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EINSTEIN-KAEHLER MANIFOLDS IMMERSED IN A
COMPLEX PROJECTIVE SPACE

HISAO NAKAGAWA

A Kaehler manifold of constant holomorphic curvature is called a complex
space form. By a Kaehler submanifold we mean a complex submanifold with
the induced Kaehler metric. B. Smyth [5] has studied a complete Einstein-
Kaehler hypersurface in a complete and simply connected complex space form
and classified completely the hypersurface. The local version of this result has
been shown to be true by S. S. Chern [1], and partially by T. Takahashi [6]
independently. On the other hand, K. Ogiue has also proved an z-dimensional
compact Einstein-Kaehler submanifold immersed in an N-dimensional com-
plex projective space PnC is totally geodesic or the Ricci tensor S satisfies
S = (n/2)g, where g is the induced Kaehler metric (cf. see [4]).

The purpose of this paper is to prove the following theorem. Throughout
this paper, let P,(c) be an n-dimensional complex projective space of constant
holomorphic curvature c.

THEOREM. Let M be an n(Z 2)-dimensional Einstein-Kaehler submanifold
immersed in P,,(c). If the immersion 1s full and the second fundamental form is
parallel, then the following are true:

(1) If p < n/2, then p = 1 and M is locally a complex quadric Q,.

@) Ifpznn+1)/2 thenp = n(n + 1)/2 and M 1is locally P,(c/2).

1. Preliminaries. In this section, we shall begin the self-contained discus-
sion about Kaehler submanifolds in P,,,(c) for convenience, and prepare for
necessary formulas for later use. Let M be an n-dimensional Kaehler submani-
fold immersed in P,,,(c). We choose a local field of unitary frames e, ...,
€y €nily - - - » €nyp in such a way that, restricted to M, ey, . . ., e, are tangent to
M. Let w!, ..., " ", ..., o" be the field of its dual frames. Then the
Kaehler metric g of P,,(c) is given by g = 2 > ,0%®“t and the structure
equations of P,,,(c) are given by

(1.1)  dw? 4+ D pwp? A wZ =0, wp?+ 0,2 =0,
(1.2)  dwg® + Y cwe® A wg® = Qpt, Qp?* = X o pRAsepwt A &P
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tThroughout this paper, we use the following convention on the range of indices, unless
otherwise stated:

A, B C ...=1...,n,n+1,...,n+p
irj)k|~-.:1,.‘.,n
By ...=n+1...,n+p
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Since the ambient space is a complex space form of constant holomorphic
curvature ¢, we have

(13) Rsop* =5 (6a"cn + 6*30).
Restricting these forms to M, we have
(14) o =0,

and the induced Kaehler metric g of M is given by g = 2 3w’ It follows
from (1.4) and Cartan’s lemma that (1.1) implies

(15) wif = ; hifwly bt = Ryl

Moreover, we obtain

(1.6) do'+ ij wine’ =0, wf+a =0,

(1.7)  dw;' + ; whof =@, Q) = kz Ruz'o®pat,
(1.8)  duws” + ; 0 awp’ = @, QF = Rai“o*pa’.

From the above equations, we have

1 4 1 aj a -
(19) @,/ = kz; {5 (6, %0k + 8:85) — D h,kh,,}w",\w'.

Similarly, it follows from (1.2), (1.3), (1.4), (1.5) and (1.8) that we have

(1.10) Q4 = kz; (—62- 85 0k, + Zj} hk,aﬁ“’g)wk,\d’l.

Now, with respect to these frames, the Ricci tensor S of M can be expressed
as follows;

111) S= Y (Suo" ®@a'+ Sz’ @ wh),
k,1
where S,; = Si; = Sk, are given by

1 ay «a
1.12) Sz = n‘:{i‘_ Coxy — Z by b
a,J
The scalar curvature R is also given by
(113) R=n(m+ c— 2> hihs
a,k,l

This implies that we have
(1.13) n(n+ 1)c — R =0,

where the equality is valid if and only if 3 is totally geodesic.

https://doi.org/10.4153/CJM-1976-001-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-001-9

EINSTEIN-KAEHLER MANIFOLDS 3

If we define k;;* and h,;z* by
}]‘?‘, hop'o" + ij higs" = dhif — ij hefwl — ; hofws
+ ; hifog”,
then we can easily obtain
(1.14)  hyp® = hip® by = 0.
Next we define ;4 and k37 as follows:
le Bopio' + 2; hipi's' = dhip” — ZL Bopw;' — le hinfw;'
- zl) iy + ; higlws™.
Then, by the similar and easy calculation, we have
Rigi" = haju's
hagt® = 5 (oS0 + B0 + ha5,)
— 2 bl + bk + bl

B.n

(1.15)

Making use of the second equations of (1.14) and (1.15), we easily have

a 2 @ T a ay
(1.16) 2 hiw = 22 = 20 kel 4 bt By
- Z hklaﬁklﬁhijﬂ

d Bkl
an
Z' hijkfa}_l'ija = (Z hiju}—lija)kl - Z hijkaﬁijla
a,1,] A, 1,7 4 A, 1,7
4 ayp  a ayp a 7 a ay
(1.17) =3 (Z, hifhif S+ 2 20 Iy h,-,) -2 BZ kh,ciﬂh” hthnt
a,i,j @, a,B,i,5,k

- Zﬁ: (Z huﬂﬁi:‘a ; hkhaﬁhlﬂ) .
a, 1,
We define three kinds of matrices 4, H, H, by

A= (A, A =2 hifhif,
1,7

i

H = (h(”)a) fOr'I; é],
H, = (k) fora fixed a.

Then 4 is a p X p-hermitian matrix, the second matrix His p X n(n + 1)/2,
H, is an n X n-matrix, and we have the following mutual relation

(1.18) HH* = A.
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Using these matrices, we can express the last term of (1.17) with the following
form

5 (TrA VEEDY H,,Ha) — 2 Y HeHHMH — 3, ALHH;,
a a,B a,B
where [ is an # X n-unit matrix.

2. Einstein-Kaehler submanifoids. Let M/ be an #-dimensional Einstein-
Kaehler submanifold immersed in P,,,(c). Since the Ricci tensor S of M

satisfies
R R
21 S= 5,8 Sa =5 %
where R is the scalar curvature, it follows from (1.12) and (2.1) that we have
(2.2) Z HA, = Qﬁn__%:_]& 1, Z hk]_alfljlﬂ — ﬂ’i.tél_rzf_lﬁ s
a a,]

I't implies that we get

n(n+ 1)c — R
s

Making use of (2.2), we can simplify equation (1.16) as follows:

(23) Trd="Tr Y, HH, =

2R — n’ « 2R —1n'c, o «
@4)  AH = "n PEH — AH, bt = T R - 2 Ak

2n
Moreover, since the scalar curvature R is constant and consequently the trace
of the matrix A4 is also constant, we have from (1.17)
a_ZR—n2c nin+ 1)c — R

@5) = 2 huwthyl =T 5 b= 3 Adhilhyl

so that we get

2
@26) 022K MCre _reg?,
2n
Because of the definition of the hermitian matrix A4, the hermitian transforma-
tion defined by A is positive semi-definite and it implies that eigenvalues of A
are all non-negative. This means Tr A2 = (Tr 4)?% Combining this inequality
together with the inequality (2.3), we have

2.7) 0= (R — n2)Tr A.

3. Proof of theorem. Since the second fundamental form is parallel, we have
the following mutual relation between the matrices 4 and H:

2R — n’c
3.1) AH = o H,
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because of (2.4). From (1.18) and (3.1), we have

: 2R —n'
32) 4°= o A.
This means that if we take an eigenvalue X of 4, then A = 0 or (2R — n2c)/2n.
First of all, we consider the case where there exists a point x in M at which
the matrix 4 has no non-zero eigenvalues. Then it is easily seen that 4 is a
zero matrix, so that «x is a geodesic point. It implies that R = n(z + 1)c at «.
Since the scalar curvature R is constant, the equation is true on M. Accordingly
M is totally geodesic.
On the other hand, suppose that there does not exist a geodesic point. In
other words, the matrix 4 has at least one non-zero eigenvalue X = (2R —
n%c)/2n, so that we get

2R — n% > 0,

because the transformation defined by 4 is positive semi-definite. We investi-
gate a property concerning the rank of matrices 4 and H. We denote by 7 (x)
the rank of the matrix 4 at any point x in M. Then the following result is
verified.

LEmMA 3.1. For any point x in M, we have

n{nn + 1)c — R}
2R — n' ’

Proof. From (1.18) and (3.1), we see easily that the rank of the matrix 4
is equal to that of the matrix H at any point in M. Since a non-zero eigenvalue
Ax) of A at x satisfies N(x) = (2R — n2c)/2n, \(x) is constant on M, so that
the multiplicity 7(x) of N(x) is constant, too. On the other hand, we get the
trace of 4 from (2.3). Thus we have the relation

n(n + 1)c — R
2 ,

(3.3) r(x) =rankH =

r(x)A(x) =
and therefore it completes the proof.
Next we shall investigate the range of the scalar curvature.
LEMMA 3.2.

Bn +2)

R =rn% or 1<§”—( 1

Proof. Since the second fundamental form is parallel, we get

5 (eops + haSes + hil,)
- ;:1 (hhjahich + hihah'jlcﬁ + hi]‘ﬂhhka)}—lklﬂ =0,
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because of (1.5). Transvecting %,k ;" to this equation, from (2.2) and (3.1)
we have

(3.4) >, AHHAHH, = 8—717 (2R* — n(3n + 2)cR + n*(n* + 2n + 2)}H,.
a,B
Now we define a matrix Gug, by

2{n(n 4+ 1)c — R}
n’c — (n — 2)R
By direct calculation, it follows from (2.2), (3.2) and (3.4) that we obtain

* _n+2
nzﬂ;’ Gfxﬂv Gaﬂ'r 8113

Gﬂﬂ“f = HaHﬁH'y + H‘yHﬂHa - (AﬁaH7 + Aﬁ‘yHa).

{n(3n 4+ 2)c — 4R} (n’c — R){n(n + 1)c — R}{n(n + 2)c — R}
X 3
nc — (n — 2)R
Since the trace of the matrix on the left hand side is non-negative, the con-
clusion of this lemma follows immediately from (1.13)" and (2.7).

1.

Taking account of Lemmas 3.1 and 3.2, we have the following equations:

nntr+1)

- _
3.5) R - ,

(3.6) r=10rr§-§.

LEMMA 3.3. There exists an (n + r)-dimensional totally geodesic submanifold
M’ in P,ipy(c), in which the given submanifold M is immersed, where r = rank
A > 0.

Proof. For the unitary frame {e;, €.} at any point x, we define the normal
space to M at x, which is denoted by N, by

N, = {Z e 1 £ € C} ,
where C is the complex field. We define a mapping f of N, X N, into C by

fX,Y) = Z A,g"é“nﬂ, where X = Z Feqand V = D 7es.
a,B @ B

Let H, be a set of all hermitian matrices of order p, which is considered as a
complex vector space. Then the unitary group U(p) operates on H, as follows:
For any hermitian matrix H in H, and any unitary matrix U in U(p),

U(H) = U*HU.

Since the matrix 4 is invariant under U(p), the mapping f is well-defined and
it is a positive semi-definite hermitian form of order 7, so that it can be nor-
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malized. This means that we can choose a new unitary frame {e,, €., e}
such that

B7 wrHFOw)r=0 foru+1=as=nt+rnt+r+1=XN=n+p.

By the definition of %;;*, we have

n+r

> hyfwl =0forAx=n+r+ 1.

a=n+1

It implies that

3.8) wr=0 foran+r,\=2n+r+1.

From (3.7) and (3.8) we can consider a distribution.# defined by
Pr=0,0,=086,=0 fore=n+r,\2n+r+1.

Then it follows from the structure equations that we obtain

n n+r n+p
da = — 2 @lad' — D Gand™ — P @ad ANZntrt1
i=1 a=n+1 p=n+r1+1
=0 (mod &,&:", @),
n n+7 n+p
do) = — X @M@ — D @ap@d — P, @ a@d + Q7
j=1 a=n+1 p=n+r+1
Azn+r+1
=0 (mod &", @, @),
n ntr n+p
dog = — D @l aGa — D @5AG — D @A + L
i=1 a=n+1 p=n+r14+1
Azn+r+1

= 0 (mod &", ", @a"
Therefore a distribution .# becomes an (n 4+ r)-dimensional completely
integrable distribution. For any point x, we consider the maximal integral
submanifold M’ (x) of A# through x. Then M’ (x) is of (n + r)-dimensional and
by the construction it is totally geodesic in P,,,(c). Moreover M is immersed
in M’ (x). This completes the proof.

The immersion of M into 7,4,(c) is said to be full, if M cannot be immersed
in an (# 4+ ¢)-dimensional totally geodesic submanifold in P,.,(c), where
p > g = 0. The assertion (1) of the theorem follows immediately from (3.6),
Lemma 3.3 and a theorem due to Nomizu and Smyth [3].

We shall prove the other one. In this case, we may suppose p = r =
n(n 4+ 1)/2, because of the full immersion. This means that by virtue of (3.5
we have

~

nn+1)

9

(39) R =
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We define a tensor Z,;,; by
aj « C
Zgi = Z huahj — 1 840k + 8:4i0%)-
Then we get

Zij-kaijkj TI‘A2 — ¢cTrd + ﬂn-j:—”l‘)‘ 62.
NN 8

Taking account of equations (2.3), (3.2) and (3.9), we see that the right hand
side vanishes identically, so that Z;z = 0. It implies M is of constant holo-
morphic curvature ¢/2. This concludes the proof.

Remark 1. As it can easily be imagined from the main theorem, a complex
quadric Q, and a complex projective space are trivial examples of Einstein-
Kaehler manifolds immersed holomorphically in a complex projective space.
We can take the following other examples:

(1) Pn(c) X Pn(c) in P"2+"(C).

(2) Compact irreducible hermitian symmetric spaces.

Remark 2. The estimate of the codimension in assertion (1) of the theorem
is best possible. In particular, we point out expressly the fact that the codimen-
sion is greater than or equal to half the dimension of imbedded manifolds
in the above examples except for the complex quadric.. The equality holds only
in the following two cases; SU(5)/S(U(3) X U(2)) in PyC and SO(10)/U(5)
in P;C. In these cases, the second fundamental forms are both parallel. See
the forthcoming paper [2] along this line.
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