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A NOTE ON STOCHASTIC BOUNDS FOR
QUEUEING NETWORKS
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Abstract

Recently, Massey [1] proved that the vector of queue lengths of
some queueing networks is stochastically dominated at any given time
by that of a corresponding system of parallel MIM/1 queues. This
result is interesting, even though the bounds are generally quite
conservative, in that the transient behavior of independent parallel
MIM/1 queues is considerably easier to analyze than that of a
network.

This note provides an alternative proof of a generalized form of
that result.

1. Notation and basic lemma

For a:= (a t, ... ,ad) and bE R d (d ~ 1), a ~ b will indicate that a i
~ b i for i =

1, ... ,d. Let X, Y be two Rd-valued random variables. One writes

X~Y if Pr{X~a}~Pr{Y~a}, for all aER d
,

s

x ~ Y if X ~ Y and Y~X.
s

(Thus X ~ Y indicates that X and Y have the same probability distribution function.)
s

For x, yER, x/\y:=min{x, y} and x+=max{x,O}. Let Z+={O, 1,2,·· .}.

Lemma. Let X, Y, M, N be Z~-valued random variables such that X~ Y, {X, Y}

and M are independent, and given Y,

Then

«X-1-M1)+, X2+M2)~ W= «y1_N1)+, y 2+N1/\ y 1).
s
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Proof. By conditioning on M one finds that

((X 1- M 1)+,X 2+ M 2)~ ((y1_ M 1)+, y2+ M 2)=: V.
s

To show V ~ W one must prove that for all m 1, m 2E Z+,
S

(1) Pr{V1~m1, V2~m2}~Pr{W1~m1, W2~m2}.

For m 1= 0, (1) reads V 2
~ W 2 and follows from
s

For m 1> 0, (1) is implied by the following inequality:

(2) (y1-Mt, y2+M2)~(y1_Nt,y2+N1) .
s

To see why (2) holds, observe that

(y1_M1, y2+M2)~(y1_N1, y2+N2),
s

so that it suffices to show that

(y1_N1, y2+N2)~(y1_N1, y2+N1).
s

By conditioning on Y it remains only to prove that for all m 1, m 2E Z+

Pr{N1
~ m 1,N2~ m2}~Pr {N1 ~ m 1,N 1~ m 2

} .

But this last inequality is immediate from (N1, N 2)
~ (N2, N 1).
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2. Stochastic networks

Let [x, Yt, t ~ O} be two Z~-valued processes corresponding to the vectors of queue
lengths in two networks of d queues. Alternatively, each i E {I, ... , d} could be some
(k, c)E{l,' . " K}x{l,· .. , C} where C would indicate a customer class and k a node
number. Other variations are possible.

Assume that those processes admit the following representation. For t ~ 0 and
i E {I, ... , d},

d d

dx~= - L l{x~_>O} dS~j+ L dA{i
j=O j=O

d d

dy~= - L l{y~_>O} dR~j+ L l{y{_>O} dR~j.
j=O j=O

In these expressions, the differential equations are in the Lebesgue-Stieltjes sense,
y?= 1, and the processes Rij, A", Si

j are point processes with the following properties.
The processes s; A ij, A ij (see below) are Poisson processes; {Sij, A i

j}, A ij for 0 ~ i, j ~ d
are independent; for every (i, j), A i j and Aij have the same rate; almost surely one has

~s~j:=S~j-S~j_~~R~j~~A~j for t~O,O~i,j~d.

Thus x, corresponds to a system of parallel MIM/l queues while Yt corresponds to a
network of interconnected queues and need not be Markov. The routing and the service
rates in Yt may depend on the 'state' of the complete network; the basic assumption is
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that the service rate from queue i to queue j is bounded from above and from below
when the queue is not empty.

The following proposition extends a result of Massey [1].

Proposition. Assume that Xo ~ Yo. Then X T ~ Yt for all t ~ o.

Proof. Let T}, T2 , ••• be the successive jump times of Iij (S~j + A~j + A~j) and define
Xn=XTn, Yn=yTnfor n~l.

It suffices to show that given {Tm e m ~ 1}, X, ~Yn. Assume that this is true for n.

Notice that given

'1':= {Xm Ym Tm , m~l, ~A~n+l + ~A~n+l = I},

the following random variables

N
l
= ~R~n+l' M

l
= ~S~n+l' M

2
= ~A~n+l'

Xl=~,X2=~, yl=~, y 2= ~

satisfy the conditions of the lemma with N 2 being an i.i.d. copy of N l (given '1'). Hence,
given '1', Xn+ 1 ~ Y n + b and this concludes the proof.

s

For instance, if network Y consists of d queues with exogenous arrival rates Ai,
service rates in [~, bJ in queue i when it is non-empty, and routing probabilities rij, then
Yt is stochastically dominated by the vector of queue lengths of d parallel queues with
arrival rates Ai +Ij b.r; and service rates ~. The proposition shows that this result holds
in a more general context.

Remarks.
(1) The result extends to deterministic, and therefore to arbitrary arrivals, by

applying the argument to the processes between arrival times.
(2) The idea of considering the Markov chain {Y} shows that if a network of M/M/s

queues and arbitrary arrivals is started with stochastically more customers, then that
ordering is preserved at all times.

(3) It can be shown that it is not possible to construct x, and Yt on the same
probability space in such a way that Pr {x, ~ Yt, for all t ~ O} = 1. That is, the domination
is not pathwise. (See [2].)
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