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ELEMENTARY EQUIVALENCE FOR FINITELY GENERATED
NILPOTENT GROUPS AND MULTILINEAR MAPS

Francis OGER

We show that two finitely generated finite-by-nilpotent groups are elementarily equiv-
alent if and only if they satisfy the same sentences with two alternations of quantifiers.
For each integer n > 2, we prove the same result for the following classes of struc-
tures:
(1) the (n + 2)-tuples (Ay,...,Any1,f), where Aj,... ,Any1 are disjoint finitely
generated Abelian groups and f: A; X --- x A, = Ayy is a n-linear map;
(2) the triples (A, B, f), where A, B are disjoint finitely generated Abelian groups
and f: A™ — B is a n-linear map;
(3) the pairs (A, f), where A is a finitely generated Abelian group and f: A® — A
is a n-linear map.
In the proof, we use some properties of commutative rings associated to multilinear
maps.

It is well known that two modules, and in particular two Abelian groups, are elemen-
tarily equivalent if and only if they satisfy the same V3 sentences (see [14, Corollary 2.18,
p-37]). In [13], we showed that two Abelian-by-finite groups are elementarily equivalent
if and only if they satisfy the same 3V3 sentences.

For non Abelian-by-finite groups, the situation is radically different. Burris proved
in [1] that, for each integer n, there exist two groups which satisfy the same sentences
with n alternations of quantifiers without being elementarily equivalent. The groups in
Burris’ example are soluble since they are in the variety generated by the symmetric
group on 3 letters Ss.

Moreover, we showed in [13] that, for each integer n, there exist two nilpotent groups
which satisfy the same sentences with n alternations of quantifiers and do not satisfy the
same sentences with n + 1 alternations of quantifiers.

In contrast with this result, we prove in the present paper that two finitely generated
finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same
3Vv3 sentences.

On the other hand, the following questions are currently open:
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(1) Is there an integer n such that two finitely generated groups which sat-
isfy the same sentences with n alternations of quantifiers are elementarily
equivalent? We do not know the answer even in the case of metabelian
groups.

(2) If two finitely generated nilpotent groups satisfy the same V3 sentences,
are they elementarily equivalent?

In connection with these two questions, it is worth mentioning the results which have
been obtained concerning the properties of polycyclic-by-finite groups which satisfy the
same V3 sentences. By [7, Proposition 2.1, p.470], two such groups G, H necessarily have
the same finite images, and therefore have isomorphic profinite completions. If G and
H are finitely generated Abelian-by-finite groups, it follows that they are elementarily
equivalent, because each of them is an elementary submodel of its profinite completion
according to [9, Theorem 2, p.1041].

In [15], Raphael improved [7, Proposition 2.1] by showing that, if two polycyclic-
by-finite groups G, H satisfy the same V3 sentences, then, for each integer n > 1, there
exist a subgroup G, of G with G, = H and |G : G,| prime to n, and a subgroup H,
of H with H, = G and |H : H,| prime to n. If G and H are nilpotent, it follows
that they have isomorphic w-localisations for each finite set 7 of primes (this result was
also proved in [10]). Anyhow, [8, Theorem 2.3 and Theorem 3.1, p.3] gives examples of
finitely generated nilpotent groups of class 2 which have isomorphic 7-localisations for
each finite set 7 of primes and which are not elementarily equivalent. In [16, pp.37-40],
Raphael managed to show that, in one of these examples, the groups do not satisfy the
same V3 sentences.

The definitions and results of model theory which are used here, in particular the
notions of formula, sentence and elementary equivalence, are given in [2]. Concerning
groups, we use the notation of [17]. In particular, we write t(M) for the torsion subgroup
of a finite-by nilpotent group M.

For each integer n > 2, we consider the (n + 2)-tuples (Ay,..., Anq1, f), where
Ay, ..., Ay are disjoint finitely generated Abelian groupsand f: A; x---x A, = A4
is a n-linear map. We also consider the triples (A, B, f), where A, B are disjoint finitely
generated Abelian groups and f : A" — B is a n-linear map, and the pairs (4, f), where
A is a finitely generated Abelian group and f : A®™ = A is a n-linear map.

We use the following notations, which are similar to those of [12]:

For each (n + 2)-tuple (Ay,..., Any1, f) and for any subsets S; C Ay, ..., 5, C A,,
we denote by f(Si,...,S,) the subgroup of A,;; which is generated by the elements
flzy, ... ,z,) forz, € Sy,... ,2, € Sy.

For any (n+2)-tuples A = (A4;,... ,Apq1, f)and B = (B,,..., Bp41,9), we consider
the direct product AX B = (A1 X By, ... , Ang1 X Bny1, h), with &((z1, 1), .-, (Tn, ¥n)) =
(f(:cl, ey Zn )y g1, - - - ,y,,)) for any elements z; € Ay, y1 € By,... ,T, € Ay, Yn € B,
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We define in a similar way the direct product of two triples (A, B, f) and (C, D, g), or
the direct product of two pairs (A, f) and (B, g).

For each (n + 2)-tuple (A;,...,An41, f) and for each 7 € {1,...,n}, we write
keri(f) = {z € Ai | f(A1,...,Ai-1,Z, Ait1,... ,As) = 0}. For a triple (4, B, f) or
a pair (4, f), we consider ker(f) = ker;(f) N -+ Nker,(f).

We interpret the n-linear map with the n-placed functional symbol L. For each of
the n + 1 groups, we introduce a 2-placed functional symbol for the addition, a 1-placed
functional symbol for the minus operation and a constant symbol for the zero element.
The universe of a (n + 2)-tuple (4),..., 4541, f) s Aj U ... U A,q1; consequently, the
functions that we consider are not defined everywhere.

For reasons of convenience, we write the formulas with the symbols +,—,0 for each
of the n + 1 groups. In order to avoid misunderstandings, the name of each vari-
able is followed by the index 1,...,n + 1 according as it concerns the elements of the
firsg, . .. , (n + 1)-th group.

We adopt similar conventions for triples. Here, the language consists of the n-placed
functional symbol L for the n-linear map and, for each of the two groups, a 2-placed
functional symbol, a 1-placed functional symbol and a constant symbol. The universe of
a triple (A, B, f) is AU B.

Concerning pairs, we use the language which consists of the n-placed functional
symbol L for the n-linear map and, for the group, the 2-placed functional symbol +, the
1-placed functional symbol — and the constant symbol 0. The universe of a pair (A, f)
is A.

In [12], we proved the following result:

THEOREM 1. For each integer n > 2, for each (n+2)-tuple A = (A1, ... , Ans1, f),
and for each integer m > 1 such that mt(A;) = ... = mt(A,41) = 0, there exist a
first-order formula ¢, (4, ... ,Up+1) and some sequences Ty C Ay, ... ,Tp41 C Apy1 Such
that:

(1) A satisfies ©,,(Ty,... ,Tns1);

(2) for each (n + 2)-tuple B = (By,...,Bpy1,9) such that mt(B,) = ... =
mt(B,+1) = 0, and for any sequences §; C Bi,...,Ypyy C Buyi, if B
satisfies ¢, (), - - - »Uns1), then, foreach i € {1,... ,n}, B; is generated by
7, and ker;(g).

In [11} and [12], we used this theorem in order to give characterisations of elementary
equivalence for several classes of structures:

COROLLARY 1.

(1) [11]) Two finitely generated finite-by-nilpotent groups G, H are elementarily
equivalent if and only if Z x G and Z x H are isomorphic.

https://doi.org/10.1017/50004972700032469 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032469

482 F. Oger (4]

(2) [12] Two (n + 2)-tuples A = (Ay,... ,Apsy, f) and B = (By,... ,Bn.1,9)
are elementarily equivalent if and only if (2, ... ,Z,0,0)x A and (2, ... ,Z,
0,0) x B are isomorphic.
(3) [12] Two triples (A, B, f) and (C, D, g) are elementarily equivalent if and
only if (Z,0,0) x (A, B, f) and (Z,0,0) x (C, D, g) are isomorphic.
(4) [12] Two pairs (A, f) and (B, g) are elementarily equivalent if and only if
(Z,0) x (A, f) and (Z,0) x (B, g) are isomorphic.
For each class, we proved that elementary equivalence does not imply isomorphism.
In particular, we gave an example of two nonisomorphic finitely generated torsion-free
nilpotent groups of class 3 which are elementarily equivalent, and an example of two
nonisomorphic finitely generated torsion-free Lie rings which are elementarily equivalent.
On the other hand, we showed that, in (2) and (3), elementary equivalence implies
isomorphism if f(A;,..., A,) (respectively f(A")) is torsion-free.
In the present paper, we give a simpler proof of Theorem 1, which yields the following
strengthening:
THEOREM 2. In Theorem 1, it is possible to choose a formula ¢,, which is a con-
Jjunction of formulas of the form
(1) (V) (¢(T1, ... ,Tnt1,0) V (FO)N(T, - .. , Unt1,T, W)
with n positive and (,n quantifier-free.
Then, we deduce the following result from Theorem 2 and Corollary 1:
COROLLARY 2. In Corollary 1, the groups G, H of (1), the (n + 2)-tuples A, B of
(2), the triples (A, B, f) and (C, D, g) of (3), the (A, f) and (B, g) of (4), are elementarily
equivalent if and only if they satisfy the same 3V3 sentences.
The proof of Corollary 2 yields a more precise result:

COROLLARY 3.

(1) For each finitely generated finite-by-nilpotent group G and for any integers
¢,m = 1, if Uy (G) is finite and t(l",-(G)/F,-+1(G))m =1 for 1 € i € c then there exists
a 3V3 sentence which characterises G among the finitely generated finite-by-nilpotent
groups H such that t(T;(H)/Ti(H) " =1for1 <i<e

(2) For each (n + 2)-tuple A = (A,,...,Ans1, f) and for each integer m > 1, if
mt(4,) = ... = mt(Apn41) = 0, then there exists a IV3 sentence which characterises A
among the (n +2)-tuples B = (By, ... , Byy1, g) such that mt(B;) = ... = mt(Bpy,) = 0.
The same result is true for the triples (A, B, f) (respectively the pairs (A, f)) if we
replace the property mt(A;) = ... = mt(Au41) = 0 by mt(A) = mt(B) = 0 (respectively
mt(A) =0).

In the proof of Theorem 2, we associate a commutative ring to each (n+ 2)-tuple. In
the proof of Corollaries 2 and 3, we consider, for each finitely generated finite-by-nilpotent
group, some alternating bilinear maps which are defined from the map (z,y) — [z,y]. In
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[11] and [12], we already used similar arguments, as well as Myasnikov in [4], [5] and [6].
PrOOF OF THEOREM 2: For the sake of brevity, we write the proof with n = 2. For
each 1 € {1,2, 3}, we consider a sequence Z; = (Zi,, ... , Zim()) Which generates A;, and
a sequence of variables %; = (u;1,. .. , Uim()). The proof of the existence of the formulas
©,, is based on the two following claims:
CLAM 1. For each integer m > 2 such that mt(A;) = mt(A4;) = mt(A3) = 0, there
exists a conjunction of § formulas x,, (%, ¥, @) such that:
(1) A satisfies x,,(T1, T2, T3);
(2) for each quadruple B = (B, By, Bs, g) such that mt(B;) = mt(B,) =
mt(B3) = 0, and for any sequences §, C By, §, C Bs, 3 C Bs, if B
satisfies x,, (¥, 72, Us), then there exists an injective homomorphism 8 =
(01,62,03) - A — B such that, for each i € {1,2,3}, 6;(Z;) = ¥, and
| Bi/8:(A;)| is prime to m.

CrAM 2. There exist an integer my > 2 and a conjunction of § formulas ¢¥(%,%2) such
that:
(1) A satisfies ¥(Z1, E2);
(2) for each quadruple B = (B, Bs, Bs,g) with A C B and B,/A;, By/A,
finite, if B satisfies (%1, %,), then, for each i € {1,2}, | Bi/(A; ker;(g)}|
divides my.

First, we show that, if the two claims are true, then ¢,, exists for each integer m > 2
such that mt(A;) = mt(Az) = mt(A3) = 0 and mo divides m (we take @, = @, ., if mg
does not divide m).

We consider the formula o, (%1, T2, U3) = Xm (T, Uz, Tz) AY(T1, Uz), which is satisfied
by %1, To, T3 in A. For each quadruple B = (By, By, Bs, g) such that mt(B;} = mt(B,) =
mt(B;) = 0, and for any sequences §, C By, §, C Be, §; C Bs, if B satisfies ©,,,(7;, ¥5, ¥3),
then there exists an injective homomorphism ¢ = (0,,6,,03) : A — B such that, for
each i € {1,2}, 6,(%:) = ¥; and |B;/8;(A;)| is prime to m. For each i € {1,2}, we
have B; = (8;(A;), keri(9)) = (¥;, keri(g)) since |B:/(6;(A:), keri(g))| is prime to m and
divides m.

Then, we prove Claim 1. For each i € {1,2,3}, there exist two integers g(i) < r(z)
and some terms p; ; (%), .- - , p; (W) such that t(A;) = {pi1(Z), - ,p,-,q(,-)(fi)} and
such that A; is the disjoint union of the subsets p; ;(Z:) + mA; for 1 < j < r(9).

For each ¢ € {1,2,3}, there are also some terms oy,(%;),... ,0isq) (%) such that
(ZTi ; 0in(Ti), ... ,0is)(Ti)) is a presentation of A;. For each i € {1,...,m(1)} and
each j € {1,...,m(2)}, there exists a term 7;;(T3) such that f(z,;,22,;) = 7 j(Za).
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The conjunction of § formulas x,, (U, %2, %3) below is satisfied by T, T, T3:

[/X\1<1.<3(VU1) [mv, =0+ ( \X/1<]<q Wi = ,01,](”1))]]

A [ /X\1sig3(vvi)(3wi)( Wigigr(i)Vi = pi‘j(ﬂi) + mwi)]
Li<kgr(s — —

A[ ”‘\15353 <o (Vvi)-'(pi,j(ui) = pi4 (W) + mv")]

A MEE Doy 5(T:) = 0] A [ SIS L 1, uag) = 7:,(Ts)).
For each quadruple B = (B, B, B3, g) and for any sequences §, C By, J, C By, J3 C B3
which satisfy x,, in B, there exists a unique homomorphism 8 = (6,,02,0;) : A — B such
that 8;(Z;) = ¥, for each 7 € {1,2,3}. Foreach i € {1,2,3}, §; induces an isomorphism
from A;/mA; to B;/mB;. If mt(B;) = 0, then 6; also induces an isomorphism from t(A4;)
to t(B;). It follows that 6; is injective and |B;/0;(A;)| is prime to m (the details of the
argument are given in [10, p.66]).

Now, we observe that f(A;, As) = {Z F(z14,924) ' Y215 - Y2,m(1) € Az}, and we

show that it suffices to prove Claim 2 in a weaker form:

CraiM 3. If f is nondegenerate and f(A4;, A;) = As, then there exist an integer m and
a conjunction of § formulas ¥(4;, Gs)such that:

(1) A satisfies ¥(T1, To);
(2) for each quadruple B = (B;, Bo, B3, g) which satisfies the list of conditions
(*) below:

A C B and B, /A;, B2/ A, finite,
m(1)

By = g(B1, By) = {Zg 16 Y2,0) | U215 7y2m(1)€B2}

z; = 0 for each z; € B1 such that g(z,,7;) = 0,
zz = 0 for each z, € B; such that ¢(Z;,2,) =0,

if B satisfies ¥(Z1, T2), then, for each i € {1,2}, |B;/A;| divides m.

In order to prove that Claim 3 implies Claim 2, for each quadruple B = (B, B,, B, g),
we consider the quadruple B* = (Bf, B;, B3,¢*), where Bf = Bi/keri(g9), B; =
B,/ kera{g), B; = ¢g(Bi1, Bz), and g* is the bilinear map from B} x B} to B; which
is induced by g. For each z € B, U B,, we denote by z* the image of x in B*.

According to Claim 3, there exist an integer m and a conjunction of § formulas
¥* (U1, Uz) such that:

(1) A* satisfies ¥*(77,73);
(2) for each quadruple C = (Cy,Cs, C3, h) which satisfies () relative to A*, if
C satisfies ¥*(Z],73), then, for each ¢ € {1,2}, |C;/A?| divides m.
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We consider the conjunction of § formulas ¥(u,%;) = v¥o(Ts,T2) A ¥, (%, T2), where
¥o(T1,Ty) is the formula

(Vor)(L(vy, W) = 0 = (Vo) L(vy, vp) = 0)
A(V2) (L (@1, v2) = 0 = (Vo) L(v1,v2) = 0)
m(1)
A(Y1Yv2)(Fvg,1. - Fvgm(y) L(v1, v2) = z L(uy 3, v2,),

and ¢, (U, Us) is the conjunction of §§ formulas which is obtained from v*(%;,%,) by
replacing successively:
(a) each atomic subformula t(7,) = 0 (respectively t(72) = 0) by L(t(v,),%2) =
0 (respectively L(u, t(v2)) = 0);
(b) each subformula (Jv3)8 (respectively (Vv3)8) by (Jus)(3va,1...3v2,m(1)) [v3 =
m(1) m(1)
z L('LLI,,‘,, 1)2,,')/\0] (respectively (V’U3)(V’U2Y1...V’U2,m(1)) [’03 = Z L(’U,I,,', 'Ug,i)
i=1 i=1
— 0] ).
The quadruple A satisfies ¥(%;,%2). For each quadruple B = (B, By, B3, g) with
A C B and B;/A,, B,y/A, finite, if B satisfies ¥(Z1,Z2), then B* satisfies ¢*(Z},7Z3). It
follows that, for each i € {1,2}, | B; /A;| = | Bi/{ Ai, keri(g))| divides m.
Finally, we prove Claim 3. For each quadruple B = (B, By, Bs, g) which satisfies (),
we consider the set Rp which consists of the triples (6,62, 83) € End{B;) x End(B,) x
End(Bs) with g(61(y1),v2) = 9(y1,02(y2)) = 03(y3) for any elements y; € By, y» € By
and y; € Bj such that g(y,y2) = y3. We define a commutative ring structure on Rg
by writing 8 + 6’ = (8, + 61,02 + 0,03 + 83) and 0 0 ' = (6, 0 6,65 0 85,03 o 65) for
6 = (6,,62,0;) and §' = (6),8,,6;). This follows since any triples 8 = (6, 6,,6;) and
6 = (6,,0,,65) in Rp necessarily satisfy

9(61(61(z1)), z2) = 05(9(61(x1), x2)) = 03(63(g(z1, 72)))

= 03(9(x1,02(22))) = g(z1,05(82(x2))) and
9(81(61(21)), 22) = g(z1,05(82(22))) = 9(8(21), 02(z2))

= 9(61(61(z1)), z2)

for z; € B, and z, € B,, and therefore # o8 = o & € Rp.

Any triple (8;, 82,03) € Rp is completely determined by 8, (Z;) or 82(Z»). This follows
because if, for instance, ;(Z2) = 0, then any element y; € B, satisfies g(01(y1),§:‘2) =
9(y1,02(T2)) = g(¥1,0) = 0, and therefore 6;(y1) = 0.

The group (Rg,+) is finitely generated, and the ring Rp is Noetherian, since B,
and B, are finitely generated.

We write T = (%, W) and T = (71, T2). We identify each (6,,6,,6;) € Rg with
(01(21),02(52)). In particular, we identify (Idp,,Idg,,Idg,) and T. For each pair § =
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(T1,72) With J; = (¥1,1,--- »Y1,m)) C B and Ty = (y21,... ,Y2,m2)) C Ba, we write
7 € Rp if there exists a triple (8,,8,,0;) € Rp such that 6,(T,) = 7, and 05(Z;) = 7.

For each sequence of variables o = (7;,73) with 7y = (vy,1,... ,v1,m)) and T, =
(v2,1,- -+ »V2,m(2)), and for any variables u,, uz, v1, v2, we denote by Tu, = v, and Tuy = v,
the positive quantifier-free formulas

Migigm(@) L(ur, v2,5) = L(vr, ug,5) and Migigm@) L(vy i, u2) = L(u;, vz).

For each ¢ € 1,2, we consider some terms p; ; (%), . . . , p; ;) (%) which define a pre-
sentation of A; on T;. We also consider some terms

1<i<m(2 1<i<m(2
P31 (L(m i “2.1)1<Z<::((1))) 1 P3,p(3) (L(“Ln u2,j)1g?<:nn((1)))

which define a presentation of Az on f(zy;, z2 J)iéfé,':((f)) . For each pair § = (7,,7,) with

= (Y1 > ¥V1,m)) € AL and Py = (%2,1,-- -, Y2,m(z)) C Az, we have § € R, if and
only if (Z,7) satisfies the positive quantifier-free formula A(%, %) below:

(/X\i:ff,’n"((f)’ L(uisv25) = L(vl,i,uz,j)) A (Migicory pri(T1) = 0)
A(Migigp(2) P2,;(T2) = 0) A (mlsk@m)l’s,k(L(Ul,n U2J)i:i<<r1:((12))) 0)'
We denote by u(@,v) the formula

[ Miz1,2(Ve) (Bv;) (Du; = 'u,-)] A (Yuy) (V1) (Yug) (Yog) (Yws 1 .. Vwe m(1))
m(1)
[[L(’Uq, ’U/z) = Z L(ul,i,wg,i) ATuy = v ATug = ‘Ug]

i=1
m(1)

= L(u1, %) = L(vi, u2) ZL (1,4, w2 ]

Now, let us consider a quadruple B = (B, Bs, Bs, g) which satisfies (). For each
pair 7 = (7,%,) with T; = (y1,0,-. ,¥1m)) C Br and G, = (¥2,1,--- , Y2,m2)) C Ba,
if ¥ belongs to Rg, then (Z,7) satisfies u(@,v). Conversely, if (Z,7) satisfies u(%,7),
then we define a triple 8 = (0y,6,,05) € Rp with 8(Z) = ¥ by writing 6,(z,) = ¥z,

m(1) m(1)
02(22) = T2 and 03( Z (T4, 22,4 ) Z 9(y1,i, 22;) for any elements z; € B, and
22,221, > 22,m(1) € 32 Thxs follows smce any element of g(B;, By) can be written as
m(1) m(1) m(1)

Z 9(x14, 22,4), and Z 9(z1,i, 22,;) = 0 implies Z 9y, 22:) = 0.

The formula a( ) = (Vo)(A(T,v) - u(u, v)) is equivalent to a conjunction of §
formulas. It is satisfied by T in A. If T satisfies a in B, then, for each pair ¥ = (%,,7,)
with —y-l = (yl,l,. . ayl,m(l)) C B] and '!72 = (y2,1, “e ay2,m(2)) C Bz, we have PES RB if
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and only if (Z,7) satisfies A in B. In particular, we have R4 C Rg. Moreover, Rg/R4 is
finite since B;/A; and B,/A, are finite.

' -
For each sequence ("‘")}:;’:;(') C Rp, we have 3 (7"')... (7"®) = 0 if and only if
i=1

( (7 ")i:{:‘;(')) satisfies, in B, the positive existential formula below, which we shall

q ; . .
denote by S_ 7! .- .75 = Q:

i=1

1 . \0GCr( 1<5€ ol i
/X\m( ) (a(w;,]lc)lgfg;(t)) [( M 1'“’1 i ulk) A (/X\l<f<z;(l)51]w1]k ' w'l]k)

A (Z w:’;(i) = O)]
i=1

For each ¢ € {1,2}, we have A; = Zz;, + - - - + ZZ; m(s), and therefore A; = Raz;, +
-+ + RAZ;m(). So, the { formula 3(%) below is satisfied by Z in A:

Mi=12 (Vv;)(FT° e Re )] [( Migigmi) AT, v_’"j)) A (vi = Z ?’jui‘j)].
1<i<m(i)

If T satisfies & A B in B, then, for each ¢ € {1,2}, we have B; = Rpz;1 + - - - + RpZimp)-

Now, we consider an integer £ > 1 such that (RA, +) is generated by t elements,
and some prime ideals P, .. P of R, such that P, - - =0. Foreachi e {1,...,s},
there exist some elements Z"!,... ,Z* € P, such that Pl = 7z 4+ ... + Za“r“‘. For
each i € {1,...,s} and each j € {1,...,t}, there exists a sequence of terms 77 (u) =
(@SS such that 79 = (rii(@) L5

For each i € {1,...,s}, as P, = RsT"! + - -- + R4Z" is prime, the }| formula (%)
below is satisfied by T in A:

(va‘)(vv2){{,\(ﬁ, YA AT, ) A (... FTt) [( Migrge (T, W)

A (B0 = Z E"?‘"k(ﬁ))]}

1<kt
~ (@@ ... 30) | ( Migeeh @ T)) A (Wima? = 3 w7 @ )]}
1<kt
We denote by (%) the conjunction of the formulas 7;(u). If Z satisfies e ABA~ in B, then,
for each i € {1,...,s}, the ideal @; = RpZT"! + - -- + RpT"' is prime, we have P; C Q;,
and Q;/P; is finite since Rg/R, is finite. Moreover, the equalities Z'41) . .z%4*) = 0 for

1<i(1),...,i(s) < timply @,--- Qs =0.
For each i € {1,...,s} such that R4/P; is finite, there exist some sequences of terms
7 (z@),... , a9 (a) such that R, is the union of the subsets 3/(T) + F,. The { formula

d;(u) below is satisfied by T in A:
(Vo) [ Wigjgey (30" . .. F0t) (5 =79(T) + Z T (T )]
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If T satisfies a A B Ay Aé; in B, then we have Rg = R4 + Q;.

We denote by 6 the conjunction of the formulas §; for R4/P; finite, and we write
¥ = aANB A~y AL This formula is satisfied by T in A. We consider the quadruples
B = (B, By, B;, g) which satisfy (*) and such that 7 satisfies ¥ in B. It suffices to show
that, concerning such quadruples, there exists a bound for |B;/A,| and |By/A;| which
only depends on A.

For each i € {1,2}, we have A; = Razi, + - - + RaZim) and B; = Rpz;y + -+ +
Rpx;mey; it follows |B;/A;| < |Rg/Ra|™?. Consequently, it suffices to give a bound for
|Rp/Ra| which only depends on A. This bound is given by the following:

LEMMA. Let R be a commutative ring with a finitely generated additive group. Let
Py, ..., P be prime ideals of R with P,...P, = 0. Then, there exists an integer m such
that, for every commutative ring S with R C S and |S/R)| finite, we have |S/R| < m if
the following conditions are satisfied for 1 < i < k:

(1) SP; is a prime ideal of S;
(2) R/P, finite implies S= R+ SP,.

Proor: Foreachi € {1,...,k}, we write Q; = SP,, R; = R/P; and S; = §/Q;. We
first show that there is a bound for IS/(R+Q,-)| which only depends on R. If R; is finite,
we have S = R+ Q); by (2). So, we can suppose R; infinite. Then, S; is also infinite since
Q./P; is finite like S/R. It follows that the finitely generated Abelian groups (R;, +)
and (S;, +) are torsion-free, since R; and S; are commutative integral domains. By {3,
Proposition 3, p.163 and Proposition 5, p.165] K; = {a/n la € R;and n € N"} and
L; = {a/n | a € S; and n € N*} are algebraic extensions of finite degree of Q, and R;
(respectively S;) is a subgroup of finite index in the integer ring R; of K; (respectively
S; of L;).

We have Q; N R = P, since Q;/P; is finite and R/P, is torsion-free. So, the inclusion
R C S induces an injective homomorphism 8; : R; — S; which extends to an isomorphism
0;: R; — 5i. As S; is contained in 6;(R;), we have |S/(R+Q;)| = |S:/6:(R:)| < |Ri/Ri|.

We have [S/R| = [] [(Qi---Qi-1 +R)/(Q:--- Qi + R)] with @1 --- Qi1 = S for

1<igk

i=1andQ1---Q,~=0?orz'=k. For each i € {1,...,k}, we have

(@ Qici +R)/ (@1 Qi+ R) = (@1 Qisi + (@1 Qi+ R))/(Q1- - Qi + R)
Z(Qr - Qi-1)/ (@1 QisniN(Qr--- Qi + R))
= (@1 Qi-1)/(Q1--- Qi + (RN (Q1 - Qi)

Now, let t be an integer such that (R, +) is generated by ¢ elements. Then, for each

i € {1,...,k}, there are some elements z;,, ..., z;; such that P, = Zz;; + ... + Zz;,.
For each 7 € {1,...,k} each element of Q, - - - Q;_; can be written as
y= > bj(1),... s-1)T15(1) * ** Ti-1,i(i-1)

15 (1),.0g(i-1) €t
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with by, ja-1 € S for j(1),...,5(: — 1) € {1,...,t} (for i = 1, we write y = b € S).
For any integers j(1),...,5(i — 1) € {1,...,t}, the element bj),.. ji-1)T1,j(1) " - - Ti—1,j(i-1)
necessarily belongs to (@ ---Q;) + (Rﬂ (Q1--- Q,-_l)) if bj(),... j(i-1) belongs to R+ Q;,
since Zy j1) - - - Ti—1,j(i-1) belongs to RN(Q; - -- Qi—1). So, for each i € {1,... ,k}, we have

(@1 "Qi—l)/((Ql Qi)+ (RN(Qy - 'Qi—l)))' < [S/(R+ Qi)

ti-1

a

PROOF OF COROLLARY 2 AND COROLLARY 3: First, we prove Corollaries 2 and
3 for the triples (A, B, f) and (C, D, g) of (3). The proof is essentially the same for the
(n + 2)-tuples A, B of (2), or the pairs (A, f) and (B, g) of (4).

It suffices to show that, for each triple (A4, B, f), and for each integer m > 2 such
that mt(A) = mt(B) = 0, there exists a V3 sentence ® which is satisfied by (4, B, f),
and such that the conclusion of [12, Proposition 2.2] is true for any triple (C, D, g) which
satisfies ® with mt(C) = mt(D) = 0. We consider two finite sequences W and T which
generate A and B, and two sequences of variables T, 7 such that znv = 0, |u| = |w| and
ol = [z.

For each ¢ € {1,...,n}, an element w € A belongs to ker;(f) if and only if (w,®)
satisfies the quantifier-free formula o;(u,%) below:

/X\ul,.., sU— 1,841, ,uneﬁ L(u11 Tty ui—l) ua Ui+1, ey uﬂ) = 0‘
Consequently, @ satisfies the universal formula §,(%@) below:
(Vuy ... Yon) (0i(vi, @) = L(vy, ... ,v,) =0).

The formula o;(u,7) also defines ker;(g) in C for each triple (C, D, g) and for each se-
quence § C C which satisfies ;.
For each triple (C, D, g) and for each i € {0,...,n}, we write N;(g) = [ ker;(g); we

1<
have Ny(g) = C and N, (g) = ker(g). For each i € {1,...,n}, we consider the restriction

fi : A" x N;_y(f) x A" — B of the n-linear map f : A® = B. According to Theorem
2, there exist a V3 formula ¥;(@, .. . , @) and some sequences @:,... ,w:_, C A, W: C
Nioyi(f), Wiy, ..., W4 C A, Wy, C B such that:

(1) (A,..., A N_1(f),A,... A, B, f;) satisfies (Wi, ... , 0% ,,);

(2) for each (n+2)-tuple (Ey, ..., E,41, h) such that mt(E)) = ... = mt(Eny1)
=0, and for any sequences 7y, ... , ¥y, if (E1, ..., Eny1, h) satisfies
Yi(T1s -+ ,Uny1), then E; is generated by g; and ker;(h).

Foreachi € {1,...,n}, there exists some sequences of terms 7\ (%), . . . ;74 (%), 74, (7)
such that @i = 7\(W),... , W, = 74,(W), Why, = 7o, (T). We consider the V3 formula
0@T) =Py A AB, Ao, A--- Ay, where, for each i € {1,... ,n}, y;(,7) is obtained
from ¢,(@, ... ,u.,,) by replacing successively:
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- each variable in @,... @}, by the corresponding term in % or T;

- each subformula (3v;)@, where v; is a variable which represents an element of the i-th
group, by (3vi}(a1(vi, @) A ... A @iy (v, T) A 6);

- each subformula (Vv;)8, where v; is a variable which represents an element of the i-th
group, by (Vu)[(ci(vi, @) A ... A ez (v;, T)) = g].

The triple (A4, B, f) satisfies ¢(w, Z). For each finitely generated triple (C, D, g) such
that mt(C) = mt(D) = 0, and for any sequences ¥ C C and z C D, if (C, D, g) satisfies
(g, Z), then C is generated by 7 and ker(g) since, for each ¢ € {1,... ,n}, Ni_1(g) is
generated by 7i(y) and N(g).

Then, we define (%, 7) as in the proof of [12, Proposition 2.2], with m instead of r
and s, and we consider the 3V3 sentence ® = (37)(37)X.

Now, we prove Corollaries 2 and 3 for finitely generated finite-by-nilpotent groups.
It suffices to show that, for each finitely generated finite-by-nilpotent group G and for
any integers ¢,m > 1, if [oy1(G) is finite and t(Ti(G)/Tia(G))™ = 1for 1 < i < ¢,
then G satisfies a 3V3 sentence ® such that the conclusion of [11, Proposition 1]
is true for any finitely generated finite-by-nilpotent group H which satisfies & with
t(Ti(H)/Ti(H) " =1for1<i<e

We see from the proof of [11, Lemma 1.1] that, for each integer ¢ > 1, there exist
a V3 sentence 6; which is true in G and an existential formula -y; which defines I';(H) in
H for any group H which satisfies 8;. We consider the groups A; = I';(G)/I'i41(G) and
the quadruples M; = (A, A;, Ait1, g:i), where g; is the bilinear map induced by the map
(z,9) = [z,y]-

According to Theorem 2, for each i € {1,...,c — 1}, there exist some disjoint
sequences of variables U, ;, Uz, Ua,i, Some sequences T} ; C Ay, T5; C A;, T3; C Aiy1, and
a conjunction of § formulas @} (@ ;, Ua 4, Us;) such that:

(1) M, satisfies ¢} (f},i,f;ﬂ-,f;‘i);

(2) For each quadruple N = (Ny, Ny, N3, h) such that t(N)™ = t(Ny)™ =
t(N3)™ = 1, and for any sequences §J; C Ny, Ty C N2, §3 C N3, if N
satisfies ¢} (Y, U2, 3), then Ny = (¥, ker;(h)) and N, = (¥,, ker,(h)).

For each i € {1,...,c — 1}, we consider the V3 formula ¢;(%@;;, @2, %3;) in the
language of groups which is obtained from ¢}(%;;, Uy, Us;) by doing successively the
substitutions below:

(a) Replace each atomic subformula 71(@;) = 1, 7(W2) = 1 or 73(ws)

I1 L(Tl,i(ml), 7'2,,-(1772)) =1 by the corresponding positive existential for-
1<ign

mula v, (71(W1)), Vig1 (72(W2)) or 7i+2(T3(m3) <H< [Tl.i(ml)aTz,i('w?)])v

gign

This step only creates existential quantifiers inside the positive existential
part of each § subformula of ¢}.
(b) Substitute the existential quantifiers as follows: (3w,)@(w,, W) remains as it
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is, but (Jw,)0(w,, @) and (3ws)d(ws, W) respectively become (Jws) (7v;(w2)A
0(w,, w)) and (3ws)(7;4, (ws) AB(ws, W)). This step only creates existential
quantifiers.
(c) Substitute the universal quantifiers as follows: (Vw,)f(w;, W) remains as it
is, but (Vw,)8(w2, W) and (Vws)0(w;, W) respectively become (Vwa) (y;(w2)
— (w2, W)) and (Vws)(7;41(ws) — O(ws,@)). This step only creates uni-
versal quantifiers, since the existential quantifiers are introduced in ~y;(w;)
and 7;,,(ws), which appear in a negative form.
The group G satisfies ¢;(T1,, T2, T3,;) for any representatives Z, ;, T, T3 of 77 4, 73,
Z3; in G,Ti(G),Ti41(G). For each finitely generated finite-by-nilpotent group H and for
any sequences Jy, Ty, U3, if H satisfies 01A...A0i2AQ; (T, Ta, ), and if t (T;(H) /T (H))™
=1 for j = 1,4, + 1, then we have H = <yl,{y € H | [y,F,-(H)] C F,~+2(H)}> and
Ti(H) = (¥, {y € Ti(H) | [H,y) C Tisa(H)}). It follows Tip1(H) = ([7), ¥o), Tisa (H)).
Now, we consider a finite sequence Z which generates G, a sequence of variables @
with |z| = |Z|, and:
(1) some terms p; (@), ..., p,(T) such that (T; p,(Z), ..., p,(T)) is a presentation
of G on 7, and the formula p, (@) = 1 A ... A p,(3) = 1;
(2) the integer ¢ = |I‘c+1(G’)|, some terms o (), ..., 04(@) such that [y, (G) =
{01(Z), ...,04(Z)}, and the formula

[M\lgingﬂ(ai(ﬁ) = Uj(ﬁ))] A (Yv) [%+1(v) = (Wigigev = Uz‘(ﬁ))]?

(3) for1 < i< c—1, some sequences of terms Zl_i(ﬁ),gz,i(ﬁ),f&i(ﬁ) such that
£,4(%), &,4(3), &, ;(T) are representatives of T14 T34 23,0 G, [i(G), T'i11(G),
and the formula ¢}(T) which is obtained from ¢,(T ;, T4, Ts;) by replacing
Uy i, Uz i, Uz, With El,i (@), E2,i(ﬂ)a ZS,{(E);

(4) some terms 71(%), ..., 7-(¥) such that 7,(Z), ..., 7.(T) are representatives in
G of the elements of G/(G™,T5(G)), and the formula

(Vv)(ﬂwl)(awg) [’)’2(11)2) A ( \Y/ls,‘sT’U = T,'(.'E)’w;n’l.l)g)]
/\[/X\lsi<j$r(vwl)(vw2) [va2(w2) = ~(74(@) = Tj(ﬂ)winw?)]];

(5) the sentence § = 6y A ... ABcyy;

(6) a prime number 7 which does not divide m; for 1 < i < ¢, the integer s(1)
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such that IF )/{Ti(G)™™, Tip1( )I = s(1), and the sentence

(Bvl...Hv,(i)){'yi(vl) A oo A (Usa) A (V) [’y,-(v) = (Jwy) (Bws) [v;(w1)
NYipr(w2) A (Wigjgsyv = vjwi""wfz)]]
A [ Magicgsti) (Yws)(Vawa) [ (7:(wr)
N (wa)) = =(v; = vkw{’"’wz)]] }

The conjunction (@) of the formulas in (1), (2), (3), (4) is V3, and the conjunction
1 of the sentences in (5), (6) is 3v3. The 3V3 sentence & = ¢ A (IU)y is satisfied by T
in G.

Now, let us consider a finitely generated finite-by-nilpotent group H which satisfies
@, with t(T;(H)/Tisa(H))" =1for1 <i<c and a sequence 7 C H which satisfies .

According to (5), v; defines I';(H) in H for 1 € 1 < ¢+ 1. For 1 < i € ¢, the finitely
generated Abelian groups A; = I';(G)/T;.1(G) and Bi =T (H) /FH_l(H ) are isomorphic
since they satisfy |A,~/A}""| = |B,-/B,?""| by (6), and t(4;)™ = t(B;)™ = 1.

According to (1), the map T — § extends to a homomorphism f : G — H. By (2),
f induces an isomorphism from FC.H(G) to I“C.H(H ). For 2<i S ¢, we infer from (3)
and the properties of @;_; that T;(H) = ([&,,_,(7), &,_1(F)], Tis1 (H)); consequently, f
induces a surjective homomorphlsm, and therefore an isomorphism, from A; to B;. It
follows that f induces an isomorphism from T'y(G) to T2 (H).

By (4), f induces an isomorphism from A;/AT = G/(G™ T'y(G)) to Bi/B] =
H/(H"‘,i"2(H)). As A; and B; are isomorphic, and t(4;)™ = t(B;)™ = 1, it follows
that f induces an injective homomorphism f : A; — B, with |By/f(A:)| prime to m
(see [10, p.66]). In particular, f induces an isomorphism from t(A4;) = A(G)/T(G) to
t(B1) = A(H)/T2(H).

Consequently, f satisfies the conclusion of [11, Proposition 1]: f is an injective
homomorphism from G to H with f(A(G)) = A(H) and |H/f(G)| prime to m.
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