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A topological semiring is a system (S, + , •) where S is a Hausdorff
space, (S, + ) and (S, •) are topological semigroups (i.e., + and • are
continuous associative binary operations on S) and the distributive laws

x- (y+z) = (x-y) + (x-z),
(x+y) • z = (x- z) + (yz),

hold for all x, y, z in S. The operations + a n d • are called addition and
multiplication respectively.

If (S, + , •) is a compact semiring, the semigroup (S, -(-) has a kernel
i£[+] (i.e., an ideal which is contained in every other ideal) whose topo-
logical and algebraic structure has been completely determined (see
Wallace [13]). We shall callii'[+] the additive kernel of the semiring. It is
natural to ask what information can be given about the multiplication of
members of K[+] and, in particular, to wonder whether i£[+] is a sub-
semiring of S. Also (S, •) has a kernel K[-], the multiplicative kernel of the
semiring, and one can ask similar questions about the addition of members
of if [•]. The main aim of this paper is to examine these problems.

In Theorem 15 of [11], Selden has shown that when (S, + , •) is a
compact semiring there is a set K which is minimal with respect to being
an ideal of both (5, -f-) and (S, •). This set K can perhaps justifiably be
called the kernel of the semiring. It is shown here in Theorem 9 that

Throughout this paper, £ [ + ] and £[•] will denote the sets of additive
and multiplicative idempotents of a semiring (S, -f, •); when S is compact,
each is non-empty (Theorem 1.1.10 of [9] or Lemma 4 of [8]). Notice also
that £ [ + ] is a multiplicative ideal in any semiring, for if x e E[+] and
yeS,

xy+xy = {x+x)y = xy

so that xy e £ [+] , and similarly yx e £ [+] .
We shall often make use of the fact that a compact semigroup which

1 This paper is based on part of the author's Ph.D. thesis, written under the supervision
of Dr. J. H. Michael.
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is algebraically a group is a topological group ([9], Theorem 1.1.8 or [8],
Theorem 1).

1. The multiplicative kernel K[-]

Suppose that (5, + , •) is a compact semiring with multiplicative
kernel K[-]. If E' = £[•] n K[-], it is well known (see, for example, [8]
or [9]) that (eSe, •) is a compact group if e e E', that eSe n fSf is empty if
e, f e E' and e 7̂  /, and that

K[-] = U eSe.
eeE'

If e 6 E', we see that for all x, y in S,

exe-\-eye = {ex-\-ey)e = e{x-\-y)e e eSe,

so that eSe is a compact subsemiring which is multiplicatively a group.
Hence its structure has been completely determined in Theorem 1 of [10].
Further, if e, f e E', then, because [K[-], •) is completely simple (Theorem
2 of [8]), there exist a in eSf and b in fSe with ab = e and ba = / such that
the function <p : eS<? -> fSf given by 9? (#) = bxa is a homeomorphism and
multiplicative isomorphism onto fSf (see, for example, [2], Lemma 8.2).
But if x, y e eSe,

y{x+y) = b(x+y)a = (bx+by)a = bxa+bya = q>(x)+<p{y),

and so 9? is also an additive isomorphism. Thus the two semirings eSe and
fSf are topologically isomorphic.

If =£? is the space of minimal left ideals of (5, •), it is known (see [8] or
[9]) that if L e & then L = Se for some e e E', that if Lx, Lt e JS? either
Lx = L2 or Lj n L2 is empty, and that K[-] is the union of all L in JSf.
Because Se is clearly a compact subsemiring, it follows that any L e ££ is a
compact subsemiring which is multiplicatively left simple. Further, if
Z-j, L2e J?, let Z1 = Se and L2 = S/ for e, f e £' , and let a e eS/ and
b e /Se be such that ab = e and 6a = /. If yj(x) = xa for all x in Se, it is
easily seen that y> maps Se into Sf. But if «/ e S/, then yb e Se and

since / is a right identity for 5/ ([12], Theorem 1). Hence y> maps Se onto
Sf and has an inverse y^iy) = yb. Also, for all x, y in Se,

y>(x+y) = {x+y)a = xa+ya = tp(x)+ip(y).

Thus Lx and L2
 a r e homeomorphic subsemirings which are additively

isomorphic. The minimal right ideals have similar properties.
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[3] The three kernels of a compact semiring 301

As £ [ + ] is a non-empty multiplicative ideal, it must contain the
minimal such ideal K[-].

The following theorem summarizes the above discussion.

THEOREM 1. Let (S, + , •) be a compact semiring with multiplicative
kernel K[-].

(i) / / e, f are distinct multiplicative idempotents in K[-] then eSe and
fSf are topologically isomorphic disjoint compact subsemirings which are
multiplicatively groups; K[-~\ is the union of all such subsemirings.

(ii) / / / 1 ; / 2
 are two distinct minimal left (right) multiplicative ideals

of S then It, 72 are disjoint, homeomorphic, additively isomorphic subsemirings
which are multiplicatively left (right) simple; K[-] is the union of all such
minimal left (right) ideals.

(iii)

(iv)

Although K[-] is the union of several subsemirings, it need not itself
be a subsemiring of S, as can be seen from the following example.

EXAMPLE 1. Let 5 = {a, b, c, d, e] with the discrete topology and
define addition and multiplication on S by means of the following tables.

+
a
b
c

Si
.

e

a

a
b
a
e
e

b

b
b
b
b
b

c

a
b
c

Si
.

e

d

e
b
d
d
e

e

e
b
e
e
e

•

a
b
c
d
e

a

a
b
a
b
b

b

a
b
a
b
b

c

c
d
c

Si
.

d

d

c

Si
.

c

Si
.

d

e

a
b
a
b
b

It can be readily checked that (S, -\-, •) is a compact semiring in which
K[-] = {a, b, c, d} while K[-]+K[-] = {a, b, c, d, e}.

In view of the occurrence above of compact semirings which are
multiplicatively left simple, it is natural to have a closer look at such semi-
rings. The following theorem, however, appears only to scratch the surface.

THEOREM 2. Let (S, + , ") be a compact semiring in which (S, •) is left
simple, and let e' be any multiplicative idempotent. Then each x in S can be
written uniquely in the form ex where eeE[-] and a belongs to the multi-
plicative group G = e' S.

(S, + ) and (£[•], + ) are idempotent semigroups, e'S is a subsemiring
and, if e, f e £[•] and a, (3 eG, there exists g in E[-] so that

e*+f{3 = g
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Moreover, if £[•] ~ £{Ey; y E 71} is £Ae structure decomposition of (£[•], + )
zw iAe sewse 0/ page 262 0/ [6], </?ew S ~ Z{EyG;y e F) is the structure
decomposition of (S, + ) . Also, if e, f e Ey for some y e F and s,j?eG, then

PROOF. If x e S, then, because Sx is a left ideal, it follows that Sx = S.
Hence the first paragraph is a special case of Theorem 1 of [12]. That
(S, + ) is an idempotent semigroup and e'S is a subsemiring follows from
Theorem 1 as here K[-~[ = S.

Let e, f e £[•] and x, ft e G, and let ex-\-ffi = gd for some g e £[•] and
<5 e G. Then

(e'g)d = e'(gd) = e'{ex+m = (e'e)x+(e'f)(l.

But as each multiplicative idempotent is a right identity for S ([12],
Theorem 1) and e' is the identity of G,

as required. In particular,

e+f = ee'+fe' = g{e'+e') = ge' = g

for some g e £[•]> and it follows that (£[•]. + ) is a semigroup.
If (T, + ) is any idempotent semigroup and we define a relation P

by xPy if and only if x+y-\-x = x and y-\-x-\-y = y, then P is an equiv-
alence relation on T. If Ty (y e F) are the equivalence classes modulo P,
then each of the sets Ty is an additive semigroup and we say that the
structure decomposition of (T, + ) is T ~Z{Ty; y e F} (see [6], page 262).
It follows from Theorem 1 of [10] that d-\-p-\-d = d for all d, p e G. Hence
if e e £[•] and a e G, we see that

e = ee' = e(e'-\-x-\-e') =
ex = e(x-\-e'-\-x) =

and so eP(ea). Thus He, f e £[•] and a, /? e G, it follows from the transitivity
of P that (ea)P(//9) if and only if eP/, and therefore the structure decom-
position of 5 is as stated. If e, f e Ey and a, /? eG, then it follows from the
distributive laws that

= ex+(ep+fx)+fp.

But as each of ea, efi-\-fx, //? is in £ r G, it follows from Lemma 2 of [6] that

If (S, + , •) is a compact semiring, i?e = eSe is one of the maximal
multiplicative subgroups in K[-] and =S? and 0t denote the spaces of minimal
left and right multiplicative ideals, then K[-] is homeomorphic with
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(see [13]). We have seen in Theorem 1 that K[• ] is a subsemiring
if either J£? or 3% has only one member. If He is degenerate, then K[-] need
not be a subsemiring (see Example 1), but we have the following result.

THEOREM 3. Let (S, + , •) be a compact semiring in which the maximal
multiplicative subgroups of K[-] are degenerate, and let ££ and 3% denote the
spaces of minimal left and right multiplicative ideals. It follows from [13]
that for each L e ^C and Re8$,Lc\Risa single element of K[-] and con-
versely that to each x e K[-] there is a unique L e J? and a unique R s !M with
{x) = Ln R.

There exist binary operations ®, o on ££, 8& respectively such that
(i) (=Sf, <8>) and {0t, o) are idempotent semigroups;
(ii) for allL1,L2e3> and Rj,R2eM,

(L, n R1) + {L2 n RJ = (Lx <g> L2) n i?x

and (Lx n RJ + {Lx n R2) = 1 ^ (R1 o R2);

(iii) if a binary operation © is defined on K[-] by

(Lx n Rt) © (L2 n 2?2) = {Lx ® L2) n (R, o

/or a// L1 ( L2 e =5? an^ i?1( i?2 e ^ , fAe« {K['], ®, •) is a topological semiring
and

(Lx n R1) + {L2 n i?2) = {Lx n i?t) © (L2 n i?2)

/or a// Llt L2 e £? and Rx,R2e® for which {Lx n RJ + {L2 n R2) CK[-].
If nK[-] represents the set of all members of S which are the sum of n

members of K[-] and K' = U^=iMj^T']> then (K't -\-, •) is a subsemiring of S,
K' • K' = K['] and multiplication in K' is given by

[{Lx n R1) + (L2 n R2)+ •••+(Lmn RJ]

• [(L[ n i?;) + (Z; n R'2)+ •••+(L'nn R'n)]

= {L[ 0 L'2 0 • • • 0 L'n) n (Rt o R2 o • • • o RJ

where Li, L'} e Ji? and Rt, R', e & for 1 ^ i 5S w and 1 ^ / ^ n.

PROOF. If Lt, L2 e JSf and Rlt R2e3? then

(Zi n i?!) • (Z2 n i?2) C 5 • L2 C Z2

and
(Lx n i?x) • (L2 n 2?8) C 7?! • S C 2?!

so that
(^n^)- {L2nR2) ^^nR^

Let Llt L2e &. If R, R' e0t then, because i? and i?' are subsemirings
(Theorem 1), there exist L, L' e J£? with
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(Li n R) + {L2 n R) = L n R, (Lx n i?') + (i2 n i?') = L' n i?'.

Thus

L'nR' = (L1n2?') + (L2ni?') = (L^i? ' )- (L1

= (Lxni?')- (LnR) =LnR',

so that L = L'. Hence the minimal left ideal containing (L1 n i?) + (L2 n R)
is independent of i?. We define Lx (g> L2 to be this left ideal. It is clear that
(=Sf, £g>) is a semigroup which is idempotent because /?[•] C E[-\-]
(Theorem 1). Also

(Lx n ^ J + tZ-i, n /?x) = (Lx <8> L2) n 22X

for all L1; L2 e jSf and i?! e ^ .
Similarly ii Rly R2e & and l e i ? , the minimal right ideal containing

( I n jRJ + f l n i?2) is independent of I . We define i?x o i?2 to be this right
ideal so that (3%, o) is an idempotent semigroup and

(Lx n 2?x) + (Lx n 7?2) = Lx n (i?x o i?2)

for all Lx e & and Rlt R2 e ^ .
If Lit L] e Se and Ru R\ e & for 1 ^ j ^ w and 1 ^ / ^ n then

[(Lx n ^ ) + • • • +(Lm n 2?J] • [(L; n i?x)+ •••+(L'nn R'n)]

= (L, n /?,) • [(Lx n ^ ) + •••+(L'nn R'n)}

+ ••• +(Lm n Rm) • [(Li n /?x)+ • • • + ( ! > < ) ]

= [(Li ® Li ® • • • ® L;) n ^ ] + • • • +[(Li ® Li (8) • • • ® L;) n 7?J

= (Li ® L2 ® • • • (8> L;) n (i?x o R2 o • • • o RJ.

This shows that K' • K' CK[-]. It is now a simple matter to check that K'
is a subsemiring of S. That K' • K' = K[-] follows because K[-] CK' and

It can be easily checked that (K[-}, ©, •) is a topological semiring. If
L1; L2 e JS? and Rx,R2e3% are such that (Lx n i?x) + (L2 n i?2)
then, since each element of if [•] is a multiplicative idempotent,

(Lx n iex) + ( i a n i?2) = [(Lx n /ex) + (L, n i?2)] • [(Lx n ^ ) + (L2 n R2)]
= (Lx ® L2) n (7?x o i?2) = (Lt n i?x) ® (L2 n i?2).

We conclude this section by considering in detail the multiplicative
kernel of any compact connected semiring which is a subset of the plane.
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Hunter has identified all compact connected simple semigroups which are
subsets of the plane ([4], Theorem 5); we paraphrase his result. (A multi-
plication is left trivial (right trivial) if xy = x (xy = y) for all x, y.)

THEOREM 4. Let T be a compact connected simple semigroup which is a
subset of the plane. Then

(a) multiplication in T is left trivial or right trivial; or
(b) T is the cartesian product of two arcs, multiplication in the first

being left trivial and in the second right trivial; or
(c) T is the cartesian product of a simple closed curve with left trivial

{right trivial) multiplication and an arc with right trivial {left trivial) multi-
plication; or

(d) T is the circle group; or
(e) T is the cartesian product of the circle group C and an arc A with

trivial multiplication.

Suppose firstly that (S, + , .) is a compact connected semiring which
is a subset of the plane and we wish to know whether iff-] is a subsemiring.
Because K[-] is connected ([9], Lemma 2.4.1), we see that (/?[•], .) must be
topologically isomorphic with one of the semigroups (a)— (e) of Theorem 4.
If {K[-]t .) is given by (a), (d) or (e) of Theorem 4 then at least one of JS?
and 0t is degenerate and so K[-] must be a subsemiring of S (Theorem 1),
while if (/?[•]>') is given by (b) or (c) of Theorem 4 we are unable to say
whether or not K[-] must be a subsemiring of S. Notice, however, that in
the special case where S C Rlt (K[-]t •) must be as in (a) and so K[-] must
be a subsemiring of S.

On the other hand, if the multiplicative kernel of a compact connected
semiring in the plane is a subsemiring, it is a compact connected semiring
which is multiplicatively simple. We identify here all compact connected,
multiplicatively simple semirings which are subsets of the plane. It is clear
that the multiplicative semigroup of such a semiring must be one of the
semigroups in Theorem 4. We examine in turn the possible additions on
each one.

If (T, •) is given by case (a) of Theorem 4, it is clear that {T, + , •)
is a topological semiring if and only if {T, + ) is an idempotent topological
semigroup. In the special case where T C Rlt T must be a closed interval.
Now Paalman-de Miranda has listed all semigroups (T, + ) on a closed
interval T of Rx for which T+T = T (see § 2.6 of [9]). Any idempotent
semigroup has this latter property and all idempotent semigroups on a
closed interval of Rt can be identified from his results.

If (T, •) is given by (b) or (c) of Theorem 4 and ££ and 0t are the
spaces of minimal left and right ideals of {T, •) then it follows from Theorem
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3 that the only additions of semirings (T, + , •) are those of the form

(Lt n Rt) + [Lt n Ra) = (^ <g> L2) n (Rt o R2)

where {£?, Cg>) and (^, o) are idempotent semigroups. In (b) both £P and &
are arcs, while in (c) one is an arc and the other a circle. The only idem-
potent semigroups on the circle are the trivial ones ([7], page 280) and all
idempotent semigroups on an arc can be identified from § 2.6 of [9].

If (T, •) is the circle group then, because a circle is not the topological
product of two non-degenerate continua, we see from [10], Theorem 1 that
the only possible additions of a semiring (T, + , •) are the trivial ones.

If (T, •) is given by (e) of Theorem 4 we have the following result.

LEMMA 1. Let (T, •) be the cartesian product of the circle group C and an
arc A with trivial multiplication. Then (T, -\-, •) is a topological semiring if
and only if there exist additions <g> and o of semirings on C and A respectively
such that, for all a, /? in C and x, y in A,

(a, s) + (ft y) = (a <8> j8, xoy).

Note that o is an addition of a semiring on A if and only if {A, o) is
an idempotent semigroup and so all possibilities for o can be identified from
§ 2.6 of [9]; (g) must of course be trivial.

PROOF. The sufficiency of the condition given is clear.
Conversely, suppose that (T, + , •) is a topological semiring. We give

the proof in the case where A has left trivial multiplication; the other case
is similar. That is, we suppose that multiplication in T is given by

(oc,a:)(fry)= (aft a:)
for all ot, (9 in C and x, y in A; note that T is multiplicatively left simple.
We shall denote the identity OJ C by 8.

Clearly E[-] = {(6, x)\x e A} is topologically isomorphic to A. By
Theorem 2, (£[•], + ) is a semigroup and thus £[•] is a subsemiring. Hence
there is an addition o of a semiring on A such that

(d,x) + (6,y) = (6, xoy).

Thus if a e C,

{a., xoy) = (d,xoij)(z,x) = l(8,x)+(d, y)](<x., x)
= (a, X) + (OL, y).

Also, if we pick any x e A, (d, x) • T = C X {x} is topologically isomorphic
with C and is a subsemiring. Hence there is an addition ® of a semiring
on C such that

) = ( a ® ft a).
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Thus if y e A,

As (g) must be trivial, we shall assume (without loss of generality) that it is
left trivial.

Let x, ye A. If (8,x)+(a.,y) = (d,x) + (p,y), then

Sa-i, V) = [(8, x)+(ar\ xU+tfx-1, y)
!, x) + (p*-1,y)]

= (<5,z) + (a-1,
= (d, *)+(«, y).

Thus # = {a|a e C and (<5, x)+ (<*., y) = (S, x) + {d, y)}

is a closed subgroup of C. Now if a 6 C, it follows from Theorem 2 that there
exists a multiplicative idempotent g such that

(8, x)(d, y) + (S, y)(a, y) = g[(d, y) + (a, y)];

i.e., there exists u e A such that

{8,x)+(aL,y) = {8,u)[{6,y) + {*,y)]= (8, «)+(a, u) = (3, «).

As M depends on a, we put M = 99(a). Then cp is a continuous mapping of C
into ;4 and so we can choose a, /? arbitrarily close with <x 7̂  /? and 99 (a) = 93 (/?).
But then ^a"1 e i / and /3a"1 is arbitrarily close, but not equal, to d. Hence
6 is an accumulation point of H and it follows easily from the fact that H
is closed that H = C. Hence

{8,x) + (x,y) = {8,x)+{8,y)

for all a in C and x, y in A. Thus if a, /? e C and x, y e .4,

(a, *) + (,?, y) = [(8, x) + {p«r

= (d, x o y) (a, t/) = (a, x o y) = (a <g) /S, x o y).

2. The additive kernel AT[ + ]

In Example 2 a compact semiring in which K[+] is not a subsemiring
is given, while Theorem 5 gives a necessary and sufficient condition for
if [+] to be a subsemiring of 5.

EXAMPLE 2. ([0, 1], + , •), where x+y = max (x, y) and x • y = 0,
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THEOREM 5. / / (S, + , •) is a compact semiring with additive kernel
K[-(-], then either K[-\-] is a subsemiring of S or S2 n K[+] is empty.

PROOF. Suppose S2 n K[-{-] is not empty. Then there exist x,y in S
with xy e K[-\-]. But then z = x+xy and w = y-\-xy are both in if [+] and

zw = (x+xy)(y+xy) = xy-\-xy2-\-x2y-\-xyxy exy+S CK[-\-].

Now because zeK[-\-], S-\-z-\-S is an additive ideal contained in i f [ + ]
so that 5 + 2 + S = K[+], and similarly S + w + S = K[+]. Thus if
klt k2eK[-\-], there exist s1; s2, s3, s4 in S such that

Hence fexA2 = (s1+z+s2)(s3+z»+s4)

eS+zw+S=K[+],

and if [+] is a subsemiring.
We now give a characterization of any additive kernel K [+] which is

a subsemiring of a compact semiring S. Since (K[+], + ) is then a compact
simple semigroup, this amounts to characterizing all compact, additively
simple semirings, which we do in the following theorem.

THEOREM 6. Let (T, -{-) be a compact simple semigroup in which J? and
3& denote the spaces of minimal left and right ideals, and, for each L e i " and
RBM, X(L, R) denotes the identity of the maximal group L n R (see [13]).

Then (T, + , •) is a topological semiring if and only if • is a binary
operation on T such that there exist L' e J§?, R' e 01 and binary operations (g)
and o on 3? and 0t respectively for which

(i) (L' n R', -\-, •) is a topological semiring,
(ii) (=S?, <S>) and (!M, o) are topological semigroups,

(iii) the relations

(1) (p{L0M,RoV)
= <p{L <g> M, R o T)—(p(L ®N,Ro T)+q>(L <g>N,Ro V),

(2) <p(L ®N, ToV)

= cp(L®N,Ro V)-q>{M <S>N,Ro V)+<p(M ®N,ToV)

hold for all L,M,N<=£> and R.T.Ve SI,

(iv) « • 0 = 0 • « = r(L', R')

for all xeL' n R' and all p e ± (p{^C ® <£, 01 o St),

(v) y+a. - p = a • p+y

for all oL.peL'nR' and all y e ± <p(Jg? ® &, 01 o SI), and
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(vi) f(*. L, R) • y>{p, M, T) == y(a • fi-<p(L ® M, RoT),L®M, RoT)
for all oi.peL'n R', L, M e <£ and R, T e 01, where, for all a 6 L' n R',
Leg and, Re 0t,

(a) <p{L, R) denotes the member r{L, R')+r(L', R) of L' n R', and
(b) y>(a., L, R) denotes the member r(L', i? )+a+r(L, R') of T.

PROOF. The structure of (T, -f) has been given by Wallace in [13]. In
particular,

(a) the functions r : S£xM -> E[+] and <p : &X3S -»• L' n R' are
continuous;

(b) the function ip : (Z/ n R')xJi?X& ^T is a homeomorphism and

(3) v-(oc, L, R)+y>{p, M, T) = y>(oL+<p(L, T)+p, M, R)

for all a, /? e L' n i?', L, M e ^? and R,Ts0t;
(c) if x eT, the minimal left (right) additive ideal containing a; is

A(x) = S+:r (p(x) = a;+5) and the function

k-.T^y [p:T -+&)
is continuous;

(d) if v(a, L, i?) = x then A (a) = Z. and P{x) = i?.

Sufficiency. Suppose that • is a binary operation of the kind described
in the theorem. Because y> is a homeomorphism it follows that the values of •
on the whole of T are completely specified by (vi) in terms of <g>, o and
the values of • on L' n R'. It is an easy matter to check that (T, + , •) is
a topological semiring.

Necessity. We suppose now that (T, + , •) is a topological semiring.
As usual we shall omit the multiplication symbol • where it causes no
confusion to do so.

Because (T, •) is a compact semigroup, it contains at least one idem-
potent / ([9], Theorem 1.1.10 or [8], Lemma 3). There exist L' e & and
R' e& such that / belongs to the additive group L' n R' ([9], Theorem
1.2.6 or [8]). We will put H = U n R' and let e denote the identity,
T(L', R'), of the group (U n R', +). Then H = e+S+e ([9], Theorem
1.2.6 or [8]), and clearly H = f+S+f. Now for all s1, s2 e S,

= f+s+f
for some s e S, and we see that (H, + , •) is a subsemiring. But £ [ + ] n fl,
which is a multiplicative ideal of H, is just {e}. Hence ex = xe = e for all
x in # . This means that if a, /? e H then
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«)/? = [a+(-a)]0 = efi = e

and so —(a/3) = (—a)/?, and similarly — (a/?) = a(—/?).
If L, M e =£?, let x e L, y e M and define L (g> M to be A (arc/) =

To see that (g) is well defined, let x' e L, y' e M and we show that
X{x'y') = A(x«/). For as L = 5+a;, M = S-\-y, there are sx, s2 in 5 with

x' = sx+z, y' = s2+?/.
Thus

x'y' = («i+a;)(s2+2/) = (si«2+a ; s2+siy)+a ;ye 5+a ;2/

as required. It should be noted that L' <g) L' = L' since e = ee e L' <S> L'.
The associativity of 0 is clear because if L, M, N e J? and x e L, ye M,
z eN, then

e [(L <g> M) (8> N] n [L ® (M

The continuity of ® follows because, in particular,

L & M = X{r{L, R') • r{M, R')).

Hence (̂ f, ®) is a topological semigroup. Similarly one can define a topo-
logical semigroup {01, o) with analagous properties. Because

y>[x, L, R)eL n R and xp{fi, M,T)eM nT

it follows that

y(a, L, R) • rp{p, M, T) e (L 0 M) n (2? o T)
and so

y>(«, L, R) • y>(p, M, T) = y>(y, L® M,RoT)

for some y e H. In what follows we shall omit (g>, o where it causes no
confusion to do so.

In all that follows we let x, p e L' n R', L.M.N e &, R,T,Ve St.
Because r(L, R) is a member of the multiplicative ideal £ [ + ] , it

follows that r(L, R) • ip(x, M, T) e £ [ + ] . On the other hand,

r(L, R) • xp[a., M, T) e LM n RT

and so we see that

(4) r(L, R) • y>{oL, M, T) = r(LM, RT).

Similarly,

(4') y>(a, L, R) • x{M, T) = r(LM, RT).

It is clear from (3) that %p{<x, L, R) e E[+] if and only if a = —<p(L, R).
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Thus

(5) x(L, R) = y>{-<p(L, R), L, R)

and so, from (4), (4'),

(6) y>{-<p{L, R), L, R) • w(a, M, T) = y>(~<p{LM, RT), LM, RT),

(6') y>(a, L, R) • y,(—<p(M, T), M, T) = y>(-<p(LM, RT), LM, RT).

Hence

y>(-<p(L, R), L, R) • fy(a, M, T)+y,(p, N, V)}
= y>{-<p(L, R), L, R) • y,{x+<p{M, V)+fi, N, T)
= y>(-cp{LN, RT), LN, RT)

while

{y>{-<p{L, R), L, R) • y,(ai, M, T)}+{y>(-<p{L, R), L, R) • w{§, N, V)}
= rp{-cp{LM, RT), LM, RT) +ip(-<p(LN, RV), LN, RV)
= y>{-<p{LM, RT)+cp(LM, RV)-cp{LN, RV), LN, RT).

A comparison of these two expressions yields (1). (2) follows from a similar
consideration of

Ma , L, R)+y>(j}, M, T)} • y>{-<p(N, V), N, V).

It follows from (5) and the definition of cp that

<p{L,R') =r{L,R')+r{L',R')
= y>(-<p(L, R'), L, R') +y,(-<p(L', R'), V, R')
= v{-<p(L, R')+<p(L, R')-<p{L', R'), U, R')
= y>{-<p{L', R'), L', R') = x(L', R').

Similarly y(L', R) = r(L', R') and so

(7) 9(L, R') = <p(L', R) = r(L', R') = e.

Now

{x{U, R) + OL}-{T(L',T)+P}

= r(L', R) • r(L', T) + x • r(L', T)+r(L', R) • jS+a/3
= r(L'L', RT)+r(L'L', R'T)+r(L'L', RR') + rf [by (4), (4')]
= r(L', RT)+r(L', R'T)+t(L', RR')+*p
= V»(e, L', RT)+f{e, U, R'T)+W{e, L', RR')+y>(*p, V, R')

[by (5), (7)]
= y>(e+<p(L', R'T)+e+<p(L', RR') + e+<p{L', R')+a.p, U, RT)

[by (3)]
= v(«/?, V, RT) [by (7)].
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Also

T(L', R)+xe (L' nR) + (L' n R') C (L' n R)

and so, by (4') and (5),

{T(Z/, # ) + a } • r(M, R') = T(L'Af, tfi?') = y{-<p{L'M, RR'), L'M, RR').

Similarly

r(L, R') • {r(Lr, T)+p} = w(-<p(LL', R'T), LV, R'T).
Thus

R')}-{(r(L', T)+p)+r(M, R')}
= {r(Lf, R) + z} • {T(L', T)+(3}+{T(L', R) + X} • r(M, R')

+r(L, R') • {r(L', T)+P}+T(L, R') • r(M, R')
= v(«/3, L', RT)+y>(-<p{L'M, RR'), L'M, RR')

+y>(-<p(LL', R'T), LL', R'T)+y>(—v{LM, R'), LM, R)
= y>(<x.p-<p(L'M, RR')+cp{L'M, R'T)-<p{LL', R'T), LM, RT)

[by (3), (7)].

But if we put L, L', M, R', R, T for L, M, N, R, T, V respectively in (2)
we see that

<p{LM, RT) = <p(LM, R'T)—<p(L'M, R'T)+<p(L'M, RT).

If we put L, M, L', R', R', T for L, M, N, R, T, V respectively in (1) we see
that

<p(LM, R'T) = q>{LM, R'R')-<p(LL', R'R')+(p(LL', R'T)
= <p{LM, R')-<p(LL', R')+<p(LL', R'T)
= <p(LL',R'T), [by (7)]

and similarly, by putting L', M, L', R, R', T for L, M, N, R, T, V respec-
tively in (1) we see that

<p{L'M, RT) = <p(L'M, RR').
Hence

(p{LM, RT) = <p(LL', R'T)-tp{L'M, R'T)+<p{L'M, RR')
and so

V(a, L, R) • y>(p, M, T) = w(<x^-(p(LM, RT), LM, RT).

This proves (vi).
If we proceed in a similar manner to calculate y>(a, L, R) • y>((5, M, T) as

{r(L't R) + (x+r(L, R'))}-{r(L', T) + (p+x(M, R'))}

we find that
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y(a, L, R) • y>{P, M, T) = y>(-<p(LM, RT)+xp, LM, RT).

A comparison of the two expressions for f(x, L, R) • %p{J}, M, T) yields

(8) —<p(LM,RT)+xP = xp—<p(LM,RT).

If we take the additive inverse of each side we have

-{aP)+tp(LM, RT) = <p{LM, RT)-{a#),

or equivalently,

(9) (-a)P+tp{LM, RT) = <p{LM, RT) + {-x)fi

(v) follows from (8) and (9).
From (vi),

y,(x,L',R')-y>(-cp(L,R),L, R)
= y(oc • (-q>(L, R))~<p{L'L, R'R), L'L, R'R),

while it follows from (6') that

V»(a, L', R') • y>{-<p{L, R), L, R) = v(-<p(L'L, R'R), L'L, R'R).

Thus x • (—y{L, R)) = e and so

a • 9(L, R) = - { a • (-<p(L, R))} = -e = e.
Similarly

x = e=, {<p{L, R)) • «

and we have (iv). The proof is now complete.
The conditions (1), (2), (iv) and (v) are rather cumbersome, especially

the former two whose effect is not clear. However it can be shown that
they are independent of one another since it is possible to construct examples
where any desired one of (1), (2), (iv), (v) is false and all the others of
(i) — (vi) are true. We also remark that any one or more of (iii), (iv), (v)
may be replaced by the conditions

(iii') For all L,M,Ne^C and R.T.Ve M,

<p{L ® M, R o T) = <p{L' <8) M, R o R')+<p(L ® U, R' o T)

= <p(L <g> U, Rr o R)+<p{L' ®M,Ro R').

(iv') a • p = 0 • a = x{L', R') for all a 6 L' n R' and all

p e {<p{Se <8) U, R' o 01) u cp{U (g &, 31 o R')].

(V) y+« • P = a • p+y for all a, p e L' n R' and all

y 6 [q>{& (8) V, R' o ») u <p(L' ® JSf, 3t o i?')]

respectively without affecting the validity of the theorem. Note also that
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putting L <g> M = L' and R o T = R' for all I , I e ^ and R,T e@ is
always one way of satisfying conditions (ii) — (v).

In view of condition (i), Theorem 6 is to some extent dependent upon
a characterization of all (compact) semirings which are additively topo-
logical groups. The following theorem gives some information about such
semirings. (We use ~ to denote closure.)

THEOREM 7. Let (S, + , •) be a topological semiring in which (S, + ) is a
topological group with identity 0. Then there is a closed subring T of S such
that S2C T. If (H, +) is the commutator subgroup of (S, + ), then (H, + )
is a normal subgroup of (S, -(-), x • h = h • x = 0 for all x e S, he H, and
there is a binary operation o on SjH such that {SjH, -)-, o) is a ring and

x-ye (x+H) o (y+H)

for all x, y in S. Further, if xx e x-{-H and y1 e y-j-H, then a;, • y1 = x • y.
If S is also compact and connected, then S2 C H and S3 = {0}.

PROOF. Because £ [ + ] = {0} and £ [ + ] is a multiplicative ideal, it
follows that Ox = xO — 0 for all x in S. Thus if x, y e S,

so that —(xy) = x(—y); similarly, —(xy) = {—x)y.
If x, y, z,w e S then

{z-\-x){y-\-w) = (z-\-x)yJ
r(z

J
rx)w = zy+xy-j-zw-^xw

and (zJ
rx)(y-\-w) = z{y-\-w)-{-x{y-\-w) = zy-^-zw-^-xy-^xw

so that zy-\-xy-{-zw-\-xw = zy-^zw-^xy-^-xw.

Therefore, since (S, -f) is a group, xy-\-zw = zw-\-xy. Thus if T' is the
additive group generated by S2, i.e.,

T' = \J {h+ • • • +tn\tt e S2 for 1 ^ * ̂  n),
n = l

then T' is an abelian subgroup of (5, + ) • If T is the topological closure of
T', then (7", + ) is also an abelian subgroup of (5, + ) ([3], Corollary 5.3).
Also

T2 C S2 C T C T
so that (T, + , •) is a ring.

A commutator in (5, + ) is an element (x, y) = x-\-y—x—y. If H1 is
the set of all commutators, then the commutator subgroup (H, + ) is the
additive group generated by H1, so that

oo

H = |J {/̂ -f \-hn\ht e H± for 1 ^ i ^ n}.
n = l
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If x e S and h = (y, z) e Hx then

xh = x(y+z—y—z) = xy+xz+x(—y)+x(—z)
= xy-\-xz—(xy)—(xz) = 0

since elements of S2 commute, and similarly hx = 0. Thus if x e S and
h e H, there are hlt h2, • • •, hn in //x with

h = A
so that

• • • -\-hn) = xh1-\-xh2-\- • • • -\-xhn = 0

and also hx = 0. Now (H, -\-) is a normal subgroup of (S, -f-) and (5///, + )
is abelian and thus (H, + ) is a normal subgroup of (S, + ) and (S/H, + )
is abelian (see, for example, [3], Theorems 23.8 and 5.3). It follows from
the continuity of multiplication that xh = hx = 0 for all x e S and h e H.

Suppose x1ex-\-H and y1ey-\-H; then there exist A1 (A2ei / with
a;1 = aj+Aj, 2/i = y+h2. Hence

= a;«/+0+0+0 = xy.
We define o on S/H by

o (y+H) = xy+H.

The above shows that this is independent of the representatives of the cosets.
Also xy e (x-\-H) o (y-\-H) for all x, y e S. It can be easily verified that
(S/H, + , o) is a topological ring.

If S is compact then H and SjH are also compact. If S is connected
then the set H1 of commutators is connected so that

{K~\ VK\hi 6 Hi f o r 1 ^ i ^ »}

is connected for each n S: 1. Thus H and H are connected ([5], page 54)
and so S/H is connected. Then because (S/H, + , o) is a compact connected
ring, it follows from Theorem 1 of [1] that o is trivial; i.e.,

(x+H) o (y+H) = H

for all x, y in S. Thus xy e H for all x, y in S and S3 = S2S C HS = {0}.
We turn our attention again to semirings which are subsets of the plane.

If the additive kernel of a compact connected semiring in the plane is a
subsemiring it is a compact connected semiring which is additively simple.
We characterize here all compact connected, additively simple semirings
which are subsets of the plane. It is clear that the additive semigroup of
such a semiring must be one of the semigroups in Theorem 4. We look in
turn at the possible multiplications on each one.
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If (7", + ) has trivial addition, it is clear that (T, + , •) is a topological
semiring if and only if (T, •) is a topological semigroup.

If (T, + ) is given by (b) or (c) of Theorem 4 then all its maximal
subgroups are degenerate. It follows from Theorem 6 that if J? and Si are
the spaces of minimal left and right ideals of (T, -f-) then all the multiplica-
tions of semirings (T, -f, •) are given as cartesian products of any semi-
groups on J? and ^ . (In case (b), «S? and & are arcs, while in case (c), one
is an arc and the other a circle.)

If (T, + ) is the circle group and 0 denotes its identity, it follows from
Theorem 1 of [1] that the only multiplication of a semiring (T, + , •) is
given by x • y = 0.

If (T, + ) is given by (e) of Theorem 4, we have the following result.

LEMMA 2. Let (T, + ) be the cartesian product of the circle group (C, ©),
with identity denoted by 0, and an arc A with trivial addition. Then (T, -j-, •)
is a topological semiring if and only if there exists a binary operation A on A
such that {A, A) is a topological semigroup and

(a, *) • {f}, y) = (0, xAy)

for all a, fi e C and x, y e A.

PROOF. The sufficiency of the conditions given may be easily checked.
Conversely, suppose that (T, - j- , •) is a topological semiring. We give

the proof in the case where addition on A is right trivial; the other case is
similar. Thus addition on T is given by

{aL,x) + tf,y) = (oi®p,y)
for all «, /? G C and x, y e A. In what follows we shall use the terminology
of Theorem 6. It is easily seen that, for each x e A, {(a, x) |a e C} is a member
of =£?, and that the function n : A -> ££, defined by

n{x) = {(a, z) |aeC}

is a homeomorphism. Also, 01 has only one member, Rx = T. It follows
from Theorem 6 that there exist L' e jSf, R' e 31 and binary operations
®, o on if, f respectively such that (i) —(vi) of Theorem 6 are satisfied.
Clearly R' = Rlt the only member of @, and R' o R' = R'. We put

xAy = n-1(7t(x) (g) n{y))

for x, y e A and then {A, A) is a topological semigroup since (^C, ®) is a
topological semigroup and n is a homeomorphism between A and 3?. For
any L e &,

LnR' = LnT = L = {(a, n^{L)) |a e C},

(L, + ) is a subgroup topologically isomorphic with (C, ©) under the corre-
spondence (a, Tt"1^)) +-> a and the additive unit of L n R' is
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Thus for all a e C, L e ^C, it follows from the definitions of yi and q> that

{OL,TI-\L')),L, R') = (a,«-i(

We know from Theorem 6 that U n R' = Z.' is a subsemiring of T; because
(L', -\-) is topologically isomorphic with (C, ©), multiplication on L' must
be given by

( a . ^ ( L ' ) ) • tf.n-HL')) = (O,ar-i(L'))

for all a, /? e C. Thus, by (vi) of Theorem 6,

(«, x) • (/?, 2/)
= V((a, x-\L')), n(x), R') • y,{(p, n~HL')), jt(y), R')

-cp{n{x) <g> Ji(y), R' o R'),n(x) ® n{y), R' o R')
= v((0, »-i(L'))-(0. ""M^')). »(*) ® "(y). ̂ ')
= v((0,ar-1(L')).«(*)®w(y),-R')
= (0, «-!(»(*) ® jr(2/))) = (0, xAy)

3. K[+] n ^[«] and AT[+] u K[-]

as required.

That if [+] and K [•] need not meet is shown by Example 2. However,
if K [+] does meet K [•], we can make certain assertions.

THEOREM 8. If (S, -\-, •) is a compact semiring in which

L=K[+]nK[-]
is not empty then

(i) if e eK[•] n £[•], either eSe C L or eSe n L is empty;
(ii) L2CL;

(iii) K[+] is a subsemiring;
(iv) M2 C M, where M = # [ + ] u if [•].

PROOF. Suppose that e e if [•] n E[-]; then e5e is a multiplicative group
and a subsemiring. Suppose that x e L n eSe. If y e e5e, it follows from [10],
Theorem 1 that y-\-x-\-y = y. On the other hand x in L means that
y = y+x+y e if [+] also. Thus eSe C if [+ ] n if [•].

Let x, y be any two members of L. As both y and y2 are in some group
eSe, it follows from (i) that y2 e L. Because x and y are in if [+ ] there exist
z, ze> in S with x = z-\-y-\-w. Hence
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xy = zy+y%+wy.

But y2eLCK[-\-] and so xyeK[-}-]. As xyeK[-], we conclude that
xyeL.

That K[-\-] is a subsemiring follows from Theorem 5 because

L* = L* n L C S2 n K[+].
Finally,

(#[ + ] U #[•])«

But K[-] is a multiplicative ideal and i f [+ ] is a subsemiring. Hence

M*CK[+] u #[•] u #[•] u #[•] = M.

It can be seen by considering the following examples that all the
different inclusion relations between L, K[-\-] and K[-] can occur. (We use
4 C C 5 t o mean AC B and A ^ B.)

EXAMPLE 3. ([0, 1], -f-, •), where x+y = x • y = x, has

K[+] = K[-] = [0, 1].

EXAMPLE 4. ([0, 1], +» •)• where x-\-y = min (x, y), x • y = x, has

EXAMPLE 5. ([0, 1], + , •), where x-}-y = x, x • y = 0, has

EXAMPLE 6. ([0, 1], + , •), where x • y = max {\, x) and

min (\, x) if x <=st\ or y ^ \,
/•>» I /it

min (x, y) if x > \ or y > \.

It can be shown that this is a semiring with K[-\-} = [0, ^] andi^[-] = [\, 1]
so that L CCK[+] and L C C K[-].

4. The kernel

The existence of a set which is minimal with respect to being both an
additive and a multiplicative ideal of any compact semiring (S, + , •) was
shown by Selden ([11], Theorem 15). We call this set the kernel K and show
that if =

THEOREM 9. If (S, -{-,•) is a compact semiring then S-\-K[-]-\-S is its
kernel.
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PROOF. It is clear that S+.K[-]+S is an additive ideal, If s e S and
/ e S+/T[-]+S, there exist s 1 ( s 2 6 S and keK[-] with t =^ s1+k+s2.
Hence

st = s(

since K[-] is a multiplicative ideal. Similarly te€S+X[-]+S and so
S+-K"[-]+S is a multiplicative ideal.

Let M be any non-empty subset of S which is both a multiplicative
and an additive ideal. We must show that S+K[-]-\-S C M. Because M
is a multiplicative ideal and K[-] is the minimal such ideal, K[-] C M. Also,
because M is an additive ideal, S+M+S C M. Hence

S+iC[-]+S C S+M+S C M
as required.

In fact if T is any set which is both an additive and multiplicative ideal,
it is clear that T-\-K[-]-\-T is also an ideal of both types. But as

T+K[-] + TCS+K[-]+S = K

we conclude that T-{-K[-]-\-T = K. In particular, we have the following
corollary.

COROLLARY. K = K+K[-]+K.
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