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It is well-known that on an inverse semigroup S the relation S= defined by a S= b if and
only if aa'1 = ab~x is a partial order (called the natural partial order) on S and that this
relation is closely related to the global structure of S (cf. (1, §7.1), (10)). Our purpose here
is to study a partial order on regular semigroups that coincides with the relation defined
above on inverse semigroups. It is found that this relation has properties very similar to the
properties of the natural partial order on inverse semigroups. However, this relation is not,
in general, compatible with the multiplication in the semigroup. We show that this is true if
and only if the semigroup is pseudo-inverse (cf. (8)). We also show how this relation may be
used to obtain a simple description of the finest primitive congruence and the finest
completely simple congruence on a regular semigroup.

1. The natural partial order

In this paper we use, whenever possible, the notations of (2). For the definitions of
bi-ordered sets and related concepts we refer the reader to (7). We shall also use notations
established in (7) with the following exceptions. We shall write 01 = a i ' n ^ ' ) " 1 and
S£= co'n(w')""1 instead of ^ and =i respectively. Further, as an economy measure, we
shall use "basic products" (Clifford (2, Equation (1.3))) instead of T-mappings r'(e), r\e)
etc.

Recall that for any semigroup S, the relations

Lx-^Ly if and only if S 'xgS'y,
Rx^Ry if and only if xSlcyS1

are partial orders on Sl<£ and S/3? respectively and that

Hx^Hy ifandonlyif Lx^Ly,Rx^Ry

is a partial order on S/̂ f. When S is regular, the last relation may also be defined as

Hx^Hy ifandonlyif x e ySy. (1.1)

Proposition 1.1. Let S be a regular semigroup. For x, y e S, define

x S y ifandonlyif Rx^Ry and x=fy for some / e E(RX) (1.2)

where for any XcS, E(X) denotes the set of idempotents in X. Then the relation ^ is a
partial order on S whose restriction to E(S) is the relation <o.
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Proof. It is evident that the relation defined above is reflexive. Suppose that x S y =§ z.
Then Rx ^ Rz and x = fy, y = gz for some / e E(RX), g e £(#y). Since / e E(#S) we
have gf=f, fg e E(RX) and x = fy = (fg)z. Therefore x S z . I f x g y ^ x , then Rx = i?y and
so the equality x = fy for some / e E(RX) implies x = y. This proves that g is a partial
order on S. The last statement is obvious from (1.2) and the definition of the relation o> on
E(S) (cf. (7)).

The relation defined by (1.2) on a regular semigroup S is called the natural partial order
on S. Notice that when S is an inverse semigroup this relation coincides with the usual
partial order on S (cf. (1, §7.1)). Though our definition is typically one-sided, the relation
S= is in fact self-dual as is clear from the following proposition.

Proposition 1.2. Let x and y belong to a regular semigroup S. Then the following
statements are equivalent.

(a) x=iy.
(b) For every f e E(Ry) there exists e e E(RX) such that ewf and x = ey.
(c) For every f e E{Ly) there exists e' e E(LX) such that e'wf and x = ye'.
(d) Hx ^ Hy and for some [for all] y' e i(y), xy'x = x.

Proof, (a) => (b). Let e e E(RX) be the idempotent such that x = ey and choose
/ e E(Ry). Since Re = Rx § Ry = Rf we have e0ley = efcof and exy = e/y = ey = x.

(b) => (c). Choose f e E(Ly) and y' e i(y)n-R/-. By (b) there exists e e £(/?,)
such that ewyy' and x = ey. If e' = y'ey then e' e (Lx), e'wy'y = f and ye' = (yy')ey =

ey = x.
(c) => (d). Let y' e i(y). By (c) there exists e' e E(LX) such that e'cjy'y and x = ye'.

Then x = ye' = ye'y'y 6 ySy and so Hx ^Hy. Also xy'x = xy'ye' = xe' = x.
(d) =̂> (a). From Hx ^ Hy it follows that i?x ̂  jRy. Assume that xy'x = x for some

y' G i(y). Then e = xy' e £(i?x)andx G ySy. Since y'y is a right identity of every element
in ySy it follows that ey = xy'y = x; that is x §= y.

Corollary 1.3. Let S be a regular semigroup. Then we have the following.

(a) e e E(S), x e S and x^e impliesx e E(S).
(b) x, y G S, x£%y and x ̂  y implies x = y.
(c) x, S= y, i = 1, 2 and HXl S H^ implies xx ̂  x2.
(d) Le/ ew/. TTten /or eac/i (y, y') e Rf^Lf with y' € i(y), there exists a unique pair (x,

x') e RexLe with x' e i(x) suc/i thatx'x = y'ey, x S y and x'^ y'.

Proof. Statements (a) and (b) are obvious from the definition, (c) If y' e i(y). by
Proposition 1.2 (b), there exist e, e E(RX.) such that e.wyy' and x,•, = ety, i = \, 2. Then
X2=y'e2 e i(x2) and since HXl^HX2 we have eia>'e2. Therefore XiX2X! = e!yy'e2eiy =
e\ y = Xi and so, by Proposition 1.2(d), x i i x 2 .

(d) Let ewf and (y, y') 6 RfxLf with y' e i(y). Then the pair (ey, y'e) e RexLe

satisfies the required conditions. To prove the uniqueness assume that (x, x') e R,.xLe also
satisfies these conditions. Then xx' = e = eyy'e, x'x = y'ey and hence x$fey and x'ffly'e. By
(c) we conclude that x = ey and x' = y'e.

A non-zero element of a regular semigroup S is primitive if it is minimal among the
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non-zero elements of S. If S does not have zero then a primitive element of S is a minimal
element of S. The fact that the restriction of the natural order of S to E(S) is the relation w
implies that, for idempotents, the foregoing definition is equivalent to the usual definition
(cf. (1)). Moreover, if x is a primitive element of S, then it follows from Proposition 1.2 that
every element of Dx is also primitive. Recall that a primitive semigroup is a regular
semigroup in which every non-zero idempotent is primitive and that a completely simple
semigroup is a primitive semigroup without zero. Thus we have the following:

Theorem 1.4. A regular semigroup S is primitive if and only if every non- zero element
of S is primitive. Therefore, a regular semigroup S without zero is completely simple if and
only if the natural partial order on S is the identity relation.

Theorem 1.5. Let T be a regular subsemigroup of a regular semigroup S. Then the
natural partial order on T is the restriction of the natural partial order on S to T.

Proof. Let x, y E T. If x ^ y in T then it is clear that x Si y in S also. Conversely
assume that x Si y in S. Since Tis regular, y has an inverse y' in T. Let / = yy' and e = xy'.
Then /, e e E{ T), ewf and x = ey. Now eSkx in S and since Green's relation <% in T is the
restriction of the corresponding relation in S to T, it follows that eSfrx in T. Therefore by
Proposition 1.2(b), x ^ y in T.

By the trace of a regular semigroup S we mean the partial algebra S(*) defined as
follows:

x* v = {*y if xyeRxr\Ly; (1 3 )
y (.undefined otherwise.

The following result shows the relation between the natural partial order on S and the
global structure of S. The reader may compare this with Lemma 1 of (4).

Theorem 1.6. Let Xi, x2, ..., xn be elements of a regular semigroup S and x =
X\X2 ... xn. Then there exist yu y2,..., yn e S such that

(1) y.-^Xj, i = l , 2 , . . . , n;
(2) x = y,*y2*...*yn.

If the product Xi* x2* ...* xn exists in S(*) andifyi, y2, •••, yn are elements in S satisfying {V)
and (2), then x, = yh i = 1, 2,. . . , n.

Proof. The proof is by induction on the integer n. If n = 2, then for e e E{LXl),
f € E(RX2) and h e Sf(e, f), by Proposition 1.1 and Theorem 2 of (7), we have Xih^xu

hx2 = x2 and XiX2 = (xiJi)*(/ix2). Further, if x^x2 exists in S(*) and if yi and y2.satisfy
conditions (1) and (2), then by Corollary 1.3(b) and its dual xt = y] and x2 = y2.

Now suppose that the result holds for all integers less than or equal to n and consider
x = xoXi...xn where the product Xi*x2*...*xn exists *in S(*). Then there exist
e0, eiy..., en e E(S) such that x, e i?e._,nLej, / = 1, 2,. . . , n. Choose e e EiL^J, h e
Sf(e, Co) and define ho = he0 and /i, = Xj/i,_ix,, i = 1, 2, . . . , n where x\ is the inverse of x, in
Lei_,<^Rer Then ^we, for all iand y, = /if-iX^x,, /i, e Ly. ni?y+1 for i = 1,..., n - l .From
this it follows that, if l^i^j, then

y, * ... * y, = hi-ix,... xy = x,... xfy ^ x,... xy.
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Now if yo= Xoh then yo = Xo and by Theorem 2 of (7) we have

.. . x n = yo*fixi ...xn

= yQ*hoxl...xn

If x0*.. *xn exists in S(*) and if y0 , . . . , yn satisfy (1) and (2) then

where z = Xi*.. *xn and u = yi*.. .*yn. But yo = Xo and u^z and so we have y0 = x0, u = z.
By induction it now follows that yf = x, for i = 1, 2, ..., n.

Remark. By arguments similar to the foregoing we can prove the following state-
ment.

Let S be a regular semigroup and for i = 1,2,..., n, letxt e Sandx', e i(xt). Then there
exist y, e S and y\ e i(y,-) such that

(1)" y, Si x, and y'^x', for i = 1, 2, . . . , n; and
(2)" xlx2...xn = yi*...*yn, y'„*...*y[ e i(xix2... xn).

We shall say that a mapping <j> of a quasi-ordered set X into a quasi-ordered set Y
reflects quasi-orders if for all y, y' e X<£ with y '§y and x e Xwith x<j> = y there exists x'
such that x ' ^ x and x'<f> = y'. An important property of homomorphisms of regular
semigroups is that they preserve and reflect natural partial orders. To prove this we need
the following lemma which is an immediate consequence of Theorem 1 of (7).

Lemma 1.7. Let S be a regular semigroup and e, e', f,fe E(S). Then we have the
following.

(i) Ifeeojthen

StXe, f) = cor(f)nE(Le), SrV, e) = a>(f)nE(Re).

Dually if eoi'f then

We, f) = <o(f)nE(Le), Sr\f, e) = o>'(/)nJE(iU

(ii) / / e <£e' and f®f then Sf(e,f) = St\e', f).

Theorem 1.8. Let <j>:S—>S' be a homomorphism of regular semigroups. Then <}>
preserves and reflects natural partial orders of S and S'.

Proof. Since (f> preserves the relation « and products, it follows that it preserves the
natural partial order.

Now consider e', f e E(S<f>) with e'wf. Then there exist e, f e E(S) such that e<& = e'
and f<f> = f. Choose h e ST(e, f) and g e <f(f, e). By Theorem 5 of (7), h<f> e &>{e', f) and
g<f> e Sf(f, e'). Since e'utf, by Lemma 1.7 (i), e'<£h<l>f. Also (h/)<£ = h<f>f= h<f>. Dually,
e'®g<f>a>f and (fg)<f> = g<l>. .Hence by Lemma 1.7 (ii), y((hf)4>, (fg)<l>) = St\e',e') = {e'}.
Hence if k e Sf(hf, fg) then few/and by Theorem 5 of (7), fc</> = e'. Now let u, v e S<f> with
u ^ c and let y e S with y<f> = v. If / e E(Ry) then f<f> = fe E(RV) and so by Proposition
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1.2(b), there exists e' e E(RU) such that e'oif and u = e'v. By the result proved above,
there exists e e <w(/) such that e<j> = e'. Then x = ey Si y and x</> Si e'v = w.

From Theorems 1.5 and 1.8 we have the following.

Corollary 1.9. Let <f>:S-*S' be a homomorphism of regular semigroups and
Mi, u2,..., Un be elements in S(f> such that ul*u2...*un exists in S'(*). Then for every choice of
elements x, e S such that x;<£ = uh i = 1 , . . . , n we can find y, e 5 such that y* Si xh y,-<£ = w,
and yi*y2*. • -*yn exists in S(*).

2. Green's relations and the natural partial order

Let Xbe a partially ordered set and p be an equivalence relation on X. We say that p is
reflecting if for all x, y, z e X with x Si ypz there exists y' e X such that xpy' Sz. A
reflecting equivalence relation is compatible with the partial order on X if, for all x, y e X
with xSy, x si M Si y implies upx. In particular, if no two distinct p-related elements are
comparable with respect to si then p is clearly compatible with si ; in this case we say that p
is strictly compatible with Si.

Suppose that p is a reflecting equivalence relation on X. Then the relation

p(x)Sip(y) if and only if, for every y' e p(y)

there exists x' e p(x) such that x' Si y',

is a quasi-order on XIp and the canonical map p*: X—»X/p is order preserving and
reflecting. On the other hand, if / : X—> Y is an order preserving and reflecting map of a
partially ordered set X to a quasi-ordered set Y, then one easily checks that

ker/={(x,y):;c/=y/}

is a reflecting equivalence relation on X. Further, p is compatible with S if and only if the
relation denned by (2.1) is a partial order.

Lemma 2.1. Let Xbe a partially ordered set and p be a reflecting equivalence relation on
X. Then the relation

P — {(x,y)- there exist x', y' in X with xpx'S= y, ypy'^s x}

is the finest compatible equivalence relation on X containing p.

_ Proof. It is clear that p is reflexive and symmetric. To prove transitivity assume that
xpy and ypz. Then there exist x' and y' such that xpx' S ypy' § z. Since p is reflecting there
exists x" such that xpx'px"iy'gi Similarly there exists z" such that zpz"^x and hence
xpz.

Suppose that x § ypz. Then there exists z' such that ypz' ̂  z. Since p is reflecting, we
can find x' with xpx' ̂ z'^z. Therefore xpx' g z and so p is reflecting. To prove that p is
compatible assume that xpy and x ^ u ^ y. Then u ̂  ypx and so there exists u' with
MpV ̂  x. Since x g u, it follows that upx.

Finally let a be a compatible equivalence relation containing p. If xpy then there exists
x' such that xpx' g y and so x'py. This implies that there exists y' with ypy' g x ' ^ y . Hence

o-(y) = o-(y') Si cr(x') = o-(x) Si cr(y).
Therefore x<ry.
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Let S be a regular semigroup. By a reflecting or compatible equivalence relation on S
we mean a relation having the corresponding property with respect to the natural order on
S. Theorem 1.8 implies that every congruence on S is compatible. Similarly Proposition
1.2, Corollary 1.3(b) and its dual shows that Green's relations $1 and !£ are strictly
compatible. But $£ is not, in general, reflecting. We prove below that 2) is reflecting and
that 2) = $. First we prove the following.

Lemma 2.2. Let x and y be elements of a regular semigroup S. Then we have the
following.

(1) Ifx^y then for every y' e Dy there exists x' e Dx such that x' ̂  y'. If x^ y, we may
choosex' sothatx'^ y'. Hence a 3)-class containing elements x, y such that x Si y and x^ y,
does not contain minimal elements.

(2) x e SyS if and only if there exists y' such that xQiy' ̂  y. Hence if Dy contains
minimal elements then Dy = Jy and every element of Jy is minimal.

Proof. (1) Let / e E(Ry). Then by Proposition 1.2 (b), there exists e e E(RX) such
that ecjf and x = ey. Let y' be any other element in Dy and / ' e E(Ry). Choose
z e RfDLf,, and let z' be its inverse in LfHRf. Then e'= z'ezikz'z = f and e' e Dx.
Hence x' = e'y'^y' and x' e Dx. If x^y then by Corollary 1.3(b), e^f and so e' =
z'ez^ z'z = f. Consequently x' ^ y'. If Dx = Dy = D and x^ y, by the foregoing, for every
y' e D there exists x' e D such that x'^y' and x'^y'. Therefore D cannot contain
minimal elements.

(2) If x e SyS then x = uyv for some u,veS and by Theorem 1.6 we can find u' g u,
c'gi) and y ' ^ y such that x = u'*y'*v'. In particular, u', v', y' e Dx and so xSy'^y.
Conversely if y' exists satisfying this condition, then y' e yS and so SxS = Sy'Sg SyS.
Finally assume that Dy contains minimal elements and that x e Jr Then there exist y' and
y" such that jc2>y' ̂  y and yS)y" g y'. By Statement (1), every element of Dy is minimal and
so, y" = y' = y. Therefore x e Dy.

Corollary 2.3. Let Dbea 3)-class of a regular semigroup S. Then D contains minimal
elements if and only if it does not contain a bicyclic semigroup.

Proof. If D contains a bicyclic semigroup then it is clear that it contains distinct
idempotents e and /with e<af and so by Lemma 2.2, D does not contain minimal elements.
Conversely if D does not contain minimal elements then by Lemma 2.2, D contains
distinct idempotents e and /such that ea>f. If x e ReDLf and if x' is the inverse in LeC\Rf

then it is routine to check that the semigroup generated by elements x and x' is a bicyclic
semigroup contained in D.

Lemmas 2.1 and 2.2 yield the following.

Theorem 2.4. Let S be a regular semigroup. Then Green's relation 2) is reflecting and
S) = $. In particular, 3) = $ if and only if 2 is compatible.

Corollary 2.5. A regular semigroup S is [0 — ] simple if and only if for all x, y e S [x,
y e S\{0}] there exists x, e S such that xS)xt § y.
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The class of regular semigroups for which 3) is strictly compatible is also of interest. If S
has thisproperty then no S-class of S contains a bicyclic semigroup by Corollary 2.3. Since
any bicyclic subsemigroup of S must be contained in a S-class of S, it follows that S does
not contain bicyclic subsemigroups and so S is completely semisimple (cf. [11]). Con-
versely if S is completely semisimple, then it does not contain bicyclic subsemigroups and
so by Corollary 2.3, every S-class of S contains minimal elements. Therefore, 2) is strictly
compatible. Thus

Theorem 2.6. A regular semigroup S is completely semisimple if and only if Green's
relation 2) on S is strictly compatible.

Corollary 2.7. A regular semigroup S is a union of groups if and only if S is completely
semisimple and every 3)-class of S is a subsemigroup of S.

Proof. The "only if" part of the assertion is well-known. If S is completely semisim-
ple and if ©-classes of S are subsemigroups then every 2>-class of S is a bisimple regular
subsemigroup of S and by Theorem 1.5, the natural partial order on these semigroups are
identity relations. Therefore every 2)-class of S is completely simple (by Theorem 1.4).

We have already observed that congruences on regular semigroups are compatible
with the natural partial order. Those congruences that are strictly compatible may be
characterised as follows.

Theorem 2.8. Let p be a congruence on a regular semigroup S. Then p is strictly
compatible if and only if p(e) is a completely simple subsemigroup of S for all e e E(S).

Proof. Suppose that p is strictly compatible and e e E(S). If p*:S—>S/p is the
canonical homomorphism, x e p{e), f e E(RX) and g e E(LX), then fp* S/lep*Z£gp* and
so, by Lemma 1.5,

Sr\gp*, fp*) = V(ep*, ep*) = {ep*}.

By Theorem 5 of (7), 9>{g,f)p*^^{gp*,fp*) and so % | ) c p ( e ) . Therefore if h e
!¥(g, f), then xh, hx e p(e), xh g x and h x g x Since p is strictly compatible, this implies

that x = xhZEWlhx; that is, x 6 Hh. In particular, p{e) is a regular subsemigroup of S and
by Theorem 1.5, the natural partial order on it is the identity relation. Therefore, by
Theorem 1.4, p(e) is completely simple.

Conversely suppose that p(e) is a completely simple subsemigroup for all e e E(S) and
that (x, y) e p, xgy. If / e E(Ry) then by Proposition 1.2, there exists g e E(RX) such
that gcof and x = gy. Now for some inverse y' of y, / = yy' and g = gyy' = xy'. Hence
(/, g) e p and since p{f) is completely simple, by Theorem 1.4, / = g. Therefore x = y.

The foregoing theorem in particular implies that if p is a proper congruence (that is,
congruence which is different from the universal congruence) on a completely 0-simple
semigroup S, then for every e e E(S), p(e) is a completely simple subsemigroup of S.

3. Pseudo-inverse semigroups

It is well-known that the natural partial order on an inverse semigroup is compatible
with the multiplication of the semigroup (cf. (2, Lemma 7.2)). This is not true, in general,
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for regular semigroups. This leads to the problem of determining the class of regular
semigroups for which this holds. We prove below that it is precisely the class of semigroups
studied in (8). We call them pseudo-inverse (p-inverse) semigroups.

A p-inverse semigroup S is a regular semigroup such that the bi-ordered set E(S) is a
pseudo-semilattice; that is E(S) satisfies the condition that for all e, f e E(S) there exists
h e E(S) such that

a>'(e)n<or(f) = (o(h) (3.1)

(cf. (8,9)); this is equivalent to requiring that for all e e E(S), <o(e) is a semilattice (cf. (8)).
Thus we have:

Theorem 3.1. A regular semigroup S is pseudo-inverse if and only if for every
e 6 E(S), eSe is an inverse semigroup.

Since we are not concerned with pseudo-semilattices in this paper, the reader may take
.the foregoing result as the definition of p-inverse semigroups. Examples of p-inverse
semigroups are numerous. Inverse semigroups are obviously p-inverse; completely 0-
simple semigroups also belong to this class. Apart from these, several subclasses of the
class of p-inverse semigroups such as generalised inverse semigroups (Yamada (13)),
locally testable regular semigroups (Zalcstein (14)), etc. have been studied. For general-
ised inverse semigroups, Theorem 3.1 is due to Yamada (13, Theorem 1).

Theorem 3.2.

(a) Every regular subsemigroup of a p- inverse semigroup is p- inverse.
QD) Every homomorphic image of a p-inverse semigroup is p-inverse.
(c) The direct product of a family of p- inverse semigroups is p- inverse.

Proof. The statement (a) is clear.
(b) Let <j>: S—> S' be a homomorphism of a p-inverse semigroup S onto a semigroup S'.

Then by (2, Lemma 7.35) and (7, Theorem 5) S' is regular and E(S)<f> = E(S<f>) = E(S').
Let e' e E(S') and e e E(S) with e<f> = e'. Then it is clear that (eSe)<(>^ e'S'e'. If
x' e e'S'e' and if x</> = x' for some x e 5, then (exe)4> = e'x'e' = x' and so, eSe)<j> = e'S'e'.
Since eSe is an inverse semigroup, so is e'S'e' by (1, Theorem 7.36)). Thus S' is p-inverse.

(c) Let S = x 5,- be the direct product of p-inverse semigroups $. If Pi:S—> S; is the i-th
projection, then e e E(S) if and only if e, = ePt e £(5,) for all i. Further for e, f e E(S),
eoif'xi and only if e,w/i for all i. Therefore, o>(e) is the direct product of the semilattices &>(e,)
and so is a semilattice. Hence for all e e E(S), eSe is an inverse subsemigroup of S.

The following theorem gives several characterisations of p-inverse semigroups in terms
of its natural partial order (cf. statements (b), (c) and (d)). All these statements are
well-known properties of inverse semigroups (cf. (1,7.1), (10)). These properties are used
in (8) to obtain a structure theorem for p-inverse semigroups which is analogous to
Schein's theorem for inverse semigroups (cf. (10)).

Theorem 3.3. The following conditions on a regular semigroup S are equivalent.
(a) S is p-inverse.
(b) If x^y then for every (yi, y2) 6 LyX Ry there exists a unique pair (xu x2) e

such that xt S y,, i = 1, 2.
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(c) x, y, u, v e S, x S u, y S= v implies xy ^ uv.
(d) / / y e S, y' e i(y) and x^y then there exists a unique x' e i(x) such that x' ^ y'.

Proof.

(a) => (b). Let i g y . Then by Proposition 1.2 (b), there exist / e E(Ry), e e E{RX)
such that ceo/ and x = ey. If yi e Ry then by the same result it follows that eyr e Rx and
eyi^yi.Nowif Xi e Rx is another element with Xi^yl5 then there exists et e £(i?x)with
elo>f and X! = eiyi. Then e, ex e <o(f) and e9?ei. Since G>(/) is a semilattice, we have
e = exe = eex = ex and so, xx = eyx. Dually it can be shown that for every y2 e Ly there
exists a unique x2 £ Lx such that x2 § y2.

(b) => (c). Suppose that e e E(LU) and / e E(RV). Then by Proposition 1.2 (b) and (c)
there exist e' e a>(e)nE(Lx) and f e w(/)nJB(l?y) such that x = «e' and y = fv. Let
h £ 5^(e,/)and fe £ ^(e', /')• Then k e wl(e)r\wr(f) and so by the definition of sandwich
sets (cf. (7)), ekw'eh. Hence (ek). {eh)$kek. Since (efc). (eft), efc £ <o(e), by (b), (efc). (eh) =
ek and so ektaeh. Also, e'k,ek e <a(e) and e'k^ek and so, again by (b), e'k = ek. Therefore

xk = u(e'fc) = M(efc) = uk = n(efe). (ek) = (uh). (ek).

Hence xk^suh. Dually, ky = kv^hv and by Theorem 1 of (7), xy = (xfc).(fcy) =
(uk).(kv)= ukv. Choose u' £ *i(u)andi/ e i(v) with u'u = e and vv' = f. Then it is routine
to check that uhu' e E(RUV), uku' e E(Rxy) and uku'wuhu'. Further, (uku').uv =
ukv = xy. Hence xy § uv.

(c) =̂  (d). Let y' £ i(y) and x^y. Then by Corollary 1.3(d) it follows that there exists
x' e j(x) with x' ̂  y'. To prove that x' is unique, assume that x" e i(x) and
x " g / . Then by (c), e = xx'wyy' = / and e' = xx"a>f. Also e, e' £ w( / )n£ (^ ) and so
e' = ee'^ef=e; that is, e' = e. Therefore x'ifx". Dually x'S?x" and so x' = x".

(d) 4> (a). Choose e £ E(S) and suppose that /, f £ w(e) with /3$f. Then /, f e i(f),
e e i(e),f^ e and f S e. Hence by (d), / = f. Thus the restriction of the relation £% to <o(e)
is the identity relation. Dually the restriction of the relation X to <a(e) is also the identity
relation. Therefore &>(e) is a semilattice (cf. (7)). Since E(eSe) = w(e), we conclude by
Theorem 3.1 that S is p-inverse.

4. Primitive congruences on regular semigroups

As in (1), we write S = S° to mean that the semigroup S has a zero.
Let S = S° be a regular semigroup that is categorical at zero. Define the relation )3(S)

on S as follows:

0(S) = {(x,y): for some 2 £ S\{0}, zSix and z =S y} U {(0,0)}

If S is an inverse semigroup, then this relation is the finest O-restricted primitive
congruence on S. We show below that, in general, this congruence is the congruence
generated by the relation /3(S). For alternate forms of this congruence the reader is
referred to (3) and (5).

Theorem 4.1. Let S= S° be a regular semigroup which is categorical at zero. Then the
congruence /3C generated by (i = /3(S) is the finest O-restricted primitive congruence on S.
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Proof. Let cr be a O-restricted primitive congruence on S and (x, y) e )3. Then x = 0 if
and only if y = 0 so that, if x = 0, then clearly (x, y) e a. If x^ 0, then y^ 0 and there exists
z^O such that z ^ x and z ^ y . Since is O-restricted, z^O implies zer*^O where <r*
denotes the canonical homorphism of S onto SI a. By Theorem 1.8, za*^xa* and
z<r*^ycr* and by Theorem 1.4 we conclude that xcr* —zcr* = ycr*; that is, (x, y) e cr.
Therefore ^ c f f and hence /3C g cr. In particular, /3C is 0-restricted. To prove that S//3c is
primitive, consider x, y e S//3C where x denotes the canonical image of x e S in S/)3C,
such that x ^ y and yV 0. By Theorem 1.8 we may assume that x S y. If x = 0, then clearly
x = 0. If JCT-̂ O then (x, y) and so x = y. Therefore S//3C is primitive.

As we have already observed, for an inverse semigroup S = S° that is categorical at
zero, we have /3(S) = /3(S)C. We proceed to show that this holds for a wider class of regular
semigroups. In what follows, by a directed subset if S we mean a subset Xsuch that for all x,
y e X there exists z e X such that z ^ y, and z ̂  x.

Theorem 4.2. For a regular semigroup S= S° that is categorical at zero, the following
statements are equivalent.

(a) For every e e E(S)\{0}, <o(e)\{0} is directed.
(b) /3(S) is an equivalence relation.
(c)

Proof.

(a) =£> (b). Assume that (x, y), (y, z) e /3. Then either x = y = z = 0or none of them is
zero. In the former case (x, z) e /3. In the latter case there exist uu u2S\{0} such that ux ̂  x,
ux g y, u2 = y and u2 ̂  z. Choose / e E(Ry). Then there exist e, e E(Ru.)(~)(o(f) such that
«i = ety, i = l, 2. Since e,£%u, and u^O, it follows that e,^0. Therefore there exists
g e <a(f)\{0} such that g<aeh i = 1,2. Then g^gy and so, gy?^ 0 and gy = ge^y — gux ^ ux ^
x, gy = ge2y = u2^z. This implies that (x, z) e /3 and so /3 is transitive. Since /3 is
obviously reflective and symmetric, it is an equivalence relation.

(b) ^ (c). It must be shown that /3 is compatible with multiplication. To this end, first
consider x, y, c e SwithxSiy and x^O.Choose y' e i(y)andlet/= yy'and/'= y'y.Then
by Proposition 1.2(b) and (c), there exists e 6 «(/) D E(RX) such that x = ey = ye' where
e' = y'ey. If cy — 0 then ex = cfx = (cy)y'x = 0. Conversely if ex = 0, then cfx = 0. Since S is
categorical at zero and since fx = x^0, it follows that cyy' = cf = 0. Since yy' = f^ 0, we
have cy = 0. Therefore when either ex or cy is zero, the other is zero and (ex, cy) e /3. Next
suppose that cx^O^ cy. Let g e E(LC), h e Sr°(g, f) and k e £f(g, e). Then h'=y'hy e
E{Lcy)C\<o{,f), and A:' = y'fcy e E(Lcx)no)(f). Therefore e', h! and k' are non-zero

idempotents in w(f). Now every element of w(f)\{0} is /3-related to f and so e'ph'fik' by
(b). Hence it follows that <o(e')n<o(h')n<o(k')\{0}^\J. If k e w(e')H w(h')H<o(k')\{0}
then z = cyk = cye'fc = cxk S= ex and z ^ cy. Since ziffc, z ^ 0 and hence (ex, cy) e )3.

Now consider any (u, v) e /3 and c e S . If u = u = 0, then clearly (cu, cv) e /3.
Otherwise there exists z^ 0 such that z §= u and z ̂  v. Then by the foregoing (cz, cu),
(cz, cv) e p. Since /3 is an equivalence relation, it follows that (cu, cv) e /}. In a similar
way, it can be shown that (uc, vc) e /3. Therefore /3 is a congruence.

(2) 4> (a). Assume that )8 is a congruence, e e E(S)\{0} and f,ge w(e)\{0}. Then
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(/, e), (e, g) e 0 and so (/, g) e /3. This implies that there exists z e S\{0} such that z = /
and z^g. By Corollary 1.3(a), z e E(S) and so co(e)\{0} is directed.

Corollary 4.3. Let S= S° be a p- inverse semigroup that is categorical at zero. Then
|3(S) is the finest ̂ -restricted primitive congruence on S.

Proof. Let e e E(S)\{0} and f,ge <u(e). If fg = O, then feg = O and since S is
categorical at zero, either /=fe = 0 or g = eg = 0. Since <o(e) is a semilattice, this implies
that w(e)\{0} is directed. Therefore the result follows from Theorem 4.2.

Let S be any regular semigroup (without zero). Then S° = S U {0} is clearly categorical
at zero and the set of non-zero elements of S° forms a subsemigroup. Therefore, the set of
non-zero elements of S°/p(S°)c forms a completely simple subsemigroup and the restric-
tion of the congruence /3(S°)C to S is the finest completely simple congruence on S. Thus as
a corollary to Theorem 4.1 and 4.2 we have

Theorem 4.4. Let S be a regular semigroup and define

p{S) = {(x, y): For some z e S, z^x, z^y}. (4.2)

Then pc is the finest congruence on S such that S/pc is completely simple. p = pc if and only if
every w- ideal ofE(S) isdirected. In particular, fora p-inverse semigroups we have p = pc.

It may be noted that Theorem 1 of (6) (see also (12)) is the specialisation of the
foregoing theorem to inverse semigroups.
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