JFP 21 (2): 129-133,2011. © Cambridge University Press 2011 129
doi:10.1017/S0956796810000341 First published online 24 February 2011

FUNCTIONAL PEARL
The Hough transform

MAARTEN FOKKINGA

Department EEMCS, University of Twente, Enschede, The Netherlands
(e-mail: m.m.fokkinga@utwente.nl)

1 Introduction

Suppose you are given a number of points in a plane and want to have those
lines that each contain a large number of the given points. The Hough transform
is a computerized procedure for that task. It was invented by Paul Hough (1962),
originally to find the trajectories of subatomic particles in a bubble chamber, and it
has even been patented. Nowadays, adaptations of the Hough transform are used,
among others, for identification of transformed instances of a predefined figure,
instead of just a line, in a digital picture. There are plenty of explanations on the
Internet (use search key “Hough transform” and “generalized Hough transform”),
some with nice applets to demonstrate the working (add search key “applet” or
“demo”). Recently, Hart (2009) has looked back at the invention. We show how
the original procedure could have been derived. The derivation has the following
notable properties:

e The “transform” is a mapping of the plane to another space in such a way that
manipulations in the plane can be done equivalently in the other space, and
vice versa. Hart (2009) describes its invention as: one of those inexplicable yet
genuine “aha!” insights: Mapping a zero-dimensional point to a one-dimensional
straight line—which by increasing the dimensionality seems to make the problem
more complicated—/...]. This step falls out quite naturally in the course of
our derivation.

e We exploit the addition of functions (f & g is the function that maps x to
fx +gx), and in particular the fold-with-4-: when applied to a collection of
functions f,g,... it yields the function that maps x to fx + gx + - --.

In order to consider only a finite number of lines, the Hough transform uses a
discretization of the space. The test for a line containing a point then needs to be
relaxed; a line “contains” all points that are sufficiently close to it. Equivalently,
the lines can be thought of as having finite thickness. For this to work in practice,
the discretization should be fairly fine, but, for reasons of efficiency, not too fine.
In addition, in a practical setting, there is uncertainty about the given points: the
location of the points may be inaccurate, and some intended points may not be given
(loss) and some given points may not be intended (noise). Dealing with discretization
and uncertainty is beyond the scope of this note, as is further refinement in order

https://doi.org/10.1017/50956796810000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000341

130 M. Fokkinga

to improve computational efficiency. Our aim is to present the principle underlying
the Hough transform in an idealized setting.

2 The derivation

We are given a fixed set of points and, consistently, p will vary over this set. We
want to have one or more lines F, each of which contains the largest number of the
given points (“F” is mnemonic for Figure, to which line can be easily generalized).
Abstracting from executability on a computer, a specification is easy to give:

Consider all lines F.
Assign to each line: the number of given points that are contained in F. (1)
Deliver the lines whose assigned number is maximal.

A succinct formulation (explained below) of this specification reads
argmax (AF. #{p|p € F}) 2

The first phrase of Equation (1), “consider all lines,” is formalized by leaving out the
domain of F: thus F ranges over all lines. The assignment of “the number of given
points that are contained in F” to line F is expressed as function AF. #{p|p € F}.
Well-known operation argmax, defined by argmax f = {x | Vy. fx > fy}, chooses
those F-values for which #{p | p € F} is maximal.

In order to represent lines in the data types available to a computer, we assume
a line to be identified by a collection of numeric parameters. For example, two
well-known ways of characterizing a line in the x, y-plane are

F(a,b)={x,y |y = ax + b}
F(p,p)={x,y | p=xcos¢p+ ysingp}

In the latter characterization, p is the distance of the line to the origin and ¢ is
the angle between the line and the y-axis. In the sequel, we shall use ¢ to denote
a parameter that uniquely identifies a line Fq according to a fixed representation;
for example, g is (a,b) or it is (p,). (Notice that we now write “Fq” for a line
parameterized by ¢, whereas above merely “F” itself denotes a line.) Thus, we rewrite
Equation (2), using the parameter identification of lines:

argmax (4q. #{p|p € Fq}) 3)

(To get a real equality between Equations (2) and (3), mapping g — Fq should be
applied to every outcome of the latter in order to get exactly the outcome of the
former.) Next, we replace the size operator # by one of its defining expressions:
#{x|...x...} is a sum of as many 1’s, as there are x-values for which ...x... holds.
A sum can be expressed as fold-with-+. For an associative operation @ with a
neutral element, we write the fold-with-® as @/—it can be refined to Haskell’s foldl
as well as foldr. Furthermore, we abbreviate “1 if p € Fq else 0” to (p € Fp), and we
write {p e...p...]} for “the bag of all values ...p... where p ranges over the given
set of points.” Thus, line (3) equals

argmax (Aq. +/{p e (p € Fq)]}) (4)

https://doi.org/10.1017/50956796810000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000341

Functional pearl 131

Here, we see a single function Aq. +/{...]t whose outcome for each ¢ is a sum of
various values. By the very definition of “addition of functions,” this can be written
as a single sum of various little functions (recall that +/{f.,g,...} =f Fg4 - =
AX. fx+gx+-):

argmax (+/{p (Aq.(p € Fq))}}) (5)

Now, for arbitrary p, function (4q. ...) can be rewritten in view of the surrounding
addition +/: we distinguish between the parameters that yield a zero result (the
neutral element for +) and a nonzero result. The function yields a nonzero result
(namely 1) for parameter g precisely when p € Fq; so we define Gp = {q | p € Fq}

and then
q. {p € Fq)
= above definition of Gp
(Aq : Gp. 1) U (Aq : complement of Gp. 0)
(4q : Gp. 1)°
Operation _° completes a partial function to a total one: f°x = fx if x € domf

else 0; again, in view of the surrounding 4/, usage of this operation seems useful.
Thus, line (5) equals

argmax (+/ {p ® (Aq : Gp. 1)°}) (6)
This ends the derivation. To see the correspondence with other explanations of
the Hough transform, expression (6) can readily be formulated in an imperative
fashion. Remember the imperative realization of folds: for numbers a;, the result of
+/ {ai,az,...]} can be accumulated in number variable A as follows:
initialize 4 to 0;
for each i do: increment A by q;

Similarly, for functions f; : 0 — IN, the result of +/ {f1,f2,-..]} can be accumulated
in function variable A : Q — IN (in pseudocode: array A[Q] of IN) as follows:

initialize 4 at each ¢ to 0;
for each i do: increment A4 at each ¢ by fiq

Therefore, exploiting also that zeros have no contribution to the final sum, it turns
out that Equation (6) can be written as follows, using a so-called accumulator A:

initialize 4 at each ¢ to 0;
for each p do: increment 4 at each ¢ € Gp by 1; (7)
deliver the ¢’s for which A4 at g is maximal.

3 Discussion
3.1 The crux

The crux of the procedure is, perhaps, the equivalence p € Fqg <= Gp > q; it is, in
fact, the definition of the Hough transform. It enables us to do manipulations from

https://doi.org/10.1017/50956796810000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000341

132 M. Fokkinga

the point space equivalently in the parameter space. For example, “multiple points
p,...,p have a common Fq” equals “multiple figures Gp,...,Gp’ have a common ¢”
(in which case accumulator A is incremented multiple times at ¢g). The equivalence is
stressed (without mentioning an explicit formula!) in all explanations of the Hough
transform I know, but it does not play a prominent role in our derivation—it is
used, implicitly, in the step from Equations (5) to (6).

In contrast, in the formal derivation, the major structural change in the expressions
occurs in the step from Equations (4) to (5), although the step is just an application
of the definition of fold. This step reverses the nesting of scopes: in Equation (4),
the scope of p is properly part of the scope for g, whereas in Equation (5), it is
the other way around. This translates to the imperative formulations with nested
iterations: in the initial specification (1), there is an outer loop for g, whereas in the
final formulation (7), there is an outer loop for p.

3.2 Arg max

Operation argmax does not enter into the calculation: it is carried along at every
step. Indeed, it can be replaced by anything else. A particularly useful choice is “arg
topy,” thus selecting the lines F whose assigned number is among the top-k largest.
In this way, those lines are found that each contain “a large” number of the given
points. Notice, however, that in a practical setting where the location of the points
may be inaccurate, parameters g for which accumulator A4 is locally maximal are
more useful than the g for which A[q] belongs to the top-k values.

3.3 Lines and figures

For the first example representation of straight lines in the x, y-plane, figure Gp
in the parameter plane turns out to be a straight line as well, whereas for the
second representation, figure Gp is a sine curve. The second representation has the
advantage that each straight line can be represented by a finite value for p, ¢. In
both cases, the “line form” of figure Gp makes it easy to enumerate the g € Gp, a
subtask that occurs in Equation (7).

Nowhere in the derivation did we use that F is a straight line or that points p come
from a plane. Far-reaching generalizations are possible. For example, figure F may
be a predefined fixed figure, and each Fq may be a transformed (translated, scaled,
rotated) instance of F, characterized by parameter q. Needless to say that in such
a case, g will be a conglomerate of several values (not just the pair x,y or p, @) so
that enumerating the g € Gp increases the computational complexity considerably.

Acknowledgments

A previous version of this paper was presented at a symposium on January 22, 2010,
on the occasion of the retirement of Lambert Meertens as professor at the Utrecht
University. I acknowledge the elaborated and useful comments of the reviewers;
they have led to a considerable improvement of the presentation and content.

https://doi.org/10.1017/50956796810000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000341

Functional pearl 133

References
Hart, P. E. (2009). How the Hough transform was invented [DSP History], Signal Process.
Mag. IEEE, 26 (6): 18-22.
Hough, P. V. C. (December 8, 2010). Method and means for recognizing complex

patterns [online]. US Patent 3,069,654. Available at: http://www.freepatentsonline.
com/3069654 . pdf. Interesting excerpts appear in (Hart, 2009).

https://doi.org/10.1017/50956796810000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000341

