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ABSOLUTE RETRACTS AND VARIETIES OF 
REFLEXIVE GRAPHS 

PAVOL HELL AND IVAN RIVAL 

Introduction. For a graph G, let V(G) denote its vertex set and E(G) its 
edge set. Here we shall only consider reflexive graphs, that is graphs in 
which every vertex is adjacent to itself. These adjacencies, i.e., the loops, 
will not be depicted in the figures, although we always assume them 
present. For graphs G and // , an edge-preserving map (or homomorphism) 
of G to H is a mapping of V(G) to V(H) such tha t / (g) is adjacent to f(g') 
in H whenever g is adjacent to g/ in G. Because our graphs are reflexive, 
an edge-preserving map can identify adjacent vertices, i.e., possibly 
f{g) = f(g') for some g adjacent to g', cf. Figure 1(a). 

(a) (b) 

Figure 1. An example of an edge-preserving map and the equivalenee relation it defines. 

A retraction is a special kind of edge-preserving map. Before we turn to 
retractions though, we make two remarks about edge-preserving maps in 
general. Any edge-preserving map of G defines an equivalence relation on 
V(G) in which two vertices are equivalent just if they are mapped to the 
same image. (In Figure 1(b) we illustrate the classes of this equivalence for 
the edge-preserving map in (a).) Conversely, given any equivalence 
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REFLEXIVE GRAPHS 545 

relation 0 on V(G), we would like to have an edge-preserving map which 
"shrinks" each equivalence class of 6 to a vertex. This is easily done by 
defining the quotient G/0 as a graph whose vertices are the classes of 0, 
with two of them adjacent in G/0 just if, in G, there is an edge joining the 
two classes. For instance, the quotient of the equivalence depicted in 
Figure 1(b) is the triangle in Figure 1(a). The mapping which takes each 
vertex g of G to the class of 0 containing g is then an edge-preserving map 
of G to G/0. Thus we have another view of the edge-preserving map in 
Figure 1(a), as the map produced by the equivalence depicted in Figure 
1(b). Our second remark concerns the notion of distance in a graph; we 
denote by dG(g, g') the length (number of edges) on a shortest path from g 
to g' in G, if one exists. It is easy to see that an edge-preserving map/of G 
to H takes a path of length / joining g and g' in G to a (possibly 
self-intersecting) path of length / joining/(g) and/(g ' ) in H. Thus 

dH(f(g),f(g'))^dG(g,g') 

for any edge-preserving m a p / o f G to //, and any g, g' e V(G). 
Now let H be a subgraph of G. A retraction of G to H is an 

edge-preserving m a p / o f G to H such that/(/z) = h for all h e V(H). 
If there exists a retraction of G to H we say that H is a retract of G, cf. 
Figure 2(a) 

(a) (b) (c) (d) (e) 

Figure 2. The hexagon with shaded vertices is a retract of the graph in (a) but not of the 
graph in (b), (c), (d), or (e). 

In Figure 2(b)-(e) we illustrate examples in which a retraction of G to H is 
impossible. What property of the way G lies in H makes it impossible? 
(We shall refer to such a property, on an intuitive level, as an 
"obstruction".) Given graphs G and H, an obvious obstruction to 
retracting G to H would be a "shortcut", i.e., a path of length / < du(h, h') 
in G joining two vertices h, h' of H. (This is the case in Figure 2(b).) 
Indeed, according to our general remarks on edge-preserving maps, there 
could be in such a case no edge-preserving map of G to H fixing h and h\ 
and hence no retraction of G to H. Let us say that H is an isometric 
subgraph of G if 

dH(h, h') = dG(K h') for any K h' G V(H\ 
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i.e., if there is no shortcut. Thus if a subgraph is a retract then it is 
necessarily an isometric subgraph. The class of graphs H which are 
retracts whenever this simple necessary condition is satisfied is character­
ized in Theorem 1. Figure 2(c) illustrates that the condition is not always 
sufficient. In fact, in Figure 2(c) there are three vertices having a vertex of 
distance 1 from each of them in G, but not in H. This is a prototype 
of another type of obstruction, which we call a "filled triple". A triple of H 
is a set of three (not necessarily distinct) vertices a, b, c of H together with 
three nonnegative integers /, j , k such that no/i e V(H) satisfies 

dn(K a) ^ /, dH(K b) ^ 7, and dH(h9 c) ^ k. 

If H is a subgraph of G, we say that the triple (a, /?, c\ i, j , k) of H is 
separated in G if there is no g E V(G) satisfying 

dc(g, a) ^ i, dG(g, b) ^ À dG(g, c) g k. 

1 y=\ 

Figure 3. An example of a triple. 

It follows from the earlier remarks on edge-preserving maps that if some 
triple of H is not separated (i.e., is "filled") in G, then there is no 
retraction of G to H. (For example the triple of Figure 3 which exists in the 
outer hexagon of Figure 2(c) is not separated in Figure 2(c) and hence 
there is no retraction onto the outer hexagon.) Hence having all triples 
separated is another necessary condition to be a retract, and Theorem 2 
characterizes those graphs H which are retracts whenever this condition is 
satisfied. Note that having all triples separated is a stronger property than 
being an isometric subgraph: if 

dc(K h') < dH(K h') 

and if we set a = h, b = c = h\ i = 0, and j = k = dG(h, h') then 
(a, b, c\ i,j, k) is a triple in H which is not separated in G. 

Naturally, this condition is still not sufficient for all graphs, as is 
illustrated in Figure 2(d). One would expect other types of obstructions, 
filled "quadruples", and larger "holes". In general, we define a hole of the 
graph H to be a pair (AT, ô), where K is a nonempty set of vertices and 8 a 
function from K to the nonnegative integers such that no/i e V(H) has 

du(K k) ^ 8(k) 
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for all k e K. For technical reasons we shall also require that if (K, 8) is a 
hole, then K has no subset K! with \K\ < \K\ such that (K\ 8\K') is also 
a hole. 

i^Nl l l 

2 1 1 
1 2 

(a) (b) (c) (d) 

Figure 4. Examples of holes: each k G AT is shaded and 8(k) is indicated. 

An m-hole is a hole (K, 8) with |AT| = m. Note that a triple is either a 
3-hole, or contains a 2-hole. Also note that a 2-hole is a pair of vertices x, y 
with nonnegative integers 8(x), 8(y) so that 

8(x) + 80,) < d(x,y), 

cf. Figure 4(d). Another way to view holes is this. Denote by DH(h, r) the 
disc with centre h and radius r in H, i.e., let 

DH(h9 r) = {x e V(H):dH(h, x) ^ r}. 

Then (AT, 8) is a hole if and only if 

kQKDH(k,8(k)) = 0 and 

n / /^(jfc, S(£) ) * 0 if # ' c K, \K'\ < \K\. 

We have observed above that if H is a retract of G then for any hole (K, 8) 
of / / we must have 

Q DG(k,8(k)) = 0 

also. Since each 

v n Z)G(/c, 8(/c) ) D n £„(£, S(/c) ) * 0, iT c # , |AT'| < |# | , 

we conclude that (K, 8) must also be a hole of G. Thus the obstruction 
described earlier as a "filled hole" is a hole of H which is not a hole of G. 
Just as for triples, we say that a hole (K, 8) of a subgraph H of G 
is separated in G if (AT, 8) is also a hole of G. Having all holes separated is 
another necessary condition for being a retract, and Theorem 3 
characterizes those graphs H which are retracts whenever this condition is 
satisfied. This condition is stronger than being an isometric subgraph 
(which is equivalent to having all 2-holes separated) or having all triples 
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separated (which is equivalent to having all 2-holes and 3-holes separated), 
but it is not always sufficient, as illustrated in Figure 2(e). Since hole 
separation is our principal tool, we reserve the name absolute retract for 
those graphs for which this last condition is sufficient: H is an absolute 
retract if H is a retract of any G of which it is a subgraph and for which 
every hole of H is separated in G. Thus Theorem 3 characterizes absolute 
retracts. Graphs in Figures 6 and 7 are examples of absolute retracts; the 
hexagon is not an absolute retract, (cf. in Figure 2(d) ). 

For infinite graphs we consider the following "finitary" obstruction. 
When H is a subgraph of G, we can extend each equivalence relation 0 on 
V(H) to V(G) by letting g 6 g' just if g = g> or g 0 g* in H. (Cf. Figure 5.) 
Then an equivalence relation 0 (and in particular, one with finitely many 
classes) on V(H) such that H/0 is not a retract of G/0 represents 
an obstruction to retracting G to H. Indeed, any retraction / of G to H 
would define a retraction/ of G/0 to H/0: simply l e t / take each of the 
original classes of 0 on V(H) to itself, and each of the new classes on 
V(G) — V(H), each of which must necessarily be a singleton, {g}, to the 
class containing/(g). 

(a) (b) -(c) (d) 

Figure 5. An equivalence 0 on the four-cycle H (with shaded vertices), (a), is extended 
to the whole graph G, (b), and a retraction of G to //, (c), is modified to a retraction of 

G/9 to H/0, (d). 

In particular, we obtain the following necessary condition for the 
existence of a retraction of G to H: each finite quotient H/0 is a retract of 
the corresponding quotient G/0. Graphs H for which this condition is also 
sufficient are said to satisfy the finite separation property, and are 
characterized in Theorem 4. (Formally, H has the finite separation 
property if H is a retract of any G of which it is a subgraph, provided that 
for each equivalence 0 on V(H) with finitely many classes, H/0 is a retract 
of G/0.) Obviously, any finite graph H has the property (consider 
0 = {(h,h):h G V(H)}). 

Each of our characterizations is given in terms of varieties. A graph 
variety, (cf. [3] or [7] ) is a class y of graphs which contains all products 
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(defined below) and all retracts of members of if. In symbols, P ( ^ ) Q if 
and R(y^) Q if. For a class ^of graphs, let ¥>v stand for the smallest graph 
variety containing *$. We call ^v the variety generated by % or the variety 
of <K In fact, %>v = RP(^) . The product we have in mind here is the 
product in the category of reflexive graphs and edge-preserving maps, 
known in graph theory as the strong (or normal) product [1], or the direct 
product [14]: The product of graphs Gt, i e /, denoted by YLlŒl Gt has as 
its vertex set the cartesian product I I / e / V(Gt) and two vertices (g/)/G/ 
and (/z,) /e/ are adjacent just if gt is adjacent to ht in each Gi9 i e /. Note 
that because of reflexivity, one way gt may be adjacent to hl is gt = ht. In 
Figure 6 we illustrate the product of two graphs, as well as the easy fact 
that each map IT- of IT / G / Gi to Gj defined by 

^•((g/X-e/) = gj 

(they-th projection) is edge-preserving. 

• i i i 

I l 1 • 77-7 

t • • t 
O r-O O O 

Figure 6. The product of two paths and the two projections. 

Among the varieties playing a role here will be the variety of all finite 
paths (Theorem 1), of all finite graphs (Theorem 4), and of all Y-graphs, 
defined below, and illustrated in Figure 7 (Theorem 2). 
In the last section we discuss some related problems. 

The main results. Our point of departure is the following result. 

THEOREM 1. Let H be a graph. The following statements are equivalent: 
(1) H is a retract of any graph G of which it is an isometric subgraph; 
(2) H is in the variety of finite paths', 
(3) H has no m-holes for m = 3. 

For completeness we include a proof of Theorem 1, even though the 
equivalence of (2) and (3) was proved by R. J. Nowakowski and I. Rival 
[9], the equivalence of (1) and (3) (in different terminology and for finite 
graphs only) is implicit in A. Quilliot [12], and the equivalence of (1) and 
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Y'(l,l,2;2,2,2) 

Y'(U,1;2,2,2) Y'(l,l,l;l,2,2) 

Y'(l,2,2;3,3,3) 

Figure 7. Example of Y-graphs. 

(2) (in the essentially similar context of irreflexive bipartite graphs) was 
proved by P. Hell [4], cf. also [5, 6]. (For topological spaces a similar result 
of this kind was published as early as 1931 in [2]. We shall also deduce this 
consequence. In this statement by a "cycle" we intend a closed path which 
may have chords. Such a "cycle" need not be an (induced) subgraph.) 

COROLLARY. Let H be a graph without cycles of length I > 3. If H is an 
isometric subgraph of a graph G, then H is a retract of G. 

This corollary is a generalization of the result of R. J. Nowakowski and 
I. Rival [8], and A. Quilliot [12], where it was proved for the case when H 
is a tree. It was also anticipated, in the context of irreflexive bipartite 
graphs by P. Hell [4, 5], where it applied to all graphs H without cycles of 
length / > 5. 

A similar theorem asserting the existence of a retraction onto a shortest 
cycle was proved for bipartite graphs by G. Sabidussi [15] (cf. also [4] ) 
and for reflexive graphs by R. Nowakowski and I. Rival [8], and by A. 
Quilliot [12]. Sabidussi was apparently the first person to explicitly suggest 
studying retractions of graphs ( [15] ). 

Theorem 1 says in effect that every (finite or infinite) graph which is a 
retract of any graph in which it is an isometric subgraph can be 
reconstructed, using the operations of retract and product, from finite 
paths alone. The simplicity of these "building blocks" is very appealing. 

We now give a description of the building blocks for the class of graphs 
which are retracts whenever all their triples are separated. These graphs 
will have G parameters (/, j , k; /, m, n) which are positive integers 
satisfying the following inequalities: 
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I = i + j \ m ^ j + k, n ^ i + k 

(I) I = m -\- n, m = I -\- ny n = m -\- I 

I + n > j + k, I + m > i + k, m + n > i + j . 

The graph Y (/, 7, k\ /, m, n) is defined as follows. The vertices are 
triples 

a = (0, min(/,y 4- 1), min(w, k 4- 1) ) 

b = (min(/, i 4- 1), 0, min(m, k 4- 1) ) 

c = (min(«, / 4- 1), min(ra,y* + 1), 0) 

and all triples (x, y, z), 

x = 1, . . . , / , / 4- 1, 

y = 1, 7,7 -h 1, 

z = l , . . . , i , H l 

such that x = i + \, or y = j + 1, or z = fc 4- 1, satisfying the following 
inequalities 

|x ~ y\ = I and x 4- y = /, if x ^1 / and y = j 

(II) |j> — z| ^ m and>> 4- z ^ ra, if j^ = 7 and z ^ k 

\z — x| = n and x + z ^ ft, if x = i and z ^ k. 

Two vertices (x, j % z), (x', y , z') are adjacent in Y (i,j, k\ I, m, n) if 

|JC - x'| ^ l,\y - y'\ ^ 1, and |z - z'| g 1. 

Figure 8 illustrates the general construction, as well as some concrete 
examples. Any finite face of these planar graphs is to be interpreted as a 
complete graph including all vertices inside and on the boundary of the 
face, cf. Figures 8c and 8d. It can be verified from (I) and (II) that if x = i 
(respectively y ^ 7, or z ^ k) then the distance from (x, y, z) to 
a (respectively b, or c) is precisely x (respectively^, or z). If x = i 4- 1 
then the distance to a is greater than i (and similarly for y, z). Finally, 
the distances between a and b, b and c, and a and c are respectively /, m, 
and n. 
A Y-graph is any of the graphs Y (z,y, k\ /, w, n) defined above. We have 
the following characterization: 

THEOREM 2. A graph H is a retract of each graph in which all triples of H 
are separated if and only if H is in the variety of \-graphs. 

Remark. It is possible to simplify the Y-graphs a little bit, by removing 
the four central vertices 

(/ 4- l,y + 1, k + 1), (/' 4- l,y 4- 1, *:), (/ 4- 1,7, k 4- 1), and 

(/,7 4- 1, k 4- 1). 
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Each plane region of the above figure is to be interpreted as a complete graph consisting 
of all the vertices inside the region and on its boundary. 

The graph Y (/,/, À; /, m, n) is a subgraph of the figure determined by the vertices 
satisfying the inequalities (II) and the adjacencies described just after (II). 

Figure 8 (a) 

In Figure 7 we illustrated these simplified graphs Y' (z,y, k; /, m, n). It is 
not hard to modify the proof of Theorem 2 to work for the graphs Y'. 

In Figure 9 we illustrate the fact that in contrast to Theorem 1, (3), the 
absence of m-holes, m ^ 4, does not assure that a graph is a retract of each 
supergraph in which all of its triples are separated. 

Figure 9. The pentagon with shaded vertices is not a retract of G\ even though all of its 
triples are separated and it has no m-holes, m ^ 4. 
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a = (0,5,4) 

Y(5,4,6;9,6,4) 

</=(0,1,7) 

fc = (6,0,6) 

=Y(1,1,6;1,7,7) = 

c = (2,2,0) 

Figure 8 (c) Figure 8 (d) 

There is some suggestion, in the definition of Y (i,j, k\ /, m, n), of how 
one may define the "building blocks" of the variety of absolute retracts. 
(The class of absolute retracts is a variety, cf. Lemma 5.) However, these 
building blocks seem to get too unwieldy to be of much current interest. 
One useful aspect of our "building block" characterizations, such as those 
given in Theorems 1 and 2, is that they render the problem of deciding 
whether a graph G has the property (of being a retract of any graph in 
which all appropriate holes are separated) a finite question. Indeed, it is 
easy to see that we may assume that G is connected (else investigate each 
component separately) and, that for connected graphs, only finitely many 
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(2- and 3-) holes need be considered. Separating all of these holes gives 
rise to a finite product containing G (cf. the proofs of Theorems 1 and 2) 
and G will have the required property if and only if it is a retract of this 
product. To show that the problem of deciding whether G is an absolute 
retract is also a finite question, we give, instead of a variety ("building 
block") characterization, a related description. 

For a graph H call a nonempty subset S of V(H) closed, if for each 
x <= V(H) - S there is an h e V(H) such that 

dH(x9 h) > dH(s, h\ 

for all s ^ S. Equivalently, denoting 

eccs(h) sup dH(s, h) 

(the S-eccentricity of h), S ¥= 0 is a closed subset if and only if 

n DH(h9 ecco(A)) = S. 

A 

The coordinate graph of H, denoted H, has as its vertices the closed sets 
A 

of //, and two vertices S, S' of H are adjacent just if 
\eccs(h) - eccs,(h) | ^ 1 for all h e F( / / ) . 

C3 

^ o-
a {a,b} 

{a,b,c} 

Pi 

Figure 10. Two examples of coordinate graphs. 

We observe that each singleton S = {s} is a closed set; as 

œcs(h) = dfI(s, h) for all h G V(H) 

(including h = s). It follows easily that H is (isomorphic to) a subgraph 
of//. 
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The graphs which are retracts whenever all their holes are separated, 
i.e., the absolute retracts, are characterized as follows: 

THEOREM 3. A graph H is an absolute retract if and only if it is a retract of 
its coordinate graph H. 

Note that Theorems 1 and 2 give characterizations of absolute retracts 
without ra-holes, m ^ 3, m ^ 4 respectively. 

Finally, we characterize those graphs H which are retracts of any G for 
which all their finite quotients H/6 are retracts of G/6: 

THEOREM 4. A graph H has the finite separation property if and only if H 
is in the variety of finite graphs. 

The proofs. In order to streamline the arguments we introduce 
additional terminology (which we avoided above to make the statements 
more transparent). Let R (j = 1, 2, 3, 4) be the following properties of a 
subgraph H of a graph G: 

Px: H is an isometric subgraph of G 
R2: All triples of H are separated in G 
R3 : All holes of H are separated in G 
R4: H/6 is a retract of G/0 for all equivalences 6 on V(H) with finitely 

many classes. 
Note that each property R- is a necessary condition for the existence of a 

retraction of G to H. Let AR(P) denote the class of graphs H for which the 
condition Pj implies that H is a retract of G. Thus Theorem j characterizes 
AR(ip,y = 1, 2, 3, 4; AR(P3) is just the class of absolute retracts defined 
earlier; and AR(P4) is the class of graphs with the finite separation 
property. 

The following lemma will allow us to deduce #" Q AR(^) from 
knowing just V Q AR(7>): 

LEMMA 5. Let j be 1, 2, 3, or 4. 

(a) IfH' e AR(/>) and if H is a retract of H\ then also H e AR(/p. 
(b) If Hi G AR(Pj),for all i G /, then the product 

H^IlH, 

also belongs to AR(P). 

Proof of Lemma 5. (a) Let H be a subgraph of G and assume that R 
holds (j = 1, 2, 3, or 4). We will modify G so that it contains all of H'. 
This is formally done by using the notion of amalgams. Let X and Y be 
graphs with disjoint vertex sets and suppose we have a fixed isomorphism 
of a subgraph Xf of X to a subgraph Y of Y. The amalgam of X and Y over 
X (or Y) is the quotient of X U Y under the equivalence whose only 
nontrivial classes are the pairs of corresponding vertices of X, Y. In other 
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words, the amalgam is constructed from X and Y by identifying the 
corresponding vertices (and edges) of X' and Y. (Note that both X and Y 
are subgraphs of the amalgam.) 

Figure 11. The amalgam of X and Y over a triangle. 

Now in our situation we have H as a subgraph of G and (an isomorphic 
copy of) H as a subgraph of H'. Thus we can construct the amalgam G of 
G and H' over H. If we can argue that property P. holds for H' in G' then 
by assumption H' is a retract of G', and by composing retractions H is 
a retract of G'. Since G is a subgraph of G' we would also have H a retract 
of G. 

It remains to show that H' in G' has property R. For7 = 1 , 2 , and 3 the 
proof is fairly evident. (Recall that H has property R in G.) It suffices to 
notice that any path connecting a vertex of G to a vertex of W must 
contain vertices from H. Thus any ra-hole in H' not separated in G' would 
give rise to an m-hole in H not separated in G. For y = 4 we need to prove 
that each finite H'/O is a retract of G'/8. The equivalence 6 on V(H') can 
be restricted to V(H), and has, in V(H), also only finitely many classes. 
By assumption, there is a retraction r of G/0 to H/0. The retraction r can 
now be extended to a retraction of G'/O to / f ' /0 : the vertices of G IB are 
the vertices of G/0, for which we keep the existing value of r(v), and the 
vertices w of H'/O, for which we let r(w) = w. It is a routine exercise to 
verify that the extended map r is well-defined (i.e., the two definitions 
agree where they both apply), and edge-preserving. 

(b) Assume that 

H = n H( 
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is a subgraph of G such that P- holds (j = 1, 2, 3, or 4). 
Let 6k be the equivalence on V(H) in which 

just if hk = /^. Suppose we can argue that i//#A also has property 
F in G/0k. Thus there would be, for each / e /, a retraction r, of G/Ql to 
#/# z = Ht. A retraction r oî G to H = II / € E / #, may then be defined 
by 

/•te) = (/•/( {g}) W f o r g ^ K(ff) 

/•(g) = g for g e K(#). 

Indeed, if g £ V(H), then the class of #z containing g is the singleton {g}. 
If g £ F( i / ) is adjacent to g' e F(7/) in G, then each r,( {g} ) is adjacent 
to the 0rclass containing g' in Ht = H/0t. Hence, in H = I I , e / i//, 
(r(g) ), is adjacent to (g'), for each / G /, and so r(g) is adjacent to g'. It 
easily follows that r is an edge-preserving map. 

It remains to demonstrate that each H/6t ( = Ht) has property P- in G/0,. 
Let y = 1, 2, or 3, and suppose that some m-hole of H/6i is not separated 
in G/0,. Then there is an m-hole in H which is not separated in G. For 
j = 4, if some H/6k = //A has a finite quotient (H/6k)/8 which is not a 
retract of (G/6k)/0, then define 0 on V(H) by 

h 0 W just if 

A = (*,-W, ^ = W W and M*A> 

and observe that (H/Qk)/0 = H/ÏÏ is not a retract of (G/6k)/0 = G/6 
while 6 has only finitely many classes on V(H). In each case we conclude 
that the fact that H has property P in G implies that H/0i = Ht has 
property P- in G/6t. 

In the next lemma we shall show how to construct, for a given graph // , 
a graph G in which H satisfies property P (j = 1, 2, 3). 

Let (K, 8) be a hole of the graph H. We say that an arbitrary graph 
G separates the hole (K, 8) of / / if there is an edge-preserving map / of 
H to G such that 

kQKDG(f(k),8(k)) = 0. 

In this case, we also ca l l / a separating map of (K, 8) in G. Note that if H is 
a subgraph of G then the inclusion map /' of H to G, 

i(h) = h, h e F(//), 

is a separating map of (AT, ô) if and only if (K, 8) is separated in G 
according to an earlier definition. 
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LEMMA 6. Let H be a fixed graph. Let M be a set of integers m = 2, with 
2 G M. If for each m G M and each m-hole (K, 8) of H there is a separating 
map fk 8 of (K, 8) in some GK8, then H is (isomorphic to) a subgraph of 

G = U{GK8:(K, 8) is an m-hole, m <= M} 

such that all m-holes, m Œ M, of H are separated in G. 

We shall use Lemma 6 to conclude, for a graph H e AR(i^), that it is a 
subgraph of some product in which it has property P, and hence that H is 
a retract of the product giving us a variety characterization of AR(P). 
(Here j = 1, 2, 3; a similar argument will also be used for j = 4, cf. the 
proof of Theorem 4.) 

Proof of Lemma 6. The isomorphism <p taking H onto a subgraph 
G = TLGK8 is defined by 

v(A) = ( / * # ) ) ( « ) • 
It is easy to check that cp is indeed an isomorphism; for instance 
<p(h) ¥= <p(h') for h ¥= h' is verified by considering fK8 for the hole 
K = {A, A'} with 

8(h) = 0, S(/i') = du(K h') - 1. 

(Recall that 2 <= M.) Identifying / / with its isomorphic image <P(H) we 
note that each projection TTK8, when restricted to V(H), becomes just fK8. 
Now suppose that some m-hole (K0, 50) m e M, of / / were not separated 
in G = n<7^ô, i.e., that there is a g <E V(G) such that 

</c(g, fc) ^ S(fc), for each A: e # o . 

Since each projection ITK8 is an edge-preserving map of G to G^ô, we have 
the following inequality for the distance in GK8\ 

d("K,s(g)JK,s(k)) = d(7TKS(g), vK^k)) S dG(g, k) =i 8(k), 

for each k e ÂT0. In other words, 

«M e ^ DGJfKS(k), S(k)), 

for each m-hole (AT, ô), m e Af. In particular, for AT = AT0, 8 = S0, this 
contradicts the definition of fK8. Hence each m-hole of / / , m e M, is 
separated in G. 

77?<? proof of Theorem 1. We first prove the equivalence of (1) 
(H G AR(Pj) ) and (2) (H is in the variety of finite paths). It is easy to 
see that each finite path is in AR(P1). Indeed, if the path Pn with vertices 
a0, a]9 . . . , an is an isometric subgraph of G, then the map r defined by 

r(g) = a{ if dG(g, a0) = i, i = 0, 1, . . . , « - 1 

r(g) = Û otherwise, 
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is a retraction of G to Pn. (If G were not connected, then all vertices of the 
components not containing Pn could be mapped to any vertex of Pn.) 
According to Lemma 5 (withy = 1), it follows that each graph in the 
variety of finite paths also belongs to AR(P{). Conversely, assume that 
H <= A R ^ ) . Let (K, 8) be a 2-hole in //, i.e., K = {k, k'} and 

S(k) + 8(k') < dH(k9 k'). 

Let n be a positive integer, 

«(*) + fi(Jfc') < « ë */„(*:, Jf ). 

(Note that such an integer exists even if dH(k, k') = oo.) We define a map 
/ ^ 5 from H to i^ (with vertices a0, ax, . . . , an) by 

/ ^ ( / 2 ) = a, if </„(/!, *) = / ^ f i - 1 

fxd^ = an otherwise. 
T h e n / ^ 5 is an edge-preserving map of H to Pn which separates the hole 
(K, 8) in Pn. Since each 2-hole is separated by a finite path, Lemma 6 (with 
M = {2} ) assures that H is an isometric subgraph of a product of finite 
paths, and because H e AR(Pj), it is a retract of it. Therefore H is in the 
variety of finite paths. 

Next we prove the equivalence of (1) (H e AR(Pj) ) and (3) (H has no 
m-hole, m ^ 3). The easier half is to see that (1) implies (3). Any w-hole 
(K, 8) with m = \K\ = 3 allows one to define a graph G containing H as 
well as a new vertex v of degree m with m disjoint paths (of new vertices) 
joined to the elements of AT in such a way that the length of the added path 
from v to k e K is precisely 8(k) (cf. Figure 12). (Note that it follows from 
the definition of a hole that if \K\ > 2 then 8(k) > 0 for all k e K.) 

8(kx) < > «(U 

/ / 

Figure 12. The construction of G for a hole (K, 8) in //. 
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Because (K, S) is a hole in H but not in G, H is not a retract of G. Because 
( {k, £'}, 8) is not a hole for any k, k' <= Ky H is an isometric subgraph of 
G. Thus H <£ AR^Pj). Conversely, we shall now show that (3) implies (1). 
Suppose that H has no ra-holes, m ^ 3, and that H is an isometric 
subgraph of some G. It follows that every hole of H is separated in G, 
and that for each vertex g e V(G) there exists a vertex /z e K(//) 
such that 

dH(hg9 x) ^ dG(g, x) 

for all JC G V{H). The idea of showing that H is a retract of G will be to 
map one vertex g to its h and note that in the resulting situation H 
remains an isometric subgraph so that we can continue. To do this 
formally, we define a partial retraction to be an equivalence 6 on V(G) 
such that 

(i) no two vertices of H are equivalent 
(ii) H is an isometric subgraph of G/0. 

Figure 13. A partial retraction. 

Note that (i) implies that H is (can be viewed as) a subgraph of G/0. 
Clearly, there are partial retractions, e.g., { (g, g):g e V(G) } is one. 
Partial retractions are ordered by inclusion and in this order there are 
maximal elements. (This is obvious when G is finite and follows, for 
infinite G, by a routine application of Zorn's lemma.) We claim that a 
maximal partial retraction G corresponds to a retraction r of G to H, i.e., 
that G/0 is H. Indeed if G/0 had a vertex v outside of H, then we would 
have a situation where H is isometric in G = G/0 and hence there is a 
vertex hv G V(H) with 

dH(hv, x) g dG,(v, x) 

for all x e V(H). Let 0r be the equivalence on F(G') in which each class 
is a singleton except for the class {v, hv}. Let G" = G' 10' and note that 
H is isometric in G"; otherwise 

dG(hx,h2)<dH{hX9h2) ^da(hl9h2), 

for some vertices h]9 h2 of / / . Therefore we have a situation depicted in 
Figure 14. 
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Figure 14. How / / could fail to be isometric in G" even though it is isometric in G'. 

In other words 

dG»{h^ h2) = dG(hX9 v) + dH(hv9 h2) 

(or the similar inequality with h]9 h2 interchanged). But 

d„(hv, hx) =g dG(v, ht) 

and so 

dH(hX9 h2) ^ dH(hv9 hx) + dH(hv9 h2) tk dc(v, hx) + dH(hv9 h2) 

= dG„(hu h2) 

contradicting the choice of hx, h2. In conclusion, H is isometric in 
G" = G70' and hence there is a partial retraction 0* on V(G) properly 
containing 0, contrary to the maximality of 0; therefore the edge-
preserving map associated with a maximal partial retraction is in fact a 
retraction. 

The proof of the corollary to Theorem 1. By Theorem 1, it will suffice to 
show that a graph with an m-hole, m ^ 3, must have a cycle of length 
greater than 3. Therefore, let (K, 8) be a hole in H, K = [kx, k2, . . . , km) 
and m ^ 3. By the definition of a hole, there exist distinct vertices 
/ b /2, . . . , lm such that 

/,- G n.DH(kj98(kj)), 

i = 1, 2 , . . . , m. Let Wtj be a shortest path from lt to k} in H. Let z be the 
first vertex on W2X common to W3X. (Possibly z = /2, /3, or kx.) If H has no 
cycle of length at least 4, then W2X U W3X has the general form depicted in 
Figure 15. 

Note that /, £ W2X U W3X because 

d„(lx, kx) > 8(kx) ^ dH(li9 kx) 
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I 
I 

Figure 15. The union W2] U W-$\. 

for / = 2, 3. Let 

A = {a,, a2,...,ap) U W23 and 5 = {bx, b2, . . . , ^ } U W32. 

Now assume that Wn intersects^. By the above inequality (with / = 2) as 
well as by 

dfl(l2, k2) > S(k2) i= dH(lx, k2) 

we easily conclude that H has a cycle of length at least 4. A similar 
argument applies if WX3 intersects B. Hence we may assume that WX2 

intersects B but not A and WX3 intersects A but not B. Then / b z, the first 
vertex of WX2 on B, and the first vertex of W]3 on A lie on a cycle of length 
at least 4. 

77z£ proof of Theorem 2. To prove that each member of the variety of 
Y-graphs belongs to AR(P2) it is enough, in view of Lemma 5, (withy = 2) 
to show that each Y (i,j, k\ /, ra, n) is itself in AR(P2). To this end, let 
Y (/', y, k\ /, m, n) be a subgraph of a graph G in which all triples 
of Y (i,j\ k\ /, m, n) are separated. Since Y (z",y, k; /, m, n) is connected, we 
may assume that G is connected as well. Therefore we can define, for each 
g e V{G\ 

s(g) = min(z + 1, dG(g, a) ), min(y + 1, dG(g, b) ), 

min(/c + 1, dG(g, c)). 

The mapping s is a retraction of G onto Y (/', j , k\ /, m, ft). In particular, 

https://doi.org/10.4153/CJM-1987-025-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-025-1


REFLEXIVE GRAPHS 563 

each vertex (x, y, z) of Y (z, y, k\ I, m, n) is mapped to itself by s. Each 
vertex g e V(G) has at least one component of s(g) attains its high­
est value, or else g would fill the triple (a, b, c; z, j , k). Moreover, no 
s(g) = (x> y> z) c a n have x = z, y = j and x 4 y < /, because then the 
distance of x and y in G would be less than / ( = distance in Y (/, j , k\ 
/, m, n) ). Similarly, no s(g) = (x,y, z) can have \x — y\ > / because of the 
triangle inequality for the distance in G. The other inequalities of II follow 
analogously. Hence s maps G onto Y (z, j , k\ /, m, n). If g and gf are 
adjacent in G, then in s(g) = (x, y, z), s(g') = (x', y , z') 

|x - x'| S 1, | j ; - y'\ ^ 1, and \z - z'\ ^ 1, 

and s is edge-preserving by the definition of A(z, y, /c). 
Conversely, assume that / / e AR(P2)- According to our remark on 

triples and holes, H is a retract of any G in which all 2-holes and 3-holes of 
H are separated. With Lemma 6 (for M = {2, 3} ) in mind, we now find 
separating maps for all holes (K, ô), \K\ = 2 or 3. 

Consider the case of 3-holes first. A triple (a, b, c\ i,j, k) is a 3-hole of H 
if a, b, c are distinct and 

dH(a9 b) = l ^ i 4 j , 

dH(b, c) = m = j 4 /c, 

^(tf, c) = « = z 4 k. 

We shall define the separating map/of the 3-hole (a, b, c\ i,j, k), mapping 
H to Y (z,y, k\ l,m,n) as follows: for h e F (# ) , let 

/(/z) = (min(z + 1, dH(h, a) ), min(y 4- 1, dH(h, b) ), 

min(/c 4 1, dH(h, c) ). 

Since Y (z,y, /:; /, ra, /?) has no vertex (x, j , z) with x = i, y = j , z ^ k, the 
triple (o, b, c\ i,j\ k) of H remains separated in Y (z',y, k; /, ra, «). It is also 
clear that f is edge-preserving. It remains to verify that each/(/z) is a 
vertex of Y (z*,y, k\ l,m,n). Because of the distances in H among a, b, and c 
(cited above), no f(h) = (x, y9 z) can have x ^ z, y ^ 7, and x + _y < /, or 
y ~ 7, z ^ k, and y 4 z < m, or x ^ z, z ^ /c, and x 4 z < «. Similarly, 
no f(h) = (x, 7, z) can satisfy |x — _y| > / and x ^ z or x = z 4 1 > y, etc. 
because of the triangle inequality in H. 

For the 2-holes we have already seen in the proof of Theorem 1 that 
each can be separated by a finite path, and Y (z, j , k\ /, m, n) certainly 
contains an isometric path of length z. Therefore for each 2-hole of H there 
is a separating map in some Y (z,7, k\ /, m, n). By Lemma 6 then H is a 
subgraph of a product G of Y-graphs, and all triples of H are separated in 
G. Since i / G AR(P2X /^ is a retract of G, i.e., H is in the variety of 
Y-graphs. 

The proof of Theorem 3. If H is an absolute retract, then H is a retract 
of H provided that each hole of H is separated in H. Therefore, let (K, 8) 
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be a hole of H and assume that 

i.e., that some closed set S Q V(H) satisfies 

dffS, {k})^ 8(k) for all k e K. 
A 

It is easily seen by induction on dft(T, Tf) that the distance in H 
satisfies 

sup{ |eccr(/z) - eccr(/z) \:h e F( / / ) } ^ dffiT, V) 

for any T, V e K(#). Taking h = k, T = S, and !T - {/:}, we have 

ecc5(/c) = \eccs(k) - ecc[k)(k) I ^ dffS, {k} ) ^ 8(fc) 

for all k ^ K. Thus any s e S satisfies 

JtfCs, k) ^ 8(fc) for all k e K9 

contrary to the assumption that (K, 8) is a hole of H. 
To prove the second half of Theorem 3, assume that r is a retraction of 

/ / onto H, and that / / is a subgraph of a graph G such that all holes of H 
are separated in G. 

To each vertex g of G we associate the set 

S(S) = her){H)DH(h,dG{g,h)). 

We shall now show that each S(g) is a closed set in V(H). Firstly, note 
that S(g) ¥= 0, or else a subset K of V(H) of minimum cardinality, with 

kQKDH(k,dc(g,k)) = 6, 

would define a hole in H which is not separated in G (g fills it there). Next 
note that for each k e V(H) and each s e S(g) 

dH(s, h) ^ dG(g, h) 

and so 

QCCS(g)(h) = dG<<& h) 

for all h <E F(/ / ) . Therefore 

H Am DH{K ecCs^(h)} - HAH) DH{K d ^ h)} 

= S(g)QhenH)DH(h9™S(g)(hn 

implying that S(g) is a closed set of // , i.e., S(g) e V(H). It is now easy 
to verify that £ is an edge-preserving map of G to H and that the com­
position r o S is a retraction of G onto // . 
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The proof of Theorem 4. As we have already observed, each finite graph 
has the finite separation property (f.s.p.), i.e., belongs to AR(P4). Hence by 
Lemma 5 (withy = 4), each member of the variety of finite graphs also has 
the f.s.p. 

Conversely, assume that H e AR(P4), i.e., that H has the f.s.p. Let I 
enumerate all finite quotients H{ = H/0i of //, and let ̂  be the associated 
edge-preserving map of H onto H;. Let 

and define a m a p / o f V(H) to V(G) by 

f(h) = OÎ(A)W-
It is easy to see that fis an injective edge-preserving map and that if h, hf 

are not adjacent in H then/(/z), f{W) are not adjacent in G. Hence H is 
isomorphic to the subgraph of G induced by f(V(H) ), and we shall simply 
assume that H is a subgraph of G by identifying V(H) with f(V(H) ). 
Since G is a product of finite graphs, we will be done if we can show that 
H is a retract of G. Therefore we assume that H is not a retract of G. 
Since H has the f.s.p., there is an equivalence relation 6 on V(H) such 
that H/0 = H' is finite and Hid is not a retract of G/0 = G'. Notice 
that W = Hi for some / e / . We can now in fact define a retraction r of G 
onto H' as follows: let r(v) = v if v G V(H')\ if v G V(G) - V(H')9 then 
by the definition of G', v is a class {g} for some g e V(G) — V(H) and we 
let r(v) = 77z(g). Since fni of = f, the map r is edge-preserving, contrary to 
the fact that W is not a retract of G. Thus H is a retract of G, and hence a 
member of the variety of finite graphs. 

Remarks and observations. Let H be a graph. We say that .7/ has the 
finite intersection property (f.i.p.), if for any K Q V{H) and any map 8 of K 
to the non-negative integers, 

kQKDH(k,S(k)) = 0 

implies 

n DH(k,S(k)) = 0 
k G A 

for some finite subset AT' of K. In our terminology, f.i.p. amounts to 
requiring that no hole of H be infinite. 

It is easy to verify, along the lines of Lemma 5, that the class of graphs 
satisfying the f.i.p. is a variety. It is also not hard to see, using a proof by 
contradiction and the trick illustrated in Figure 14 that the f.s.p. implies 
the f.i.p. It is tempting to conjecture that the two properties are 
equivalent, but this turns out not to be the case: 
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a b c 

A A A 

Figure 16. A graph H with the f.i.p. but without the f.s.p. 

In // , the vertex a is adjacent to all vertices 1, 2, . . . , the vertex b is 
adjacent to all vertices vtj (i <j), and the vertex c to all vertices wtj (i <j). 
Moreover v- is adjacent to /, w- to7, and vt- to w-, for each / <j. It is easy 
to check that H does not have the f.s.p. Indeed, form G by adjoining to H 
the triangle a'b'c' with a' adjacent to a, b' to b, and c' to c. There is no 
retraction of G onto H because a' would have to map somewhere in the left 
column, bf in the centre column, and c' in the right column of H. But there 
is no triangle in / / joining one vertex of each column. However, for any 
finite quotient HI 6 of H such a triangle is formed and a retraction of G/6 
onto H/6 becomes possible. The verification that H of Figure 16 satisfies 
the f.i.p. is somewhat more tedious, and we shall omit it. 

As a last remark concerning infinite retracts, we note that a 
compactness argument can be used to prove the following: A finite graph 
H is a retract of a graph G if and only if / / is a retract of each finite 
subgraph of G which contains H. Similar statements about retractions of 
graphs may be found in [4, 6, 10]. 
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