∈ c00 be positive and
non-increasing if i is odd. Define J = {j : r(x∗

j ) ∩ r(x) 	= ∅} then

∣∣∣∣∣∣
1

mi

∑
j

γjx∗
j (x)

∣∣∣∣∣∣ ≤
⎛
⎝∑

j∈J

|γj|2
⎞
⎠

1
2

‖x‖.

Proof. Indeed there exists arbitrarily small (ηj)j, η > 0 such that,

(∑
m∈J

|γm|2
) 1

2

+ η ∈ � and γj + ηj ∈ �.

For j ∈ J let βj = (γj + ηj)/((
∑

m∈J |γm|2)
1
2 + η) ∈ � such that (

∑
j β

2
j )

1
2 ≤ 1. If i is odd

then we have that (βj)j are non-increasing and positive (since (γj)j are) and (x∗
j )j∈J
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has a Sni dependent extension (since J is an interval). Thus 1/mi
∑

j∈J βjx∗
j ∈ N ,

hence

∣∣∣∣∣∣
1

mi

∑
j

γjx∗
j (x)

∣∣∣∣∣∣ =

⎛
⎜⎝

⎛
⎝∑

j∈J

|γj|2
⎞
⎠

1
2

+ η

⎞
⎟⎠

∣∣∣∣∣∣
1

mi

∑
j∈J

βjx∗
j (x)

∣∣∣∣∣∣

≤

⎛
⎜⎝

⎛
⎝∑

j∈J

|γj|2
⎞
⎠

1
2

+ η

⎞
⎟⎠ ‖x‖

Since η > 0 is arbitrary, the result follows. �

The next proposition shows that the norm of X satisfies an upper �2-estimate for
blocks.

PROPOSITION 3.2. If (xi)m
i=1 is a normalized block basis of X then for any sequence of

scalars (ai)i the following holds:

∥∥∥∥∥
m∑

i=1

aixi

∥∥∥∥∥ ≤
√

3

(
m∑

i=1

|ai|2
) 1

2

.

Proof. For the purposes of this proposition define �n = {T ∈ � : o(T ) ≤ 3n} and
Nn = {x∗

T : T ∈ �n}. For x ∈ c00 define ‖x‖n = sup{x∗(x) : x∗ ∈ Nn}. Notice that the
norm ‖ · ‖ of X satisfies limn→∞ ‖x‖n = ‖x‖. We will use induction on n to verify that
‖ · ‖n satisfies the statement of the proposition.

For n = 1, Nn = {γ e∗
m : γ ∈ �, |γ | ≤ 1, m ∈ �}, and so the claim is trivial.

For the inductive step, let x∗ = 1/mk
∑

j γjx∗
j ∈ Nn+1 (where (x∗

j )j ⊂ Nn is Snk

admissible and
∑

j |γj|2 ≤ 1) and let

Q(1) = {1 ≤ i ≤ m : there is exactly one j such that r(x∗
j ) ∩ r(xi) 	= ∅},

and Q(2) = {1, . . . , m}\Q(1). Now apply the functional x∗ to
∑m

i=1 aixi to obtain

∣∣∣∣∣∣
1

mk

∑
j

γjx∗
j

(
m∑

i=1

aixi

)∣∣∣∣∣∣ ≤ 1
mk

∑
j

|γj|

∣∣∣∣∣∣∣∣∣
x∗

j

∑
i∈Q(1)

r(x∗
j )∩r(xi)	=∅

aixi

∣∣∣∣∣∣∣∣∣
+ 1

mk

∣∣∣∣∣∣
∑

j

γjx∗
j

∑
i∈Q(2)

aixi

∣∣∣∣∣∣

≤
√

3
mk

∑
j

|γj|

⎛
⎜⎜⎜⎝

∑
i∈Q(1)

r(x∗
j )∩r(xi)	=∅

|ai|2

⎞
⎟⎟⎟⎠

1
2

+
∑

i∈Q(2)

|ai|
∣∣∣∣∣∣

1
mk

∑
j

γjx∗
j (xi)

∣∣∣∣∣∣,
(3)
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by applying the induction hypothesis for
∑

{i∈Q(1):r(x∗
j )∩r(xi)	=∅} aixi. The above estimate

continues as follows,

≤
∑

j

|γj|

⎛
⎜⎜⎜⎝

∑
i∈Q(1)

r(x∗
j )∩r(xi)	=∅

a2
i

⎞
⎟⎟⎟⎠

1
2

+
⎛
⎝ ∑

i∈Q(2)

a2
i

⎞
⎠

1
2
⎛
⎝ ∑

i∈Q(2)

∑
{j:r(x∗

j )∩r(xi)	=∅}
|γj|2

⎞
⎠

1
2

≤
⎛
⎝∑

j

|γj|2
⎞
⎠

1
2

⎛
⎜⎜⎜⎝

∑
j

∑
i∈Q(1)

r(x∗
j )∩r(xi)	=∅

a2
i

⎞
⎟⎟⎟⎠

1
2

+
⎛
⎝ ∑

i∈Q(2)

a2
i

⎞
⎠

1
2
⎛
⎝2

∑
j

|γj|2
⎞
⎠

1
2

≤
√

3

(
m∑
i

|ai|2
) 1

2

,

(4)

where for the first inequality of (4) we used that
√

3 < m1, Remark 3.1 and applied
the Cauchy-Schwarz inequality. For the second inequality of (4) we used the fact that
for each j there are at most two values of i ∈ Q(2) such that r(x∗

j ) ∩ r(xi) 	= ∅. For the
third inequality of (4) we used

∑
� |γ�|2 ≤ 1. Combine (3) and (4) to finish the inductive

step. �
COROLLARY 3.3. Let (xi)n

i=1 be a block basis of X with n ≤ x1. Then for any sequence
of scalars (ai)i, we have

1
m2

(
n∑

i=1

|ai|2
) 1

2

≤
∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥ ≤
√

3

(
n∑

i=1

|ai|2
) 1

2

.

Proof. Let (xi)n
i=1 be a normalized block sequence of (en) such that n ≤ x1 and

scalars (ai)n
i=1. The upper inequality follows from Proposition 3.2. Note that, (xi)n

i=1 is
S1 admissible hence Sn2 admissible. Find norm one functionals (x∗

i )n
i=1 ∈ N such that

r(x∗
i ) ⊂ r(xi) and x∗

i (xi) = 1 for all i ≤ n. To establish the lower inequality apply the
functional

1
m2

n∑
i=1

⎛
⎝ai

/ (
n∑

i=1

a2
i

) 1
2

⎞
⎠ x∗

i

(by approximation by rationals the norm of the above is at most one) to
∑n

i=1 aixi. �
The next lemma is a variation of the decomposition lemma found in [12] and will

be used in the proof of Lemma 3.12 and Proposition 4.1

LEMMA 3.4. (Decomposition Lemma) Let x∗ ∈N . Let j ∈ � be such that w(x∗) < mj.
Then there exists an Sfj -admissible collection (x∗

α)α∈L and a sequence of scalars (λα)α∈L

such that L = ∪3
i=1Li and:

(1) x∗ = ∑
α∈L λαx∗

α.

(2)
(∑

α∈L1
|λα|2) 1

2 ≤ 1
m2

j
,
(∑

α∈L |λα|2) 1
2 ≤ 1

w(x∗) .

(3) w(x∗
α) ≥ mj for α ∈ L2.

(4) For α ∈ L3 there exists |γα| ≤ 1 and pα ∈ � such that x∗
α = γαe∗

pα
.
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Proof. Since x∗ ∈ N there exists T ∈ � such that x∗ = x∗
T . Define three pairwise

disjoint sets L1, L2, L3 of nodes of T such that for every branch B of T (i.e. a maximal
subset of T which is totally ordered with respect to ≺) there is a unique α ∈ B with
α ∈ ∪3

i=1Li. For every branch B of T choose a node α ∈ B which is maximal with
respect to ≺ such that m(α) < m2

j and all M-entries of α− are less than mj. If α is non-
terminal and mα < mj then α+ ∈ L1, where α+ is the unique ≺-immediate successor of
α in B. Thus for α+ ∈ L1 we have m2

j ≤ m(α+) < m3
j . If α is non-terminal and mα ≥ mj

then α ∈ L2. If α is terminal then α ∈ L3. Let L = ∪3
i=1Li. For α ∈ L let

x∗
α = x∗

Tα
= m(α)

γ (α)
x∗
T |Iα

and λα = γ (α)
m(α)

.

Since m2
j ≤ m(α) for α ∈ L1 we have

(∑
α∈L1

|λα|2
) 1

2

=
(∑

α∈L1

( |γ (α)|
m(α)

)2
) 1

2

≤ 1

m2
j

(∑
α∈L1

|γ (α)|2
) 1

2

≤ 1

m2
j
,

where the last inequality follows from Definition 2.2 (4) and Definition 2.4 (3). If
α ∈ L2 then w(Tα) ≥ mj. If α ∈ L3 then x∗

Tα
= γαe∗

pα
. Finally, since m(α) ≥ w(x∗) for all

α ∈ L we have,

(∑
α∈L

|λα|2
) 1

2

=
(∑

α∈L

( |γ (α)|
m(α)

)2
) 1

2

≤ 1
w(x∗)

(∑
α∈L

|γ (α)|2
) 1

2

≤ 1
w(x∗)

.

By applying the following Remark 3.5 (which also appears in [12]) to the set {Iα : α ∈ L}
we conclude that (x∗

α)α∈L is Sp-admissible where p = max{n(α) : α ∈ L} ≤ fj by (1).
Thus (x∗

α)α∈L is Sfj admissible. �

REMARK 3.5. LetT ∈ �. Let F be a subset ofT consisting of pairwise incomparable
nodes. Then {Iα : α ∈ F} is Sp-admissible, where p = max{n(α) : α ∈ F}.

Proof. Proceed by induction on o(T ). For o(T ) = 3 the assertion is trivial. Assume
the claim for all T ∈ � such that o(T ) < 3n. Let T such that o(T ) = 3n and w(T ) = mi.
If |F | = 1 the assertion is trivial, thus assume |F | > 1. Let α0 be the root of T . Thus
for all β ∈ Dα0 the claim holds for Tβ . For each β ∈ Dα0 define, Fβ = {α\α0 : α ∈ F,

β � α} ⊂ Tβ. We know that for every β ∈ Dα0 we have that {Iα : α ∈ Fβ} is Spβ

admissible where pβ = max{nβ(α) : α ∈ Fβ} and for every α ∈ Tβ ,

nβ(α) =
∑
γ∈Tβ

γ≺α\α0

nγ =
∑

γ∈T ,γ≺α

nα − ni = n(α) − ni.

Thus {Iα : α ∈ Fβ} is Sn(α)−ni admissible for all β ∈ Dα0 . Also {Iβ : β ∈ Dα0} is Sni

admissible so we use the convolution property of Schreier families to conclude that
{Iα : α ∈ F} is Sp admissible. �

LEMMA 3.6. Let (un) be a normalized block basis of (en). Let j ∈ 2� and let y be an
(ε, fj + 1) squared average of (un) with ε < 1/mj. Let (x∗

�)� ∈ N be Sξ -admissible, ξ ≤ fj
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and (γ�)� in c00. Then,

∣∣∣∣∣
∑

�

γ�x∗
�(y)

∣∣∣∣∣ ≤ 5

⎛
⎝ ∑

{�:r(x∗
� )∩r(y)	=∅}

|γ�|2
⎞
⎠

1
2

.

Proof. Let pn = min supp un, R ∈ [(pn)] and y = ∑
n( fj + 1)R

1 (pn)un. Define

Q(1) = {n : there is exactly one � such that r(x∗
�) ∩ r(un) 	= ∅} and

Q(2) = {n : there are at least two �’s such that r(x∗
�) ∩ r(un) 	= ∅}.

∣∣∣∣∣∣
(∑

�

γ�x∗
�

) ⎛
⎝ ∑

n∈Q(1)

( fj + 1)R
1 (pn)un

⎞
⎠

∣∣∣∣∣∣ ≤
∑

�

|γ�|

∣∣∣∣∣∣∣∣
x∗

�

⎛
⎜⎜⎝ ∑

n∈Q(1)
r(x∗

� )∩r(un)	=∅

( fj + 1)R
1 (pn)un

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

≤
∑

{�:r(x∗
� )∩r(y)	=∅}

|γ�|
√

3

⎛
⎜⎜⎝ ∑

n∈Q(1)
r(x∗

� )∩r(un)	=∅

(( fj + 1)R
1 (pn))2

⎞
⎟⎟⎠

1
2

≤
√

3

⎛
⎝ ∑

{�:r(x∗
� )∩r(y)	=∅}

|γ�|2
⎞
⎠

1
2

,

(5)

where for the second inequality we used Proposition 3.2 and for the third inequality
we used the Cauchy-Schwarz inequality. For n in Q(2),∣∣∣∣∣∣

∑
�

γ�x∗
�

⎛
⎝ ∑

n∈Q(2)

( fj + 1)R
1 (pn)un

⎞
⎠

∣∣∣∣∣∣ ≤
∑

n∈Q(2)

( fj + 1)R
1 (pn)

∣∣∣∣∣∣
1

mj

∑
{�:r(x∗

� )∩r(un)	=∅}
γ�x∗

�(un)

∣∣∣∣∣∣ mj

≤
∑

n∈Q(2)

( fj + 1)R
1 (pn)

⎛
⎝ ∑

{�:r(x∗
� )∩r(un)	=∅}

|γ�|2
⎞
⎠

1
2

mj

≤
⎛
⎝ ∑

n∈Q(2)

(( fj + 1)R
1 (pn))2

⎞
⎠

1
2
⎛
⎝ ∑

n∈Q(2)

∑
{�:r(x∗

� )∩r(un)	=∅}
|γ�|2

⎞
⎠

1
2

mj

≤ 2

⎛
⎝2

∑
{�:r(x∗

� )∩r(y)	=∅}
|γ�|2

⎞
⎠

1
2

, (6)

where for the second inequality we used Remark 3.1 and that j is even. For the third
inequality we used the fact that (pn)n∈Q(2) ∈ 2Sξ (i.e. the union of two sets each which
belongs to Sξ ), ξ ≤ fj, ε < 1/mj and the fact that for every � there are at most two
values of n ∈ Q(2) such that r(x∗

�) ∩ r(un) 	= ∅. Combining (5) and (6) we obtain the
desired result since 2

√
2 + √

3 < 5. �
LEMMA 3.7. Let (un) be a normalized block basis of (en). Let ε > 0 and j be an even

integer. Then there exists a smoothly normalized (ε, fj + 1) squared average of (un).
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Proof. Let P = (pn) such that pn = min supp un for all n ∈ �. By (1) assume
without loss of generality that for all R ∈ [P], sup{∑k∈F (( fj + 1)R

1 (k))2)
1
2 : F ∈ Sfj } < ε.

Suppose that the claim is false. For 1 ≤ r ≤ lj construct normalized block bases (ur
i )i

of (un) as follows. Set

u1
i =

∑
n

( fj + 1)P
i (pn)un.

It must be the case that ‖u1
i ‖ < 1/2 for all i ∈ �. Now for each 1 < r ≤ lj, if (ur−1

n )n has
been defined let pr−1

i = min supp ur−1
i , Pr−1 = (pr−1

i ) and

ur
i =

∑
n

( fj + 1)Pr−1
i

(
pr−1

n

) ur−1
n

‖ur−1
n ‖ .

For all r and i, ‖ur
i ‖ < 1/2. Write ulj

1 = ∑
n∈F anun for some finite set F ⊂ � and an > 0

with (un)n∈F being S( fj+1)�j -admissible and (
∑

n∈F a2
n)

1
2 ≥ 2lj−1. For n ∈ F let u∗

n ∈ N ,
‖u∗

n‖ = u∗
n(un) = 1 and supp u∗

n ⊂ r(un). Set

x∗ = 1
mj

∑
n∈F

⎛
⎝an

/ (∑
m∈F

a2
m

) 1
2

⎞
⎠ u∗

n.

Since ( fj + 1)lj < nj and j is even, we have by rational approximation that ‖x∗‖ ≤ 1.
Thus

1
2

>
∥∥ulj

1

∥∥ ≥ x∗(ulj
1

) = 1
mj

∑
n∈F

an(∑
m∈F a2

m

) 1
2

u∗
n

(∑
n∈F

anun

)
≥ 2lj−1

mj
,

contradicting that mj ≤ 2lj . �

LEMMA 3.8. Let (un)n be a normalized block basis of (en)n and j0 ∈ �. Suppose
that (yk)k is a block basis of (un)n so that yk is a smoothly normalized (εk, f2jk + 1)
squared average of (un)n with εk < 1/m2jk and j0 < 2j1 < 2j2 < · · · . Let (x∗

m)m ⊂ N be
Sξ admissible, ξ < nj0 and (γm)m, (βk)k ∈ c00. Then

∣∣∣∣∣
∑

m

γmx∗
m

(∑
k

βkyk

)∣∣∣∣∣ ≤ 22

(∑
m

|γm|2
) 1

2
(∑

k

|βk|2
) 1

2

.

Proof. Define the following two sets,

Q(1) = {k : there is exactly one m such that r(x∗
m) ∩ r(yk) 	= ∅},

Q(2) = {k : there are at least two m’s such that r(x∗
m) ∩ r(yk) 	= ∅}.
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∑

m

γmx∗
m

⎛
⎝ ∑

{k∈Q(1):r(x∗
m)∩r(yk)	=∅}

βkyk

⎞
⎠

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑

m

γmx∗
m

⎛
⎝ ∑

k∈Q(2)

βkyk

⎞
⎠

∣∣∣∣∣∣
≤

∑
m

|γm|
√

3

⎛
⎝ ∑

{k∈Q(1):r(x∗
m)∩r(yk)	=∅}

|βk|2
⎞
⎠

1
2

+
∑

k∈Q(2)

|βk|
∣∣∣∣∣∣

∑
{m:r(x∗

m)∩r(yk)	=∅}
γmx∗

m(yk)

∣∣∣∣∣∣
≤ 2

(∑
m

|γm|2
) 1

2

⎛
⎝∑

m

∑
{k∈Q(1):r(x∗

m)∩r(yk)	=∅}
|βk|2

⎞
⎠

1
2

+ 10
∑

k∈Q(2)

|βk|
⎛
⎝ ∑

{m:r(x∗
m)∩r(yk)	=∅}

|γm|2
⎞
⎠

1
2

≤ 2

(∑
m

|γm|2
) 1

2
(∑

k

|βk|2
) 1

2

+ 20

(∑
m

|γm|2
) 1

2
(∑

k

|βk|2
) 1

2

≤ 22

(∑
k

|βk|2
) 1

2
(∑

m

|γm|2
) 1

2

.

For the first inequality we used Proposition 3.2. For the second inequality we applied
the Cauchy-Schwarz inequality in the first term of the sum and in the second term of
the sum we used the fact that ξ < nj0 < f2jk for all k to apply Lemma 3.6. The “10”
in the second part of the second inequality comes from the fact that yk is smoothly
normalized. For the third inequality we used the Cauchy-Schwarz inequality. The “20”
after the third inequality comes from the fact that for every m there are at most two
values of k ∈ Q(2) such that r(x∗

m) ∩ r(yk) 	= ∅. �

LEMMA 3.9. Let (un)n be a normalized block basis of (en)n. Suppose that (yj)j is a
block basis of (un)n so that yj is a smoothly normalized (εj, f2j + 1) squared average of (un)n

with εj < 1/m2j . Then there exists a subsequence (yj)j∈I of (yj)j such that for every j0 ∈ �,
j1, j2, . . . ∈ I with j0 < 2j1 < 2j2 < . . . , x∗ ∈ N with w(x∗) ≥ mj0 and scalars (βj)j ∈ c00

we have that:

(1) If w(x∗) < m2j1 then

∣∣∣∣∣x∗
(∑

k

βkyjk

)∣∣∣∣∣ <
5

me

⎛
⎝ ∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

,

where me = mj0 if w(x∗) = mj0 and me = m2
j0 if w(x∗) > mj0 .

(2) If m2js ≤ w(x∗) < m2js+1 for some s ≥ 1 then

∣∣∣∣∣∣x∗

⎛
⎝∑

k	=s

βkyjk

⎞
⎠

∣∣∣∣∣∣ <
5

m2
j0

⎛
⎝ ∑

{k	=s:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

.

Proof. Lemma 3.7 assures the existence the block sequence (yj)j such that each
yj is a smoothly normalized (εj, f2j + 1) squared average of (un)n. Let T = (tn),
where tn = min supp un. Choose I = (j′k)k ∈ [�] such that, j′1 is an arbitrary integer,
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i>k ε2

j′i
< ε2

j′k
and

(∑
i<k

‖yj′i ‖2
�1

) 1
2

<
m2j′k

m2j′k−1

. (7)

Let j0 ∈ �, j1, j2, . . . ∈ I with j0 < 2j1 < 2j2 < . . . , (βk) ∈ c00 and x∗ ∈ N such that
mj0 ≤ w(x∗) = mi < m2j1 . By definition yjk = vjk/‖vjk‖, where vjk = ∑

n( f2jk + 1)Rk
1 (tn)un

and Rk ∈ [(tn)] is chosen as in Definition 2.1. Let x∗ = 1/mi
∑

� γ�x∗
� for some i where∑

� |γ�|2 ≤ 1, (x∗
�)� is Sni admissible and i < 2j1. Define the following two sets,

Q(1) = {n : there is exactly one � such that r(x∗
�) ∩ r(un) 	= ∅},

Q(2) = {n : there are at least two �’s such that r(x∗
�) ∩ r(un) 	= ∅}.

We proceed with the case n ∈ Q(1).∣∣∣∣∣∣
1

w(x∗)

∑
�

γ�x∗
�

⎛
⎝∑

k

βk

‖vjk‖
∑

{n∈Q(1):r(x∗
� )∩r(un)	=∅}

(
f2jk + 1

)Rk

1 (tn)un

⎞
⎠

∣∣∣∣∣∣
≤ 2

w(x∗)

∑
�

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

{k:r(x∗
� )∩r(yjk )	=∅}

βk

∑
{n∈Q(1):r(x∗

� )∩r(un)	=∅}

(
f2jk + 1

)Rk

1 (tn)un

⎞
⎠

∣∣∣∣∣∣
≤ 2

√
3

w(x∗)

∑
�

|γ�|
⎛
⎝ ∑

{k:r(x∗
� )∩r(yjk )	=∅}

∑
{n∈Q(1):r(x∗

� )∩r(un)	=∅}
|βk|2

((
f2jk + 1

)Rk

1 (tn)
)2

⎞
⎠

1
2

≤ 4
w(x∗)

(∑
�

|γ�|2
) 1

2

⎛
⎝∑

�

∑
{k:r(x∗

� )∩r(vjk )	=∅}
|βk|2

⎞
⎠

1
2

≤ 4
w(x∗)

⎛
⎝∑

�

∑
{k:r(x∗)∩r(yjk )	=∅}

|βk|2
⎞
⎠

1
2

(8)

where for the first and second inequalities we used the fact that ‖vjk‖ < 1/2 and
Proposition 3.2. For the third inequality we used that 2

√
3 ≤ 4 and the Cauchy-

Schwarz inequality. Notice if w(x∗) > mj0 by the choice of M we have 4/w(x∗) < 4/m2
j0 .

For n ∈ Q(2) we have,∣∣∣∣∣ 1
mi

∑
�

γ�x∗
�

∑
k

βk

∑
n∈Q(2)

(
f2jk + 1

)Rk

1 (tn)un

‖vjk‖

∣∣∣∣∣
≤ 2

∑
{k:r(x∗)∩r(yjk )	=∅}

|βk|
∑

n∈Q(2)

(
f2jk + 1

)Rk

1 (tn)

∣∣∣∣∣ 1
mi

∑
�

γ�x∗
�(un)

∣∣∣∣∣

≤ 2
∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|

∑
n∈Q(2)

(
f2jk + 1

)Rk

1 (tn)

⎛
⎝ ∑

{�: r(x∗
� )∩r(un)	=∅}

|γ�|2
⎞
⎠

1
2

≤ 2
∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|

⎛
⎝ ∑

n∈Q(2)

((
f2jk + 1

)Rk

1 (tn)
)2

⎞
⎠

1
2
⎛
⎝ ∑

n∈Q(2)

∑
{�: r(x∗

� )∩r(un)	=∅}
|γ�|2

⎞
⎠

1
2

, (9)
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where for the first inequality we used that ‖vjk‖ > 1/2, for the second inequality we
used Remark 3.1 and for the third inequality we used the Cauchy-Schwarz inequality.
Note that (tn)n∈Q(2) is 2Sni admissible (i.e. it can be written as a union of two sets each
of which is Sni admissible) and ni ≤ f2j1 . Also note that for every � there are at most
two values of n ∈ Q(2) such that r(x∗

�) ∩ r(un) 	= ∅, to continue (9) as follows:

≤ 4
∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|εjk

(∑
�

|γ�|2
) 1

2

≤ 4

⎛
⎝ ∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2
⎛
⎝∑

k≥1

ε2
jk

⎞
⎠

1
2

≤ 8εj1

⎛
⎝ ∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

≤ 4
m2j1

⎛
⎝ ∑

{k:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

. (10)

Obviously (8), (9) and (10) finish the proof of part (1). Assume for s ≥ 1, m2js ≤ w(x∗) <

m2js+1 . Estimate x∗(
∑

k>s βkyjk ) as in (8),(9) and (10) to obtain the same estimate with
m2j1 replaced by m2js+1 . Estimate x∗(

∑
k<s βkyjk ) as follows:

1
w(x∗)

∑
�

γ�x∗
�

∑
k<s

βkyjk =
∑

{k<s:r(x∗)∩r(yjk )	=∅}

∣∣∣∣∣βk
1

w(x∗)

∑
�

γ�x∗
�

(
yjk

)∣∣∣∣∣
≤

∑
{k<s:r(x∗)∩r(yjk )	=∅}

|βk| 1
w(x∗)

∥∥yjk

∥∥
�1

(
since

∥∥∥∥ ∑
�

γ�x∗
�

∥∥∥∥
∞

≤ 1
)

≤
⎛
⎝ ∑

{k<s:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

1
w(x∗)

⎛
⎝ ∑

{k<s:r(x∗)∩r(yjk )	=∅}

∥∥yjk

∥∥2
�1

⎞
⎠

1
2

≤
⎛
⎝ ∑

{k<s:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

1
w(x∗)

m2js

m2js−1

≤ 1
m2js−1

⎛
⎝ ∑

{k<s:r(x∗)∩r(yjk )	=∅}
|βk|2

⎞
⎠

1
2

,

where the third inequality comes from equation (7). This finishes the proof of part
(2). �

REMARK 3.10. Lemma 3.9 will be used several times as follows: Given a normalized
block sequence (un) of (en), Lemma 3.7 will guarantee the existence of a block sequence
(yj) of (en) such that each yj is a smoothly normalized (εj, f2j + 1) squared average of
(un) and εj < 1/m2j for all j ∈ �. Choose a subsequence (yj)j∈I of (yj)j to satisfy the
conclusion of Lemma 3.9. Let j0 ∈ � and j1, j2, . . . ∈ I with j0 < 2j1 < 2j2 < . . . . Let
pk = min supp (yjk ) for all k ∈ �, R ∈ [(pk)],

y =
∑

k

(nj0 )R
1 (pk)yjk and g = y

‖y‖

be a normalized (1/m2
j0 , nj0 ) squared average of (yj)j∈I . Then the conclusion of Lemma

3.9 will be valid for “βk”= (nj0 )R
1 (pk) and for all x∗ ∈ N with w(x∗) ≥ mj0 .

LEMMA 3.11. Let (yj)j∈I , j0 ∈ 2� and a normalized (1/m2
j0 , nj0 ) squared average g

of (yj)j∈I be chosen as in Remark 3.10. Then for any Sξ admissible family (x∗
�)� ⊂ N ,
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ξ < nj0 where w(x∗
�) ≥ mj0 for all � and (γ�)� ∈ c00, we have

∣∣∣∣∣
∑

�

γ�x∗
�(g)

∣∣∣∣∣< 47
mj0

⎛
⎝ ∑

{�: w(x∗
� )>mj0 , r(x∗

� )∩r(g)	=∅}
|γ�|2

⎞
⎠

1
2

+ 6

⎛
⎝ ∑

{�: w(x∗
� )=mj0 , r(x∗

� )∩r(g)	=∅}
|γ�|2

⎞
⎠

1
2

.

(11)

Proof. Let g = y/‖y‖ and note that since j0 is even, ‖y‖ ≥ 1/mj0 where
y = ∑

k(nj0 )R
1 (pk)yjk for pk = min supp yjk for all k ∈ � and R ∈ [(pk)]. Thus∣∣∣∣∣

∑
�

γ�x∗
�(g)

∣∣∣∣∣ ≤ mj0

∑
�

|γ�||x∗
�(y)|. (12)

Let B = {� : w(x∗
�) > mj0} and E = {� : w(x∗

�) = mj0}. Define,

Q(1) = {k : there is exactly one � such that r(x∗
�) ∩ r(yjk ) 	= ∅},

Q(2) = {k : there are at least two �’s such that r(x∗
�) ∩ r(yjk ) 	= ∅}.

For k in Q(2) we have,

mj0

∑
�

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

k∈Q(2)

(
nj0

)R
1 (pk)yjk

⎞
⎠

∣∣∣∣∣∣
≤ mj0

∑
k∈Q(2)

(
nj0

)R
1 (pk)

∑
{�:r(x∗

� )∩r(yjk )	=∅}
|γ�|

∣∣x∗
�

(
yjk

)∣∣

≤ mj0

∑
k∈Q(2)

(
nj0

)R
1 (pk)10

⎛
⎝ ∑

{�:r(x∗
� )∩r(yjk )	=∅}

|γ�|2
⎞
⎠

1
2

, (13)

where for the second inequality we used that yjk ’s are smoothly normalized, and applied
Lemma 3.6 since (x∗

�)� are Sξ admissible with ξ < nj0 < f2jk for all k. By applying the
Cauchy-Schwarz inequality the estimate (13) continues as follows:

≤ 10mj0

⎛
⎝ ∑

k∈Q(2)

((
nj0

)R
1 (pk)

)2

⎞
⎠

1
2
⎛
⎝ ∑

k∈Q(2)

∑
{�:r(x∗

� )∩r(yjk )	=∅}
|γ�|2

⎞
⎠

1
2

≤ 10mj0
2

m2
j0

2

⎛
⎝ ∑

{�:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

≤ 40
mj0

⎛
⎝ ∑

{�∈B:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

+
⎛
⎝ ∑

{�∈E:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

. (14)

For the second inequality we used the fact that (pk)k∈Q(2) is 2Sξ admissible, ξ < nj0 , and
that for every � there are at most two values of k ∈ Q(2) such that r(x∗

�) ∩ r(yjs ) 	= ∅.
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For each � let s� be the integer s such that m2js ≤ w(x∗
�) < m2js+1 and r(x∗

�) ∩ r(yjk ) 	=
∅ if such s exists (obviously, no such s exists if � ∈ E i.e. it is defined for certain values
of � ∈ B). For k’s in Q(1),

mj0

∑
�

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

k∈Q(1)

(
nj0

)R
1 (pk)yjk

⎞
⎠

∣∣∣∣∣∣
≤ mj0

⎛
⎝∑

�

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

{k∈Q(1):k	=s�}

(
nj0

)R
1 (pk)yjk

⎞
⎠

∣∣∣∣∣∣ +
∑

�

|γ�|
∣∣∣x∗

�

((
nj0

)R
1

(
ps�

)
yjs�

)∣∣∣
⎞
⎠ . (15)

For the first term of the sum,

mj0

∑
�

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

{k∈Q(1):k 	=s�}

(
nj0

)R
1 (pk)yjk

⎞
⎠

∣∣∣∣∣∣
≤ mj0

⎛
⎝∑

�∈B

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

{k∈Q(1):k 	=s�}

(
nj0

)R
1 (pk)yjk

⎞
⎠

∣∣∣∣∣∣ +
∑
�∈E

|γ�|
∣∣∣∣∣∣x∗

�

⎛
⎝ ∑

{k∈Q(1):k 	=s�}

(
nj0

)R
1 (pk)yjk

⎞
⎠
∣∣∣∣∣∣
⎞
⎠

≤ mj0

⎛
⎜⎜⎜⎝
∑
�∈B

|γ�| 5

m2
j0

⎛
⎜⎜⎝ ∑

k∈Q(1),k 	=s�

r(x∗
� )∩r(yjk )	=∅

((
nj0

)R
1 (pk)

)2

⎞
⎟⎟⎠

1
2

+
∑
�∈E

|γ�| 5
mj0

⎛
⎜⎜⎝ ∑

k∈Q(1),k 	=s�

r(x∗
� )∩r(yjk )	=∅

((
nj0

)R
1 (pk)

)2

⎞
⎟⎟⎠

1
2

⎞
⎟⎟⎟⎠

≤ 5
mj0

(∑
�∈B

|γ�|2
) 1

2

+ 5

(∑
�∈E

|γ�|2
) 1

2

. (16)

For the second inequality of (16) we applied Lemma 3.9. Notice that the s� were picked
to coincide with part (2) of Lemma 3.9. The final inequality of (16) followed from the
Cauchy-Schwarz inequality.

For the second part of the right hand side of (15) notice that the only � that appear
are the ones for which s� is defined. Also recall that if s� is defined then w(x∗

�) > mj0
hence � ∈ B. Thus the second part of the right hand side of (15) can be estimated as
follows:

mj0

∑
{�: s� is defined}

|γ�|
∣∣∣x∗

�

((
nj0

)R
1

(
ps�

)
yjs�

)∣∣∣ ≤ mj0

∑
{�: s� is defined}

|γ�|
(
nj0

)R
1

(
ps�

)

≤ mj0

⎛
⎝ ∑

{�: s� is defined}
|γ�|2

⎞
⎠

1
2
⎛
⎝ ∑

{�: s� is defined}

((
nj0

)R
1

(
ps�

))2

⎞
⎠

1
2

≤ 2
mj0

⎛
⎝ ∑

{�: s� is defined}
|γ�|2

⎞
⎠

1
2

, (17)

where for the second inequality we applied the Cauchy-Schwarz inequality and
for the third inequality we used that (x∗

�)� is Sξ admissible for ξ < nj0 ; hence

https://doi.org/10.1017/S0017089506003193 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003193


520 G. ANDROULAKIS AND K. BEANLAND

{(ps�

)
: s� is defined} ∈ 2Sξ . The result follows by combining the estimates (12),

(13),(14),(15),(16), and (17). �

LEMMA 3.12. Let (yj)j∈I , j0 ∈ 2� and a normalized (1/m2
j0 , nj0 ) squared average g of

(yj)j∈I chosen as in Remark 3.10. Then for any Sni admissible family (x∗
�)� ⊂ N , i < j0

and (γ�)� ∈ c00, we have

∣∣∣∣∣
∑

�

γ�x∗
�(g)

∣∣∣∣∣ <
123
me

⎛
⎝ ∑

{�:w(x∗
� )	=mj0 ,r(x∗

� )∩r(g)	=∅}
|γ�|2

⎞
⎠

1
2

+ 6

⎛
⎝ ∑

{�:w(x∗
� )=mj0 ,r(x∗

� )∩r(g)	=∅}
|γ�|2

⎞
⎠

1
2

,

(18)

where me = min�{w(x∗
�), mj0}.

Proof. Let g = y/‖y‖ and since j0 is even note that ‖y‖ ≥ 1/mj0 where
y = ∑

k(nj0 )R
1 (pk)yjk for pk = min supp yjk for all k ∈ � and R ∈ [(pk)]. Let S = {� :

w(x∗
�) < mj0}, E = {� : w(x∗

�) = mj0} and B = {� : w(x∗
�) > mj0}. Using Lemma 3.4 for

� ∈ S we write

x∗
� =

∑
m∈L�

λ�,mx∗
�,m,

where L� = ∪3
i=1L�,i and the following are satisfied:

⎛
⎝ ∑

m∈L�,1

|λ�,m|2
⎞
⎠

1
2

≤ 1

m2
j0

,

(∑
m∈L�

|λ�,m|2
) 1

2

≤ 1
w(x∗

�)
, (19)

w(x∗
�,m) ≥ mj0 for m ∈ L�,2, x∗

�,m = γ�,me∗
p�,m

for m ∈ L�,3, |γ�,m| ≤ 1 and p�,m ∈ �. Now
we have

∣∣∣∣∣
∑

�

γ�x∗
�(g)

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
{�∈S:r(x∗

� )∩r(g)	=∅}
γ�

∑
m∈L�

λ�,mx∗
�,m(g)

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
� 	∈S

γ�x∗
�(g)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

{�∈S:r(x∗
� )∩r(g)	=∅}

γ�

∑
m	∈L�,2

λ�,mx∗
�,m(g)

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∑
{�∈S:r(x∗

� )∩r(g)	=∅}
γ�

∑
m∈L�,2

λ�,mx∗
�,m(g)

∣∣∣∣∣∣
+ 47

mj0

⎛
⎝ ∑

{�∈B:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

+ 6

⎛
⎝ ∑

{�∈E:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

. (20)

For the second inequality we applied Lemma 3.11. Now since (x∗
�,m)m is Sfj0

admissible and (x∗
�)� is Sni admissible we can use the convolution property of Schreier

families to conclude that (x∗
�,m)�∈S,m∈L�

is Sfj0 +ni and hence S2fj0
admissible. Thus for
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“ξ” = 2fj0 < nj0 apply Lemma 3.11 to the second term of the sum to obtain,

∣∣∣∣∣∣
∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

γ�

∑
m∈L�,2

λ�,mx∗
�,m(g)

∣∣∣∣∣∣

≤ 47
mj0

⎛
⎜⎜⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
∑

m∈L�,2
w(x∗

�,m)>mj0

|λ�,m|2

⎞
⎟⎟⎠

1
2

+ 6

⎛
⎜⎜⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
∑

m∈L�,2
w(x∗

�,m)=mj0

|λ�,m|2

⎞
⎟⎟⎠

1
2

≤ 47
mj0

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
(

1
w(x∗

�)

)2
⎞
⎠

1
2

+ 6

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
(

1
w(x∗

�)

)2
⎞
⎠

1
2

(by (19))

≤ 47
mj0 min�{w(x∗

�)}

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
⎞
⎠

1
2

+ 6
min�{w(x∗

�)}

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
⎞
⎠

1
2

≤ 53
me

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g) 	=∅}

|γ�|2
⎞
⎠

1
2

. (21)

Now separate the first term of (20) into two terms. Recall g = y/‖y‖, ‖y‖ ≥ 1/mj0 ,
(x∗

�,m)�∈S,m∈L�
is S2fj0

admissible, and apply Lemma 3.8 for “ξ”= 2fj0 < nj0 ,

“
∑

m

γmx∗
m” =

∑
{�∈S:r(x∗

� )∩r(g)	=∅}
γ�

∑
m∈L�,1

λ�,mx∗
�,m

and “
∑

k βkyk”= y to conclude that,∣∣∣∣∣∣
∑

{�∈S:r(x∗
� )∩r(g)	=∅}

γ�

∑
m	∈L�,2

λ�,mx∗
�,m(g)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

{�∈S:r(x∗
� )∩r(g)	=∅}

γ�

∑
m∈L�,1

λ�,mx∗
�,m(g)

∣∣∣∣∣∣
+ mj0

∣∣∣∣∣∣
∑

{�∈S:r(x∗
� )∩r(g)	=∅}

γ�

∑
m∈L�,3

λ�,mγ�,me∗
p(�,m)

∑
k

(
nj0

)R
1 (pk)yjk

∣∣∣∣∣∣
≤ 22mj0

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
∑

m∈L�,1

|λ�,m|2
⎞
⎠

1
2

+ mj0

∣∣∣∣∣∣
∑

{�∈S:r(x∗
� )∩r(g)	=∅}

γ�

∑
m∈L�,3

λ�,mγ�,m
(
nj0

)R
1

(
pk(�,m)

)∣∣∣∣∣∣ , (22)

where for every � ∈ S and m ∈ L�,3, k(�, m) is the unique integer k (if any) such that
e∗

p(�,m)(yjk ) 	= 0. If no such k exists then the corresponding term is absent from the second
part of the sum. Now (22) continues by applying (19), the Cauchy-Schwarz inequality
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and the facts |γ�,m| ≤ 1 and (k(�, m))�∈S,m∈L�,3 ∈ Sni+fj0
⊂ S2fj0

where 2fj0 < nj0 :

≤ 22mj0

m2
j0

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

+ mj0

∑
{�∈S:r(x∗

� )∩r(g)	=∅}
|γ�|

⎛
⎝ ∑

m∈L�,3

|λ�,m|2
⎞
⎠

1
2
⎛
⎝ ∑

m∈L�,3

((
nj0

)R
1

(
pk(�,m)

))2

⎞
⎠

1
2

≤ 22
mj0

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

+ mj0

min�{w(x∗
�)}

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

×
⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

∑
m∈L�,3

((
nj0

)R
1

(
pk(�,m)

))2

⎞
⎠

1
2

≤ 22
mj0

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

+ 1
mj0 min�{w(x∗

�)}

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

≤ 23
mj0

⎛
⎝ ∑

{�∈S:r(x∗
� )∩r(g)	=∅}

|γ�|2
⎞
⎠

1
2

. (23)

The result follows by combining (20), (21), (22) and (23). �
COROLLARY 3.13. Let (yj)j∈I , j0 ∈ 2� and a normalized (1/m2

j0 , nj0 ) squared average
g of (yj)j∈I chosen as in Remark 3.10. Then for any x∗ ∈ N such that |x∗(g)| > 1/2 we
have that w(x∗) = mj0 .

Proof. Let x∗ ∈ N . Assume w(x∗) 	= mj0 . Apply Lemma 3.12 for i = 0, for (recall
that n0 = 0) the Sni admissible family (x∗

�)� being the singleton {x∗} and γ1 = 1, to
obtain that

|x∗(g)| <
123
me

≤ 123
m1

<
1
2
, (24)

(where me = min(mj0 , w(x∗))), since m1 > 246. �

4. X is a hereditarily indecomposable Banach space. We now show that X is
HI. We proceed by fixing j ∈ � and by defining vectors (gi)

p
i=1 and (zi)

p
i=1, functionals

(x∗
i )p

i=1 ∈ N , positive integers (ji)
p
i=1 and R = (ti) ∈ � which will be fixed throughout the

section and shall be referred to in the results of the section. By using standard arguments
we can assume that any two subspaces, in our case with trivial intersection, are spanned
by normalized block bases of (en). Let (un) and (vn) be two such normalized block
bases of (en) and fix j ∈ �. Set P = (pn) and Q = (qn) where pn = min supp un and qn =
min supp vn for all n ∈ �. By passing to subsequences of (pn) and (qn) and relabeling,
assume by (1) that if R ∈ [P ∪ Q] then for ξ < n2j+1, sup{(∑k∈F ((n2j+1))R

1 (k))2)
1
2 : F ∈

Sξ } < 1/m2
2j+1. By Lemma 3.7 let (yi)i∈2�−1 (resp. (yi)i∈2�) be a block sequence of (un)n

(resp. (vn)n) such that yi is a smoothly normalized (1/m2i, f2i + 1) squared average of
(un)n (resp. (vn)n). Apply Lemma 3.9 to (yi)i∈2�−1 and (yi)i∈2� to obtain I1 ∈ [2� − 1]
and I2 ∈ [2�] such that (yi)i∈I1 and (yi)i∈I2 satisfy the statement of Lemma 3.9. For j1 ∈
�, 2j1 > 2j + 1 let g1 be a normalized (1/m2

2j1 , n2j1 ) squared average of (yj)j∈I1 . Let x∗
1 ∈
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N with x∗
1(g1) > 1/2 and r(x∗

1) ⊂ r(g1). By Corollary 3.13 we have that w(x∗
1) = m2j1 .

Let m2j2 = σ (x∗
1). Let g2 be a normalized (1/m2

2j2 , n2j2 ) squared average of (yj)j∈I2 with
g1 < g2. Let x∗

2 ∈ N with x∗
2(g2) > 1/2 and r(x∗

2) ⊂ r(g2). By Corollary 3.13 we have
that w(x∗

2) = m2j2 . Let m2j3 = σ (x∗
1, x∗

2). Let g3 be a normalized (1/m2
2j3 , n2j3 ) squared

average of (yj)j∈I1 with g1 < g2 < g3. Let x∗
3 ∈ N with x∗

3(g3) > 1/2 and r(x∗
3) ⊂ r(g3).

By Corollary 3.13 we have that w(x∗
3) = m2j3 . Continue similarly to obtain (gi)

p
i=1 and

(x∗
i )p

i=1 ⊂ N such that:

(a) gi is a normalized (1/m2
2ji , n2ji ) squared average of (yj)j∈I1 for i odd (resp. (yj)j∈I2

for i even).
(b) w(x∗

i ) = m2ji , r(x∗
i ) ⊂ r(gi) and x∗

i (gi) > 1/2.
(c) σ (x∗

1, · · · , x∗
i−1) = w(x∗

i ) for all 2 ≤ i ≤ p.
(d) {gi : i ≤ p} is maximally Sn2j+1 admissible.

Let zi = gi/(x∗
i (gi)). Let ti = min supp zi and R = (ti)i. The fact that X is HI will follow

from the next proposition.

PROPOSITION 4.1. For all x∗ ∈ N there exist intervals J1 < · · · < Js ⊂ {1, · · · , p}
such that,

(1) {zminJm : m ≤ s} ∈ S0 + 3Sf2j+1 (i.e. it can be written as a union of four sets: one
is a singleton and three which belong to Sf2j+1 ).

(2) There exists (bm)s
m=1 ⊂ �+ such that

∣∣∣∣∣∣x∗

⎛
⎝∑

i∈Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ (n2j+1)R
1 (tmin Jm )bm and

(∑
m

b2
m

) 1
2

≤ 6.

(3)

∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈{1,... ,p}\∪s
m=1Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ 505

m2
2j+1

.

Before presenting the proof of Proposition 4.1 we show that it implies that X is
HI. First we find a lower estimate for ‖∑p

i=1(n2j+1)R
1 (ti)zi‖.

‖
∑

i

(n2j+1)R
1 (ti)zi‖ ≥ 1

m2j+1

∑
k

(n2j+1)R
1 (tk)x∗

k

(∑
i

(n2j+1)R
1 (ti)zi

)

= 1
m2j+1

∑
k

((n2j+1)R
1 (tk))2 = 1

m2j+1
.
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Now we find an upper estimate for ‖∑p
i=1(−1)i(n2j+1)R

1 (ti)zi‖. Let x∗ ∈ N and find
J1 < J2 < · · · < Js to satisfy Proposition 4.1,

∣∣∣∣∣x∗
(∑

i

(−1)i(n2j+1)R
1 (ti)zi

)∣∣∣∣∣
≤

∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈∪s
m=1Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ +
∣∣∣∣∣∣x∗

⎛
⎝ ∑

i 	∈∪s
m=1Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣
≤

s∑
m=1

∣∣∣∣∣∣x∗

⎛
⎝∑

i∈Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ + 505

m2
2j+1

≤
s∑

m=1

(n2j+1)R
1 (tmin Jm )bm + 505

m2
2j+1

≤
(

s∑
m=1

((n2j+1)R
1 (tmin Jm ))2

) 1
2
(

s∑
m=1

b2
m

) 1
2

+ 505

m2
2j+1

≤
⎛
⎝4

(
1

m2
2j+1

)2
⎞
⎠

1
2

6 + 505

m2
2j+1

= 517

m2
2j+1

where the numbers “4” and “6” after the last inequality are justified by parts (1) and
(2) of Proposition 4.1 respectively. Combining the two estimates we have that,

517
m2j+1

∥∥∥∥∥
p∑

i=1

(n2j+1)R
1 (ti)zi

∥∥∥∥∥ ≥ 517

m2
2j+1

≥
∥∥∥∥∥

p∑
i=1

(−1)i(n2j+1)R
1 (ti)zi

∥∥∥∥∥ ,

for any j and thus X is HI.
The remainder of the paper will be devoted to proving Proposition 4.1. The

following three lemmas will be needed in the proof.

LEMMA 4.2. Let x∗ ∈ N with w(x∗) > m2j+1. Let V ⊂ {1, . . . , p} such that w(x∗) 	∈
{m2ji : i ∈ V}. Then for any scalars (αi)i∈V we have,

∣∣∣∣∣x∗
(∑

i∈V

αizi

)∣∣∣∣∣ ≤ 496

m2
2j+1

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
|αi|2

⎞
⎠

1
2

.

Proof. Let x∗ = 1
w(x∗)

∑
� γ�y∗

� where
∑

� |γ�|2 ≤ 1 and (y∗
�)� is appropriately

admissible. Define,

Q(1) = {i ∈ V : there is exactly one � such that r(y∗
�) ∩ r(zi) 	= ∅},

Q(2) = {i ∈ V : there is at least two �’s such that r(y∗
�) ∩ r(zi) 	= ∅}.
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For i in Q(1),

∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈Q(1)

αizi

⎞
⎠

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1
w(x∗)

∑
�

γ�y∗
�

⎛
⎝ ∑

{i∈Q(1):r(y∗
� )∩r(zi)	=∅}

αizi

⎞
⎠

∣∣∣∣∣∣
≤ 1

w(x∗)

∑
�

|γ�|2
√

3

⎛
⎝ ∑

{i∈Q(1):r(y∗
� )∩r(zi)	=∅}

|αi|2
⎞
⎠

1
2

≤ 2
√

3
w(x∗)

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
α2

i

⎞
⎠

1
2

≤ 4

m2
2j+1

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
|αi|2

⎞
⎠

1
2

,

(25)

where for the first inequality we used Proposition 3.2 and the fact that x∗
i (gi) > 1/2,

for the second inequality we applied the Cauchy-Schwarz inequality and for the last
inequality we used the fact that m2

2j+1 ≤ w(x∗). For the Q(2) case, w(x∗) 	= m2ji for all
i ∈ V notice that∣∣∣∣∣∣x∗

⎛
⎝ ∑

{i∈Q(2):r(x∗)∩r(zi)	=∅}
αizi

⎞
⎠

∣∣∣∣∣∣
≤

∑
{i∈Q(2):r(x∗)∩r(zi)	=∅}

|αi|

⎛
⎜⎝

⎛
⎝ ∑

{�:r(y∗
� )∩r(zi)	=∅}

|γ�|2
⎞
⎠

1
2

+ ηi

⎞
⎟⎠

∣∣∣∣∣∣
1

w(x∗)

∑
{�:r(y∗

� )∩r(zi)	=∅}
βi,�y∗

�(zi)

∣∣∣∣∣∣
(26)

where βi,� = γ�/((
∑

{m:r(y∗
m)∩r(zi)	=∅} |γm|2)

1
2 + ηi) where ηi is arbitrarily small and such

that

⎛
⎝ ∑

{m:r(y∗
m)∩r(zi)	=∅}

|γm|2
⎞
⎠

1
2

+ ηi ∈ �.

Now apply Lemma 3.12 for “g”= gi, “j0”= 2ji, “i”= 0, “γ1”= 1 and
“x∗

1”= 1
w(x∗)

∑
{�:r(y∗

� )∩r(zi)	=∅} βi,�y∗
� ∈ N to continue (26) as follows:

≤
∑

{i∈Q(2):r(y∗
� )∩r(zi)	=∅}

|αi|

⎛
⎜⎝

⎛
⎝ ∑

{�:r(x∗)∩r(zi)	=∅}
|γ�|2

⎞
⎠

1
2

+ ηi

⎞
⎟⎠ 2(123)

min{w(x∗), m2ji
}

≤ 2(246)

m2
2j+1

⎛
⎝ ∑

{i∈V :r(y∗
� )∩r(zi)	=∅}

|αi|2
⎞
⎠

1
2

, (27)

where the last inequality is obtained by applying the Cauchy-Schwarz inequality and
the constants ηi were forgotten since they were arbitrarily small and the constant “123”
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that appears in the statement of Lemma 3.12 is multiplied by 2 since zi = gi/x∗
i (gi),

x∗
i (gi) > 1/2 and by another factor 2 since for each � there are at most two values

of i ∈ Q(2) such that r(y∗
�) ∩ r(zi) 	= ∅. The result follows by combining (25), (26)

and (27). �

LEMMA 4.3. Let x∗ ∈ N with w(x∗) = m2j+1. Thus x∗ = 1
m2j+1

∑
� γ�y∗

� where∑
� |γ�|2 ≤ 1, y∗

� ∈ N , and (y∗
�)� has Sn2j+1 -dependent extension. Let V ⊂ {1 ≤ i ≤ p :

m2ji 	= w(y∗
�) for all �} and (αi)i ∈ c00. Then

∣∣∣∣∣x∗
(∑

i∈V

αizi

)∣∣∣∣∣ <
2

m2
2j+1

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
|αi|2

⎞
⎠

1
2

.

Proof. For i ∈ I define Q(1) and Q(2) as in Lemma 4.2. For i ∈ Q(1), use Lemma
4.2 for “x∗”= y∗

� for each � to obtain,

∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈Q(1)

αizi

⎞
⎠

∣∣∣∣∣∣ = 1
m2j+1

∣∣∣∣∣∣
∑

�

γ�y∗
�

⎛
⎝ ∑

i∈Q(1)

αizi

⎞
⎠

∣∣∣∣∣∣

≤ 1
m2j+1

∑
�

|γ�|
⎛
⎝ ∑

{i∈V :r(y∗
� )∩r(zi)	=∅}

|αi|2
⎞
⎠

1
2

496

m2
2j+1

≤ 1

m2
2j+1

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
|αi|2

⎞
⎠

1
2

,

(28)

where for the last inequality we used the Cauchy Schwarz inequality and the fact that
m2j+1 ≥ m3 ≥ m4

1 ≥ 496. For i ∈ Q(2),

∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈Q(2)

αizi

⎞
⎠

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1
m2j+1

∑
�

γ�y∗
�

⎛
⎝ ∑

i∈Q(2)

αizi

⎞
⎠

∣∣∣∣∣∣ ≤ 1
m2j+1

∑
i∈Q(2)

|αi|
∣∣∣∣∣
∑

�

γ�y∗
�(zi)

∣∣∣∣∣

≤ 1
m2j+1

∑
i∈Q(2)

|αi|
⎛
⎝ ∑

{�:r(y∗
� )∩r(zi)	=∅}

|γi|2
⎞
⎠

1
2

2(123)
min�{w(y∗

�), m2ji )}

≤ 4(123)

m3
2j+1

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
|αi|2

⎞
⎠

1
2

≤ 1

m2
2j+1

⎛
⎝ ∑

{i∈V :r(x∗)∩r(zi)	=∅}
|αi|2

⎞
⎠

1
2

. (29)

Recall that (y∗
�)� is Sn2j+1 admissible and 2j + 1 < 2ji for all i. Thus the second inequality

follows from applying Lemma 3.12 for “x∗
�”= y∗

� , “i”= 2j + 1, “j0”= 2ji, “g”= gi and
observing that zi = gi/x∗

i (gi), x∗(gi) > 1/2 and {w(y∗
�) : �} ∩ {m2ji : i ∈ V} = ∅. The

third inequality follows from applying the Cauchy-Schwarz inequality and observing
that for every � there are at most two values of i ∈ Q(2) such that r(y∗

�) ∩ r(zi) 	= ∅
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and mini,�{w(y∗
�), m2ji} ≥ m2

2j+1. The fourth inequality follows since m2j+1 ≥ m3 ≥
m4

1 ≥ 492. The result follows by combining (28) and (29). �

LEMMA 4.4. For x∗ ∈ N , w(x∗) = m2j+1 there exist J1 < J2 < J3 subsets of
{1, . . . , p} (some of which are possibly empty) such that

(1) For m ∈ {1, 2, 3},

∣∣∣∣∣∣x∗

⎛
⎝∑

i∈Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ 2(n2j+1)R
1

(
tminJm

)
.

(2) x∗ = 1
m2j+1

∑n
�=1 γ�y∗

� with
∑

� |γ�|2 ≤ 1, y∗
� ∈ N , (y∗

�)� has a Sn2j+1 -dependent

extension and {w(y∗
�) : 1 ≤ � ≤ n} ∩ {m2ji : i ∈ {1, . . . , p}\ ∪3

m=1 Jm} = ∅.
(3) Also,

∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈{1,... ,p}\∪3
m=1Jm

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ 2

m2
2j+1

.

Moreover, for any interval Q ⊂ {1, . . . , p} there exist J1 < J2 < J3 subsets of Q (some
of which are possibly empty) such that conditions (1), (2) and (3) are satisfied with
the exception that in conditions (2) and (3) the set {1, . . . , p}\ ∪3

m=1 Jm is replaced by
Q\ ∪3

m=1 Jm.

Proof. Suppose x∗ ∈ N with w(x∗) = m2j+1. Then x∗ = 1/m2j+1
∑n

�=1 γ�y∗
� with∑

� |γ�|2 ≤ 1, y∗
� ∈ N and (y∗

�)n
�=1 has a Sn2j+1 -dependent extension. Thus there exists

d, L ∈ � and an Sn2j+1 -dependent family (ỹ∗
�)d+n−1

�=1 such that σ (ỹ∗
1, . . . , ỹ∗

�) = w(ỹ∗
�+1)

for 1 ≤ � < d + n − 1 and ỹ∗
� |[L,∞) = y∗

�−(d−1) for � = d, . . . , d + n − 1.
Recall the definition of (x∗

k) from the beginning of this section. By injectivity of σ ,
the set {k ∈ {1, . . . , p} : w(x∗

k) ∈ {w(ỹ∗
�) : d ≤ � ≤ d + n − 1}} is an interval of integers

(possibly empty). Let k0 be the largest integer k such that w(x∗
k) ∈ {w(ỹ∗

i ) : d ≤ i ≤
d + n − 1} and k0 = 0 if no such k exists.

If k0 = 0 (i.e. w(x∗
k) 	= w(y∗

�) for all 1 ≤ � ≤ n, 1 ≤ k ≤ p) then let J1 = J2 = J3 = ∅
and conditions (1) and (2) are trivial. To verify condition (3) apply Lemma 4.3 for
“V”= {k : 1 ≤ k ≤ p} and “αi”= (−1)i(n2j+1)R

1 (ti).
If k0 = 1 (i.e. w(x∗

1) = w(y∗
i0 ) for some i0 ∈ {1, . . . , n} and w(x∗

k) 	∈ {w(y∗
�) : 1 ≤ � ≤

n} for 1 < k ≤ p) then set J1 = {1}, J2 = J3 = ∅ and since ‖z1‖ = ‖g1/x∗
1(g1)‖ ≤ 2 it is

easy to check that conditions (1) and (2) hold. To check condition (3) apply Lemma
4.3 for “V”= {2, 3, . . . , p} and “αi”= (−1)i(n2j+1)R

1 (ti).
If k0 > 1 and w(x∗

k0
) = w(ỹ∗

d) then by the injectivity of σ , w(x∗
k) 	∈ {w(y∗

�) : 1 ≤ � ≤
n} for k ∈ {1, . . . , p}\{k0}. Thus set J1 = {k0}, J2 = J3 = ∅ and easily verify conditions
(1) and (2) as above. To check condition (3) apply Lemma 4.3 for “V”= {1, . . . , p}\{k0}.
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Finally, if k0 > 1 and w(x∗
k0

) = w(ỹ∗
�0

) for some �0 > d by the injectivity of σ

it must be the case that �0 = k0, w(ỹ∗
i ) = w(x∗

i ) for all i ≤ k0 and ỹ∗
i = x∗

i for all
i < k0. Let J1 = {d}, J2 = (d, k0) ∩ �, J3 = {k0}. By the choice of J1, J2, J3 we have that
w(x∗

k) 	∈ {w(y∗
�) : 1 ≤ � ≤ n} k ∈ {1, . . . , p}\ ∪3

i=1 Jm so condition (2) holds. If J2 	= ∅
then x∗

i = ỹ∗
i = y∗

i−d+1 for i ∈ J2. Apply Lemma 4.3 for “V”= {1, . . . , p}\ ∪3
m=1 Jm and

“αi”= (−1)i(n2j+1)R
1 (ti) to satisfy conditions.

To verify condition (1) for J1 and J3, since they are singletons, simply observe
that |x∗(zi)| ≤ ‖zi‖ = ‖gi/x∗

i (gi)‖ ≤ 2. To verify conditions (1) for J2 (if it is non-
empty),

∣∣∣∣∣∣x∗

⎛
⎝∑

i∈J2

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ = 1
m2j+1

∣∣∣∣∣∣
∑
i∈J2

γi−(d−1)y∗
i−(d−1)

⎛
⎝∑

i∈J2

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣

= 1
m2j+1

∣∣∣∣∣∣
∑
i∈J2

γi−(d−1)x∗
i

⎛
⎝∑

i∈J2

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣

= 1
m2j+1

∣∣∣∣∣∣
∑
i∈J2

γi−(d−1)(−1)i(n2j+1)R
1 (ti)

∣∣∣∣∣∣
≤ |γmin J2−(d−1)|

m2j+1
(n2j+1)R

1 (tmin J2 ) ≤ (n2j+1)R
1 (tmin J2 ), (30)

where the first two equalities follow from the fact that x∗
i = y∗

i−(d−1) for i ∈ J2; the
third equality follows from the fact that x∗

i (zi) = x∗
i (gi/x∗

i (gi)) = 1; the first inequality
follows from the fact that ((n2j+1)R

1 (ti))i is non-increasing and non-negative, γi = γ γ̃i

where |γ | ≤ 1 and (γ̃i)i are non-increasing non-negative (see Remark 2.6 (4)) and J2 is
an interval.

The proof of the moreover part is identical to the above with the only exception
that the sets J1, J2, J3 chosen above are replaced by Q ∩ J1, Q ∩ J2, Q ∩ J3. Notice it
was important in the proof of (30) that J2 was an interval. This remains true if J2 is
replaced by J2 ∩ Q since Q was assumed to be an interval. �

Proof of Proposition 4.1 Suppose w(x∗) > m2j+1, apply Lemma 4.2 for “αi”=
(−1)i(n2j+1)R

1 (ti). The conclusion of Proposition 4.1 is satisfied with s = 1 and J1 = {q}
if w(x∗) = m2jq or J1 = ∅ if w(x∗) 	∈ {m2ji : 1 ≤ i ≤ p}.

If w(x∗) = m2j+1 the proposition follows directly from Lemma 4.4 with b1 = b2 =
b3 = 2.

Assume w(x∗) < m2j+1. Write x∗ = ∑
�∈L λ�y∗

� where (y∗
�)�, (λ�)� and L = L1 ∪

L2 ∪ L3 satisfy the conclusions of Lemma 3.4 for “j”= 2j + 1. Let L2 = L′
2 ∪ L′′

2 where
L′

2 = {� ∈ L2 : w(y∗
�) = m2j+1} and L′′

2 = {� ∈ L2 : w(y∗
�) > m2j+1}. Define,

Q(1) = {1 ≤ i ≤ p : there is exactly one � ∈ L with r(y∗
�) ∩ r(zi) 	= ∅},

Q(2) = {1 ≤ i ≤ p : there are at least two � in L with r(y∗
�) ∩ r(zi) 	= ∅}.
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For i in Q(2),

∣∣∣∣∣∣
(∑

�∈L

λ�y∗
�

) ⎛
⎝ ∑

i∈Q(2)

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤
∑

i∈Q(2)

(n2j+1)R
1 (ti)

∣∣∣∣∣
∑
�∈L

λ�y∗
�(zi)

∣∣∣∣∣
≤ 2

∑
i∈Q(2)

(n2j+1)R
1 (ti)

∣∣∣∣∣
∑
�∈L

λ�y∗
�(gi)

∣∣∣∣∣
≤ 2(7)

∑
i∈Q(2)

(n2j+1)R
1 (ti)

⎛
⎝ ∑

{�∈L:r(y∗
� )∩r(zi)	=∅}

|λ�|2
⎞
⎠

1
2

≤ 14

⎛
⎝ ∑

i∈Q(2)

((n2j+1)R
1 (ti))2

⎞
⎠

1
2
⎛
⎝ ∑

i∈Q(2)

∑
{�∈L:r(y∗

� )∩r(zi)	=∅}
|λ�|2

⎞
⎠

1
2

≤ 14
2

m2
2j+1

2
w(x∗)

≤ 1

m2
2j+1

, (31)

where for the second inequality we used the definition of zi. For the third inequality we
applied Lemma 3.12 for “j0”= 2ji and “g”= gi for each i using the fact that (y∗

�)� is Sf2j+1

admissible, f2j+1 < n2j+1 and 2j + 1 < 2ji and noticing that the right hand side of (18)
is at most equal to 7(

∑
{�:r(x∗

� )∩r(g)	=∅} |γ�|2)
1
2 since 123/me ≤ 1. For the fourth inequality

we used the Cauchy-Schwarz inequality. For the fifth inequality we used that (ti)i∈Q(2)

is 2Sf2j+1 admissible, condition (2) of Lemma 3.4, and the fact that for every � ∈ L there
are at most two values of i ∈ Q(2) such that r(y∗

�) ∩ r(zi) 	= ∅. Now for � in L1 and i in
Q(1),

∣∣∣∣∣∣∣∣
(∑

�∈L1

λ�y∗
�

) ⎛
⎜⎜⎝ ∑

i∈Q(1)
r(y∗

� )∩r(zi)	=∅

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

≤ 2

∣∣∣∣∣∣∣∣
(∑

�∈L1

λ�y∗
�

) ⎛
⎜⎜⎝ ∑

i∈Q(1)
r(y∗

� )∩r(zi)	=∅

(−1)i(n2j+1)R
1 (ti)gi

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

≤ 2
√

3
∑
�∈L1

|λ�|

⎛
⎜⎜⎝ ∑

i∈Q(1)
r(y∗

� )∩r(zi)	=∅

((n2j+1)R
1 (ti))2

⎞
⎟⎟⎠

1
2

≤ 4

m2
2j+1

, (32)

where Proposition 3.2 was used in the second inequality and for the last inequality we
used the Cauchy-Schwarz inequality and condition (2) of Lemma 3.4. For � ∈ L3 there
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is at most one value of i (call it i(�)) such that r(y∗
�) ∩ r(zi) 	= ∅. Thus∣∣∣∣∣∣

⎛
⎝∑

�∈L3

λ�y∗
�

⎞
⎠

⎛
⎝ ∑

{i∈Q(1):r(y∗
� )∩r(zi)	=∅}

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤
∑
�∈L3

|λ�|(n2j+1)R
1 (ti(�))2

≤ 2

m2
2j+1

, (33)

where for the first inequality we used that |y∗
�(zi)| ≤ ‖zi‖ ≤ 2 and for the second

inequality we applied the Cauchy-Schwarz inequality and used that (ti(�))�∈L is Sf2j+1

admissible and f2j+1 < n2j+1. For �′′ ∈ L′′
2, set J�′′ = ∅ if w(y∗

�′′) 	∈ {m2ji : 1 ≤ i ≤ p} and
J�′′ = {q} if w(y∗

�′′) = m2jq for some q ∈ {1, . . . , p} and r(y∗
�′′) ∩ r(zq) 	= ∅. Notice that for

�′′ ∈ L′′
2 if J�′′ = {q} 	= ∅ then we have,∣∣∣∣∣∣x∗

⎛
⎝∑

i∈J�′′

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ (n2j+1)R
1 (tq)|x∗(zq)|

= (n2j+1)R
1 (tq)|λ�′′y∗

�′′ (zq)|
≤ (n2j+1)R

1 (tq)|λ�′′ |2 (since ‖zq‖ ≤ 2). (34)

For �′ ∈ L′
2 apply the moreover part of Lemma 4.4 for “x∗”= y∗

�′ and “Q”= Q�′ = {i ∈
Q(1) : r(zi) ∩ r(y∗

�′) 	= ∅} to obtain intervals J�′,1 < J�′,2 < J�′,3 ⊂ Q�′ (possibly empty)
such that∣∣∣∣∣∣y∗

�′

⎛
⎝ ∑

i∈J�′ ,m

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ 2(n2j+1)R
1 (tmin J�′ ,m ), m ∈ {1, 2, 3} (35)

and

y∗
�′ = 1

m2j+1

∑
k γ�′,ky∗

�′,k with
∑

k γ 2
�′,k ≤ 1, y∗

�′,k ∈ N , (y∗
�′,k)k admits a

Sn2j+1 dependent extension and {w(y∗
�′,k) : k} ∩ {m2ji : i ∈ Q�′ \ ∪3

m=1 J�′,m} = ∅. (36)

Thus for �′ ∈ L′
2 and m ∈ {1, 2, 3} apply the fact J�′,m ⊂ Q�′ := {i ∈ Q(1) : r(zi) ∩

r(y∗
�′) 	= ∅} and (35) to obtain∣∣∣∣∣∣x∗

⎛
⎝ ∑

i∈J�′ ,m

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣ ≤ |λ�′ |
∣∣∣∣∣∣y∗

�′

⎛
⎝ ∑

i∈J�,m

(−1)i(n2j+1)R
1 (ti)zi

⎞
⎠

∣∣∣∣∣∣
≤ (n2j+1)R

1 (tminJ�′ ,m )|λ�′ |2. (37)

Thus for �′′ ∈ L′′
2 if J�′′ 	= ∅, set b�′′ = 2|λ�′′ | and for �′ ∈ L′

2 and m ∈ {1, 2, 3} if J�′,m 	= ∅
set b�′,m = 2|λ�′ |. Hence,∑

{�′′∈L′′
2 :J�′′ 	=∅}

b2
�′′ +

∑
{�′∈L′

2,m∈{1,2,3}:J�′ ,m 	=∅}
b2

�′,m ≤
∑

{�′′∈L′′
2 :J�′′ 	=∅}

4|λ�′′ |2

+
∑

{�′∈L′
2,m∈{1,2,3}:J�′ ,m 	=∅}

4|λ�′ |2 ≤ 4
∑
�∈L

|λ�|2 ≤ 4
w(x∗)2

≤ 1, (38)
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where the third inequality was obtained from condition (2) of Lemma 3.4. Index the
b�′′ (for �′′ ∈ L′′

2 with J�′′ 	= ∅) and b�′,m (for �′ ∈ L′
2 and m ∈ {1, 2, 3} with J�′,m 	= ∅) as

(bm)s
m=1 the non-empty J�′′ (�′′ ∈ L′′

2) and J�′,m (�′ ∈ L′
2, m ∈ {1, 2, 3}) as (Jm)s

m=1 and we
can see that (34), (37) and (38) imply that condition (2) of Proposition 4.1 is satisfied.
Condition (1) of Proposition 4.1 follows from the facts that (y∗

�)�∈L is Sf2j+1 admissible,
for every �′′ ∈ L′′

2 for which J�′′ = {q} 	= ∅ we have r(zq) ∩ r(y∗
�′) 	= ∅ and for every �′ ∈ L′

2
and m ∈ {1, 2, 3} such that J�′,m 	= ∅ we have J�′,m ⊂ {k ∈ Q(1) : r(zi) ∩ r(y∗

�′) 	= ∅} (for
m = 1, 2, 3). The next Lemma 4.5 implies that∣∣∣∣∣∣

(∑
�∈L2

λ�y∗
�

)⎛
⎝ ∑

i 	∈∪s
m=1Jm

(−1)i(n2j+1)R
1 (ti)(zi)

⎞
⎠

∣∣∣∣∣∣ ≤ 498

m2
2j+1

. (39)

Indeed apply Lemma 4.5 for “E”= L′
2, B = L′′

2, “V”= Q(1)\ ∪s
m=1 Jm, “αi”=

(−1)i(n2j+1)R
1 (ti). Note that condition (1) of Lemma 4.5 is satisfied by (36). Condition

(2) of Lemma 4.5 is satisfied by the definitions of L′′
2 and J�′′ for �′′ ∈ L′′

2. Condition
(3) of Lemma 4.5 is satisfied since V ⊂ Q(1). Thus equations (31), (32),(33) and (39)
imply condition (3) and finish the proof of Proposition 4.1. �

LEMMA 4.5. Let E and B be two finite index sets, V ⊂ {1, . . . , p}, (y∗
�)�∈E∪B ⊂ N ,

(λ�)�∈E∪B be scalars with
∑

�∈E∪B λ2
� ≤ 1 and (αi)i∈V be scalars with

∑
i∈V α2

i ≤ 1 such
that,

(1) For every � ∈ E, y∗
� can be written as

y∗
� = 1

m2j+1

r�∑
�=1

γ�,sy∗
�,s

with y∗
�,s ∈ N , (y∗

�,s)
r�

�=1 admitting a Sn2j+1 -dependent extension and {w(y∗
�,s) : 1 ≤

s ≤ r�} ∩ {m2ji : i ∈ V} = ∅.
(2) For every � ∈ B, w(y∗

�) > m2j+1 and w(y∗
�) 	∈ {m2ji : i ∈ V}.

(3) For every k ∈ V there is a unique � ∈ E ∪ B such that r(y∗
�) ∩ r(zi) 	= ∅.

Then, ∣∣∣∣∣
( ∑

�∈E∪B

λ�y∗
�

)(∑
i∈V

αizi

)∣∣∣∣∣ ≤ 498

m2
2j+1

.

Proof. Let E, B, (λ�)�∈E∪B, (y∗
�)�∈E∪B and V be given as in the hypothesis. Using

the triangle inequality we separate into the cases � ∈ B and � ∈ E. For �’s in B,

∣∣∣∣∣∣
(∑

�∈B

λ�y∗
�

)⎛
⎝ ∑

{i∈V :r(y∗
� )∩r(zi)	=∅}

αizi

⎞
⎠

∣∣∣∣∣∣ ≤
∑
�∈B

|λ�| 496

m2
2j+1

⎛
⎝ ∑

{i∈V :r(y∗
� )∩r(zi)	=∅}

α2
i

⎞
⎠

1
2

≤ 496

m2
2j+1

,

where for the first inequality we used Lemma 4.2 for “x∗”= y∗
� , noting that its

hypothesis is satisfied by our assumption (2) and for the second inequality we used the
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Cauchy-Schwarz inequality. For � in E,

∣∣∣∣∣∣
(∑

�∈E

λ�y∗
�

) ⎛
⎝ ∑

{i∈V :r(y∗
� )∩r(zi)	=∅}

αizi

⎞
⎠

∣∣∣∣∣∣ ≤
∑
�∈E

|λ�| 2

m2
2j+1

⎛
⎝ ∑

{i∈V :r(y∗
� )∩r(zi)	=∅}

α2
i

⎞
⎠

1
2

≤ 2

m2
2j+1

.

where the first inequality follows by applying Lemma 4.3 for each i with “x∗”= y∗
i ,

noting that its hypothesis is satisfied by our assumption (1), and for the second
inequality we used the Cauchy-Schwarz inequality. �
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