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On the Global Structure of Special Cycles
on Unitary Shimura Varieties

Nicolas Vandenbergen

Abstract. In this paper, we study the reduced loci of special cycles on local models of the Shimura
variety for GU(1,n — 1). Those special cycles are defined by Kudla and Rapoport. We explicitly
compute the irreducible components of the reduced locus of a single special cycle, as well as of an
arbitrary intersection of special cycles, and their intersection behaviour in terms of Bruhat-Tits theory.
Furthermore, as an application of our results, we prove the connectedness of arbitrary intersections of
special cycles, as conjectured by Kudla and Rapoport.

1 Introduction
Motivation

A local analogue for the Shimura variety for GU(1,n — 1) has been defined in Vol-
laard’s paper [Vo] as a formal moduli scheme N(1,7n — 1) of p-divisible groups with
certain additional structures. In the subsequent paper [VW], Vollaard and Wed-
horn give an explicit description of its reduced locus Nyeq by stratifying it with locally
closed subvarieties over IF,. The strata will be referred to as “Bruhat-Tits strata’,
because they are in bijection to the set of vertices of the Bruhat-Tits building of a cer-
tain special unitary group over Q,. In their paper [KR], Kudla and Rapoport define
special homomorphisms as elements of a certain hermitian Q,-vector space (V, h).
Given x € V, they define its associated special cycle Z(x) as a certain formal sub-
scheme of N(1, 7 —1). One should think of those special cycles as the local analogues
of special arithmetic cycles on the Shimura variety for GU(1, n — 1); the latter, as well
as the link between the local and the global situation, are explained in [KR2].

Kudla and Rapoport show [KR, Theorem 1.1(i)], that, given # special homomor-
phisms xp, . . . , x,,, the reduced locus of the intersection

Z(x) = Z(x) N -+ - N Z(x4)

of their associated special cycles is a union of Bruhat-Tits strata in Nyq under the
assumption that the fundamental matrix T'(x) := (h(x,'7 xj)) i is nonsingular. They
also compute the dimension of Z(x),eq as a function of the fundamental matrix [KR,
Theorem 1.1(ii)], and give a condition on the fundamental matrix that is necessary
and sufficient for Z(x).q to be irreducible [KR, Theorem 1.1(iii)]. In the case of
proper intersections, i.e., in the zero-dimensional case, they show connectedness and
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compute the intersection multiplicity, relating it to representation densities of her-
mitian forms [KR, Theorem 1.1(iv)].

Kudla and Rapoport also conjectured [KR, Conjecture 1.3] that the reduced locus
of an improper intersection Z(x) of n special cycles is connected, and that the relation
between intersection multiplicities and representation densities should also hold in
this case.

The aim of this paper is to prove the first part of this conjecture and, more gener-
ally, to describe the reduced locus of intersections of special cycles. We will give a full
description of the reduced locus Z(x)req for any x € V as an union of Bruhat-Tits
strata, as well as of the reduced locus of an intersection of arbitrarily many special
cycles.

Main Results

We now recall the definitions from [Vo], [VW] and [KR] necessary to state our re-
sults. We fix an odd prime p and a positive integer n. Let F := F,. We denote
by W := W(IF) the corresponding ring of Witt vectors and by Wg := W ®z Q its
quotient field. The Frobenius lifts to an automorphism of W, resp. W, which we
denote by o. There are two embeddings of sz, resp. Q 2> into W, resp. W, which
we denote by ¢ and ¢; = 7 o .

The moduli scheme N(1,#n — 1) on which we work is described as follows. We fix
a triple (X tx, Ax), where X is a supersingular p-divisible group of dimension #n and
height 2 over IF, equipped with an action tx : Z,» — End(X) satisfying the signature
condition (1,n — 1), i.e.,

charpol(LX(a), LieX) = (T — goo(a)) (T - gol(a)) et € F[T] VaeZp,

and with a p-principal polarization Ax for which the Rosati involution * satisfies
tx(a)* = 1x(a”). Note that such a triple always exists and is unique up to isogeny.
Let Nilp,,, be the category of W-schemes on which p is locally nilpotent. Let

N =N(1,n—1): Nilp,, — Sets

be the functor that associates to a scheme S € Nilp,, the set of isomorphism classes
of quadruples (X, tx, Ax, px), where X is a p-divisible group over S, where ¢x and Ax
are as above, and where

pxiXXW]F*)XX[FE

is a quasi-isogeny of height 0 compatible with the additional structures imposed.
Here, S = S xy F denotes the special fibre of S. (See Section 2 for a precise definition
of N.)

N is represented by a formal scheme that we also denote by N. This formal scheme
is separated, locally formally of finite type over W, and formally smooth of dimension
n—1 over W. The underlying reduced scheme N4 is a singular scheme of dimension
[(n—1)/2] over F.

In order to explain our results, we have to recall some of the results of Vollaard
and Wedhorn [Vo, VW] on the structure of Nyeq. By Dieudonné theory the triple
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(X, tx, Ax) defines a n-dimensional non-degenerate hermitian vector space (C, h)
over QQ, for which ord det(C, k) is odd. Note that this condition determines (C, h)
up to isomorphism. A vertex is then by definition a Z:-lattice A in C satisfying

pA C ACA,

where A* := {x € C | h(x,A) C Zy} is the dual lattice of A. The set £ of all
vertices is made into a simplicial complex in the following way: Two vertices A, A
are by definition neighbours in the simplicial complex £ if and only if A C A or
A C A. Then Vollaard shows that £ is isomorphic to the simplicial complex of the
Bruhat-Tits building 5 ( SU(C, ph), Qp) , hence our use of the term “vertex”. Here,
SU(C, ph) denotes the special unitary group of the non-degenerate hermitian vector
space (C, ph) over Q2, which is a reductive algebraic group over Q,. To each vertex
A € £, Vollaard and Wedhorn associate a closed irreducible subvariety of N4, the
closed Bruhat=Tits stratum Ny. They show that N,q is covered by the Nj.

We furthermore write t;,,,, for the maximal odd integer less than or equal to n,
and £™* for the set of vertices of maximal type in £ ; that is, L™ is the set of
vertices A € £ for which the length of the quotient Z,.-module A/A* (which is
always an odd integer between 1 and n) equals tyax. Vollaard and Wedhorn show
that the closed Bruhat-Tits strata Ny corresponding to these vertices are precisely
the irreducible components of N 4.

We now define special cycles. Let (Y, ¢y, A\y) be the basic triple over F used in
the definition of N(1,0). Let (Y, i3, Ay) = (Y, vy o 0, Ay). The space of special
homomorphisms is the Q2 -vector space

V= HOmZPz (Ya X) Xz Qa
endowed with the non-degenerate Q.-valued hermitian form h given by

h(x, y) == )\%1 oyYolgox€ EndZP2 Y) @z Q = Qp2,
where the last isomorphism is induced by +~!.
(V,h) = (C,h).

The pair (Y, t5) admits a unique lift to W as a formal Z>-module, which we de-
note by (Y, t7). Now for a special homomorphism x, we define the special cycle Z(x)
to be the subfunctor of N such that Z(x)(S) consists of the tuples (X, tx, Ax, px) €
N(S) for which the quasi-homomorphism

Kudla and Rapoport show that

px ox: (¥ xyw ) xw F=Y xpS — X xyy F

lifts to a Z > -linear homomorphism (Y xw S) — X. Finally, we associate to a tuple
(%1, ..., %m) of m special homomorphisms (m any positive integer) its fundamental
matrix,

T(x1y. ooy Xm) i= (h(xi,xj)) i € Herm,,,(Qp2).

We now state our results. First, we generalize Theorem 1.1(i) and (ii) of [KR] to
the case of arbitrary intersections of special cycles.
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Proposition 1.1 The reduced locus Z(x1, . . ., Xm)red Of any intersection
Z(x1, .y %) = Z(x) O - N Z(%)

of special cycles is a union of Bruhat=Tits strata. If T(xy, . .., %,,) is non-singular with
integral entries, then Z(x1, . .., Xum)red is pure of dimension

dim Z(x1, ..., Xm)red = L(n — rk(red(T)) — 1) /ZJ ,

where red(T) is the image of T := T(xy, ..., X;,) in Herm,,(F2).

Therefore, the irreducible components of the reduced locus Z(xy, . . . , X )red Of
the intersection of the special cycles associated to x1,...,x, € V, as well as their
intersection behaviour, are determined by the following simplicial subcomplex of £:

S(xt,. .. xm):={AeL|x e A*V1<i<m}

Here, we view special homomorphisms as vectors in C via the isomorphism (V, k) =
(C, h).

We then turn to computing the simplicial complex 8(x) for a single special homo-
morphism x. We write r(x) := v( h(x, x)) , where v is the discrete valuation on Q,,
and call this number the valuation of x. We may assume that r(x) is a nonnegative
integer, thus the dimension computation of Proposition 1.1 applies.

We will give a recursive formula for 8§(x), using the cases where r(x) = 0 and
r(x) = 1 as base cases. The recursion step will give an explicit formula for §(x) in
terms of S(p~'x) if r(x) > 1 (note that r(p~'x) = r(x) — 2).

In order to state our results for the two base cases, we view the special homo-
morphism x as an element of C and write C; = (Q - x)*, where the orthogonal
complement is taken with respect to h.

Theorem 1.2 Letx € V be a special homomorphism of nonnegative valuation.

(i) [KR3, Proposition 5.2] If r(x) = 0, then there is an isomorphism of simplicial
complexes

8(x) = B(SU(CL, ph), Qp) .
(ii) Ifr(x) = 1, then there is an injective morphism of simplicial complexes
: %(SU(CJJ ph)a Qp) — S(X),
which is surjective in maximal type, i.e., S(x) N L™ is contained in the image
of .
(i) Ifr(x) > 2, then

Sx)={AeL|INeL,AeS(p'x): ACAACA}
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The first part is due to Kudla and Rapoport, while the other two results are new.
Kudla and Rapoport explicitly compare Z(x)(F) to N(1, n—2)(F) for x of valuation 0
in their unpublished notes [KR3], introducing a certain stratification of Z(x)(F). The
Bruhat-Tits building B (SU(C_, ph),Q,) comes into play because it encodes the
incidence relation of Bruhat-Tits strata in N(1,7n — 2).q. I should note that Kudla
and Rapoport actually prove a stronger result, namely that Z(x) = N(1,n — 2) as
formal schemes [KR2, Proposition 9.2].

In the case r(x) = 1, the order of determinant of h on C is even and thus
B (SU(C 1, ph), Qp) does not encode the incidence relation of Bruhat-Tits strata in
N(1,7n — 2)eq. In our paper, B ( SU(C, ph), Qp) will not arise from a stratification
of a moduli scheme. Instead, we will interpret 25 ( SU(C, ph), Qp) as the simplicial
complex of lattices A in C, satisfying a chain condition pA; C AﬁJ_ C A and
use a “stratification” of the set £ similar to the one on Z(x)(F) used by Kudla and
Rapoport. The key point is to show that any vertex A € 8(x) that is of maximal type
in £ decomposes orthogonally as A = p~'Z,x & (A N C1). From this we then
deduce Theorem 1.2(ii), which, together with pure-dimensionality of Z(x)eq, shows
that §(x) can explicitly be computed from 5 ( SU(C, ph), Qp) .

To prove Theorem 1.2(iii), we generalize the approach of Terstiege, who in his
paper [Te] gives an explicit formula for §(x) for arbitrary x in the first non-trivial case
n = 3 by using ad hoc methods for x of valuation 0 or 1 and showing an inductive
formula of the type claimed in (iii). The generalization of Terstiege’s proof is quite
straightforward in the case where # is odd. If n is even, some extra work has to be
done to show that x € A* implies p~'x € A for vertices A of maximal type.

Finally, for any m and any x1,...,x, € V, we explicitly compute the simplicial
complex 8(xi, ..., x,) of vertices whose associated Bruhat-Tits strata are contained
in (Z,(xl) n---N Z(xm)) red- FOT this, we assume (without loss of generality, see 4.6)
that the x; are perpendicular to each other with respect to k, that all valuations r(x;)
are nonnegative integers and that the x; are ordered increasingly by valuation. The
rough idea is to apply the formulae of Theorem 1.2 alternatingly. More precisely:

Let r be any nonnegative integer. Write m, := max{i | r(x;) < r}. Denote by C,
the orthogonal complement of the subspace of C spanned by x, . . ., X, . Set

L, :={A CCraZp-lattice | pA C At C A}

By the results of Vollaard, in particular [Vo, Theorem 3.6], we can endow the set £,
with a simplicial complex structure as we did for £, and then we have an isomor-
phism £, = %(SU(C,, ph), (@P) of simplicial complexes. Note that, if m = n (i.e.,
in the case considered in [KR]) and r > r(x,,), then C, is the zero space and thus the
simplicial complex £, consists of a single point.

We then construct injections of simplicial complexes

(I)s: L25+2 — L"Zs
for any s > 0. To do this, we basically iterate the maps ®: %(SU(CL, ph), Qp) — L

constructed in the proofs of Theorem 1.2(i) and (ii). We also show that the &, have
properties “similar” to those maps and furthermore that the procedure of the proof
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of Theorem 1.2(iii) generalizes to intersections of special cycles and to arbitrary order
of determinant of h. Putting together, we obtain the following.

Theorem 1.3 Letx = (x1,...,%y) € V" satisfy our assumptions above. Then 8(x)
is equal to the simplicial complex Sy computed by the following algorithm:

(0) Sets:= |r(xm)/2]. Set S,y := Losia.

(1) Set S, := {A € Ly | IA € Dy(S/,,) : A C A}

(2) SetS!:={A € Ly |IN € Ly, Ae S : ACAACA}
(3) If s = 0, stop, else replace s by s — 1 and go to Step 1.

Using the connectedness of the Bruhat—Tits buildings B ( SU(C, ph), Qp) in the

case m = 1, resp. EB(SU(C25+2,ph), Qp) in the case m > 1, a closer look at the
explicit descriptions of 8(x), resp. 8(x1, . . ., X,,,), proves our main theorem.

Theorem 1.4 Let m be any positive integer. Let xi,...,%, € V be any set of special
homomorphisms. Then the intersection Z(x1, . ..,Xm)red Of the reduced loci of their
associated special cycles is connected.

Structure

The layout of this paper is as follows. We recall in Section 2 the definition of the mod-
uli space N = N(1,n — 1) and the description of its F-valued points as lattices in an
isocrystal with certain additional structures. We also define the hermitian Q. -vector
space C. In Section 3, we review the construction of the Bruhat-Tits stratification.
The results of those sections are cited from Vollaard’s paper [Vo] and her paper with
Wedhorn [VW].

In Section 4, we define special homomorphisms and special cycles, review the re-
sults of Kudla and Rapoport, prove Proposition 1.1 (i.e., generalize Theorem 1.1(i)
and (ii) of [KR] to arbitrary intersections) and show that the connectedness con-
jecture of Kudla and Rapoport (i.e., Theorem 1.4) can be reformulated in terms of
Bruhat-Tits theory.

In Sections 5-8, we deal with the case of a single special homomorphism, i.e., of
m = 1. Section 5 is preparatory to the proof of our main results and basically an
elaboration of Sections 6 and 7 of the notes [KR3]. We give a complete proof of
Lemma 5.1 of [KR3], define the Kudla—Rapoport stratification on Z(x)(F) (allowing
us to treat r = 0), and generalize it to the level of vertices (a key idea in our treatment
of r > 1).

In Sections 6-8, the recursive formula for computing S(x) is set up, with Sections 6
and 7 devoted to the two base cases. In Section 6, we review Kudla and Rapoport’s
proof of Theorem 1.2(i) and of connectedness in case of a single special homomor-
phism of valuation 0. Section 7 is devoted to the second base case, that is, to showing
Theorem 1.2(ii) and connectedness in case of a single special homomorphism of val-
uation 1.

In Section 8, we deal with the recursion step, i.e., prove Theorem 1.2(iii) and con-
nectedness of Z(x)q under the assumption that Z(p~'x).eq is nonempty and con-
nected.
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Finally, Section 9 is devoted to showing our claims on intersections of special cy-
cles, i.e., correctness of the algorithm of Theorem 1.3 and connectedness for inter-
sections of special cycles. We will also give a new proof of Theorem 1.1(iii) of [KR]
as an application of Theorem 1.3.

2 Basic Definitions

In this section, we recall the definition of the moduli space N with which we will
work. The exposition follows [KR]. All proofs are to be found in [Vo].

2.1 Wefixanodd prime p. LetF := F,,. We denote by W := W (FF) the correspond-
ing ring of Witt vectors and by Wg := W ®z Q its quotient field. The Frobenius lifts
to an automorphism of W, resp. Wg, which we denote by . There are two embed-
dings of Z, resp. Q2, into W, resp. Wq, which we denote by ¢y and 1 = o o .
The discrete valuation on Wg will be denoted by v.
2.2 We also fix a positive integer 7 and a triple

(X, ex, Ax),
where X is a supersingular p-divisible group of dimension #n and height 2n over F,

on which we have an action tx: Z,, — End(X) satisfying the signature condition
(1,n—1),ie,

charpol (1x (), LieX) = (T — @o(a)) (T — @1(@)) " € FITIVa € Z,,
and a p-principal polarization Ax for which the Rosati involution x* satisfies
ix(a)* = 1x(a?).
Note that such a triple always exists and is unique up to isogeny.

2.3 Let Nilp,, be the category of W-schemes on which p is locally nilpotent. Let
N =N(1,n—1): Nilp,, — Sets

be the functor that associates to a scheme S € Nilp,,, with special fibre S = S Xy F
the set of isomorphism classes of quadruples

(Xa LX, >\X7PX)7
where X is a p-divisible group over S, endowed with an Z:-action ¢x satisfying the
signature condition (1,# — 1) and a p-principal polarization Ax defined over S for

which the Rosati involution x satisfies tx(a)* = tx(a“). Finally,

pxiXXW]F—)XX[Fg
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is a quasi-isogeny of height! 0 compatible with the polarizations, i.e., locally on S one
has

prodxopy =Elg € Homgz , X, X")®Q

for some scalar § € Z;' .

Here, two such tuples (X, tx, \x, px) and (Y, ty, Ay, py) are said to be isomorphic
if there is an isomorphism a:: X — Y compatible with the Z . -actions and the quasi-
isogenies p, such that, locally on S, the polarization o o Ay o a equals Ax up to a
scalar in Z, .

2.4 As explained in [KR], N is represented by a formal scheme, which we also de-
note by N. This formal scheme is separated, locally formally of finite type over W,
and formally smooth of dimension n — 1 over W.

We are interested in the geometry of the reduced locus Nieq of N. We have N(F) =
Nied(F). Theorem 4.2 of [VW] states that Ni.q is connected of pure dimension

[(n—1)/2].

2.5 Let M be the covariant Dieudonné module of X. Thus M is a free W-module
of rank rk(M) = ht(X) = 2n endowed with a o-linear endomorphism F (the Frobe-
nius) and a o~ !-linear endomorphism V (the Verschiebung), satisfying

FV =VF=pidy.
The polarization Ax induces a perfect skew-symmetric W -bilinear pairing (-, - ) on

M satistying
(Fx,y) = (x,Vy)? Vx,y € M.

Furthermore, the Z > -action tx induces an action of Zy> on M, which we denote by ¢.
The condition on the Rosati involution translates as

(Lla)x, y) = (x,(a”)y).
The decomposition Zy: @z, W = W @& W yields a decomposition
M = M, ¢ M,
into eigenspaces for the Z-action. The submodules Mj; are free of rank n, with s
acting by scalar multiplication via ;. It follows that the M are isotropic with respect

to (-, -) and that both F and V have degree 1 with respect to this decomposition.
The signature condition on the Z:-action translates as the chain condition

n—1 1 1 n—1
pMo C FM1 C Mo, le C FMO C Ml.

1T should point out that the definition we are using slightly differs from the definition of Nin [Vo] and
[KR], as they do not impose the “height 0” condition. The moduli functor N of [Vo] and [KR] admits
a direct sum decomposition N = [ [; N;, where N; denotes the subfunctor of N of isogenies of height i.
However, the N; are either empty or isomorphic to Ny [Vo, Lemma 1.9 and Proposition 1.22].
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Here, for two free W-modules M and M and any nonnegative integer m, the notation

“M ¢ M” means that M C M and that the quotient module M /M has length m.
Finally, we denote by
N:=M®zQ

the isocrystal associated to X and remark that, by scalar extension, N is endowed with
a o-linear isomorphism F, a o~ !-linear isomorphism V, a non-degenerate skew-
symmetric Wg-bilinear form (-, -) and a Q,2-action ¢, which satisfy all of the prop-
erties above. The Q> -action induces a decomposition

N=NydN,

into n-dimensional Wg-subspaces, with Q> acting on N; by scalar multiplication
via ;.

Proposition 2.6 (Vollaard, [Vo, Proposition 1.3 and Lemma 1.5]) As a point set,
N(F) may be identified with the set of W -lattices M C N that are stable under F, V,
and ¢ and that satisfy both the chain condition

M, 'C FMy € My,  pM, € FM, 'C M,
with M; := M N N, and the self-duality condition M = M", where
MY :={xeN| (x,M) CW}
denotes the dual lattice of M with respect to (-, - ).

2.7 Define
T:=V 'F=pV ?=p'F.

This defines a o2-linear automorphism of N of degree 0, having all Newton slopes 0.
Let C = Nj~! be the space of T-invariants. This is a Q2 -vector space of dimension 7,
and we regain N;, from C by base change to Wg.

Fix a trace zero element § € Z;z, i.e., one for which §° = —4§. We define a Wg-
sesquilinear (with respect to o) form h on N by

h(x,y) := p*15*1<x, Fy).

This satisfies h(7x,7y) = h(x, y)"2 and thus defines a Q-valued hermitian form
on C, which one checks to be non-degenerate. Note that, since p is odd and
Nm(Qp) = {a € Q, | v(a) = 0(2)} (where Nm denotes the norm of Q2 /Qj),
non-degenerate hermitian forms on finite-dimensional Q> -vector spaces are classi-
fied by the parity of the valuation of their determinant (see [Ja, Theorem 3.1]). In our
situation, the signature condition for X implies that the valuation of the determinant
of h is odd. For a W-lattice L in Ny, denote by L the dual of L with respect to h, i.e.,

L*:={x €Ny | h(x,L) CW}.
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One checks L = (V~!L)¥ = FL". Note that taking the dual with respect to / is not
an involution on the set of W-lattices in Ny. Indeed, one has L# = 7L, thus the self-
dual lattices in Ny are the 7-invariant ones, i.e., those which arise from sz-lattices
in C via scalar extension.

Proposition 2.8 (Vollaard, [Vo, Proposition 1.12]) N(F) may be identified with the
set of W-lattices A C Ny satisfying the chain condition

1 n—1
pAC A* C A
Proof Associate to a lattice M = M, & M; in N(IF) the lattice
A= MO

in Ny. As M is self-dual, we have M; = My = F_lMg. Thus, the chain condition
for M translates into the chain condition claimed in the proposition.

On the other hand, associate to a given A C N, with the imposed properties a
lattice M € N(IF) by setting

My:=A, M,:=F 'A%

These constructions are clearly inverse to each other. ]

3 The Bruhat-Tits Stratification

In this section, we recall Vollaard’s and Wedhorn’s construction of the Bruhat—Tits
stratification of Ni4. For proofs, see [Vo] and [VW].

Definition 3.1 For any odd integer 1 <t < n, set
LW = {A C CaZp-lattice | pA C A* C A}

L® will be called the set of vertices of type t.
For notational purposes, set

For any vertex A, the integer ¢(A) will always denote the type of A. Furthermore #,,,x
will denote the maximal type occurring, i.e., the maximal odd integer less than or
equal to n, and we let L™ := £ (max)

The following proposition justifies our use of the word “vertex”.

Proposition 3.2 (Vollaard [Vo, Theorem 3.6]) The set £ is canonically in bijection
with the set of vertices of the Bruhat-Tits building B (SU(C, ph),Q,) . Given two lat-

tices A # A € L, one of them contains the other if and only if the corresponding vertices
neighbour each other in the simplicial complex of B (SU(C, ph), Q,) .
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Note that we will frequently consider £ as a simplicial complex with the simplicial
complex structure induced by this bijection.

Definition 3.3 Let A € L. Set
V(A):={AeN) | AC Aw}.

Here, points of N(IF) are viewed as W -lattices in Ny via Proposition 2.8, and Ay
denotes the scalar extension A ®sz W, which is a W-lattice in Nj.

3.4 Let A € £ be of type t. Vollaard and Wedhorn show that V(A) is the set of F-
valued points of a (t — 1) /2-dimensional irreducible smooth projective subvariety of
Nreq over F, which we denote by Ny [VW, equation 3.3.2 and Corollary 3.11]. They
also show the following facts about the V(A) in [VW]:
(1) Theorem 4.1(4): N(F) = {J, V(A).
(2) Theorem 4.1(1): V(A) C V(A) < A C A. ~
(3) Theorem 4.1(2): V(A) N V(A) is nonempty if and only if A N A is a vertex, in
which case it equals V(A N 1~\).
(4) Theorem 4.2(2): The irreducible components of N4 are precisely the N corre-
sponding to the vertices A of maximal type fp,y.
Furthermore they show [VW, Proposition 4.3] that we have a stratification of Nyq
by the locally-closed subvarieties

NX = NA — U NK’
ACA
the so-called Bruhat-Tits stratification.
3.5 (Vollaard [Vo, Corollary 2.10]) Let A be a vertex of arbitrary type t. We will
need a convenient description of the set of Bruhat-Tits strata contained in V(A) in
terms of linear algebra over finite fields. To achieve this, set V := A/A*. This is a

t-dimensional I . -vector space endowed with a non-degenerate hermitian form ph
induced by ph. For any odd 7 < ¢, the map

{Aec LD |ACA}Y—{UcCV |dimU = (t — )/2, U isotropic for ph}
A — AP/AF = (A/ABL
is a bijection.
In the same fashion, we get a description of the set of Bruhat-Tits strata con-
taining V(A). We just consider the (n — t)-dimensional non-degenerate hermitian

F ,2-vector space (V', h), where V' := A?/pA and where  is induced by h. We then
have a bijection

{Ac LD |ACA}« {UCV'|dimU = (f —t)/2, U isotropic for h}
A pA/pA = (A*/pA)*.
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3.6 We will use the following generalization of the distance function on the sim-
plicial complex of B ( SU(C),Q p) introduced in Terstiege’s paper [Te]. Let & be any
subset of £. Set Ng := (Jz.g Nj. Let A € L™, We define the distance d(A, )
tobe 0 if A € 8. Otherwise d(A, 8) is defined to be the minimal positive integer d
for which there exists a sequence Ay, ..., Ay = A of vertices of maximal type such
that N, intersects Ng non-trivially (i.e., there is a vertex in & whose intersection with
A is again a vertex) and such that the irreducible components Ny,, Ny,,, of Nieq in-
tersect non-trivially (i.e., the intersections A; N A, are vertices) forall 1 <i < d—1.

4 Special Cycles

In this section, we recall the notions of special homomorphisms and special cycles, as
defined by Kudla and Rapoport in [KR]. We will then show Proposition 1.1 and re-
duce our main theorem 1.4 to a question about connectedness of a certain simplicial
subcomplex of £ and thus to Bruhat-Tits theory.

4.1 Let(Y, i, Ay) be the triple (unique up to isogeny) consisting of a supersingular
p-divisible group Y of dimension 1 and height 2 over IF, a Z > -action ¢ on Y satis-
fying the signature condition (0,1) (i.e., inducing the action by scalar multiplication
via ¢; on Lie Y) and a p-principal polarization Ay for which the Rosati involution
satisfies v (a)* = t5(a”). Note that (Y, ty) admits a unique lift to W as a formal
Z,:-module, which we denote by (Y, t3) [KR, Remark 2.5].

Definition 4.2 (Kudla—Rapoport, [KR, Definition 3.1]) The space of special ho-
momorphisms is defined to be the Q> -vector space

V= Homsz (Ya X) Kz Qa
endowed with the non-degenerate Q.-valued hermitian form h given by
h(x,y) :== )\%1 oyYodgox€ EndZP2 (Y) @7 Q,
identifying Ende2 (Y) ® Q with Q> via the isomorphism .
Definition 4.3 (Kudla—Rapoport, [KR, Definition 3.2]) Let1 < m < n = dimV
be an integer. Let x = (x1,...,x,) € V" be a tuple of special homomorphisms. The
special cycle associated to x, denoted Z(x), is the formal subscheme of N associating

to a scheme S € Nilp,, the set of tuples (X, tx, Ax, px) € N(S) for which all the
quasi-homomorphisms

Y xw S) XWF:Yngx—’>X><F§i>XxWIE‘

lift to Z»-linear homomorphisms Y xy § — X.
In the case of a single special homomorphism x € V, we write

2(x) := 2((x)).
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Given two tuples x = (x1,...,%x,) and z = (z1, . . ., z;), we will occasionally write
Z’(&ag) = Z((xla sy Xmy 21y e ;Zl))~

Definition 4.4 For x € V™, the fundamental matrix T(x) is the hermitian matrix
(h(x,',xj)) i € Herm,,(Q)2).

4.5 It is obvious from the definition that Z(x) N 2(z) = Z(x, z) for any tuples x, z
of special homomorphisms.

Kudla and Rapoport prove in [KR, Proposition 3.5] that for any special homo-
morphism x # 0, the special cycle Z(x) is either empty or a relative effective divisor
in N, in particular a closed formal subscheme of N.

By Lemma 3.9 of [KR], we may identify (V, h) with (C, k), and this induces an
identification

2(x)(F) = {A € N(F) | x; € A*Vi},

where x = (xq,...,X,) is considered as a tuple of special homomorphisms on the
left-hand side and as a tuple of elements of C on the right-hand side. In particular,
Z(x)req is nonempty if and only if all entries of the fundamental matrix are integral,
i.e, if and only if T(x) € Herm,,(Z).

4.6 Whenever we talk about “a tuple x € V" of special homomorphisms”, we will
simplify notation and exclude pathological cases by making the following assump-
tions on x unless specified otherwise.

First, we assume that T(x) € Herm,,(Z,.). Furthermore, the action ¢y defines
an action of GL,,(Z:) on Y", which induces a right action of GL,,(Z,2) on V" by
precomposition. One has Z(x) = Z(x.g) for any g € GL,,(Z), i.e., the special
cycle Z(x) does depend on the orbit of x under the GL,,(Z:)-action only [KR, Re-
mark 3.3(i)]. One then checks

T(xg) =g - T(x) g.

As pis odd and Q. is unramified over Q,, each orbit of the right GL,,(Z:)-action
on Herm,,,(Z ) given by this formula has a representative of diagonal form [Ja, Sec-
tion 7]. Thus we may and will assume that T'(x) has diagonal form, i.e., that the x;
are h-perpendicular to each other.

We may also assume that T(x) is nonsingular,? because otherwise there is some i
such that x; = 0 and then Z(x;) = N does not give any contribution.

In the following, we write r(x;) := v( h(xhxi)) and refer to this number (which,
by our assumptions, is a nonnegative integer) as the “valuation of x;”.

In the remaining part of this section, we show Proposition 1.1, i.e., that Z(x) eq 15
a union of closed Bruhat-Tits strata Ny and that it is pure of some dimension only
depending on the number of x; of valuation 0 involved.

2If m = n, then this is the case where the cycles do not meet in the generic fiber in the global situation.
See [KR2, Lemma 2.21].
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Lemma 4.7 Letx = (x1,...,%X,) € V™. Let A € L be a vertex such that the set
V(A) of F-valued points of the closed Bruhat-Tits stratum Ny intersects Z(x)(F) non-
trivially. Then V(A) C Z(px)(FF).

Proof Let A € L be as assumed. Let A € V(A) N Z(x)(F). By definition, we have
x; € AC A C p~'Af and thus px; € A%, Butas A € V(A) implies A* C A% the
condition px; € Af is sufficient for V(A) C Z(px). [ |

4.8 Letx € V™. We fix the following notation:
S(x) = {A € £ | V(A) C Z()(F)}
8(x) will be viewed as a simplicial subcomplex of £. Note that
A € 8(x) & x; € AWi.
We will later also use the notations 8(x)® := 8(x) N £® and S(x)™* := §(x)tmax),
Proposition 4.9 Letx € V™. We have the equality

Z'(E)red = U NA .
AeS(x)

In other words, Z(X)req is a union of Bruhat=Tits strata.

Remark 4.10 Using the properties of the Bruhat-Tits stratification, the proposition
states that the simplicial complex 8§(x) contains the complete information about the
intersection behaviour of irreducible components of Z(x)eq. In particular,

Z(X)red is connected if and only if S(x) is.

Proof of 4.9 As Z(x)req is a closed subscheme of Nieq, hence locally of finite type over
the algebraically closed field F, it is enough to show

2x)F) = U V).
A€S8(x)

For m = n, this is Proposition 4.1 of [KR].

Form < n, fixz = (zps1,...,2,) € V™" such that (x1,...,%Xm, Zmils---,2u)
forms an orthogonal basis of V. Let A € Z(x)(F) be arbitrary. Let A € £ be of
minimal type such that A € V(A) = Nj(F). The minimal type condition means
A € NR(F). We have to show that the whole set V(A) belongs to Z(x)(F).

Since N4 is connected and the irreducible components are the Bruhat-Tits strata
coming from vertices of maximal type, Lemma 4.7 implies that for any special ho-
momorphism y and any vertex A, we find an integer [ such that

V(A) C 2(p'y)(F)  forl> Iy

In particular, V(A) C Z(plg)(F) for I > 0. Thus A € Z(x, p'z)(F). Proposition 4.1
of [KR] now implies V(A) C Z(x, p'2)(F) C Z(x)(F). [ |
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Proposition 4.11 Forx € V", let
my = Card{1 <i<m|r(x;) =0}
Then Z(x)yeq is of pure dimension
dim Z(X)req = [(n —my — 1)/2],

in other words, of pure codimension |my /2| in Nyeq if 1 is even, of pure codimension
[ (my +1)/2] in Nyeg if nis odd.

Proof For m = n, this is Corollary 4.3 of [KR].

For m < n, choose z with the same properties as in the proof of Proposition 4.9.
By Proposition 4.9, all irreducible components of Z(x),eq are Bruhat-Tits strata. Let
A, Ac 8(x) be such that N, N are irreducible components of Z(x)rq. We have to
show that ¢(A) = ¢(A). ~

However, by the same reasoning as in the mentioned proof, both V(A) and V(A)
are in Z(p'z)(F) for I > 0. Thus, they are sets of F-valued points of irreducible
components of Z(x, plg)(IF). Now apply [KR, Corollary 4.3]. |

5 The Kudla—-Rapoport Stratification and Related Concepts

For the next four sections, we assume m = 1. In this section, we introduce a lattice-
theoretical stratification of Z(x)(FF), following Kudla and Rapoport’s unpublished
notes [KR3]. For convenience of the reader, we give complete proofs. We also gener-
alize the ideas of [KR3] to give an analogous “stratification” of the set £ of vertices.

5.1 Letx € C C Ny. Write x := x,x; := F~'x € N;. Setr = v(h(x,x)). We
introduce the following notation:

Ny := Woxo + Wox; €N,  N_:=Nj,

where * denotes the orthogonal complement with respect to (-, - ). We then have
orthogonal projections

pI‘HZN—»N”, pI'J_:N—»NJ_.
Both Ny and N are F-, V-and Z-stable and ( -, -) induces a non-degenerate form
on both of them.
Fori = 0, 1, write

Nj;==N;NNj, Ni;:=NiNN,.

As x € C, the Wg-vector spaces N o and N o have a canonical Q:-rational struc-
ture induced by C. In other words, writing

CH ::NHA’oﬂC, CyL ZZNL,OmCa
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we have
NH~,0 = (CH) ®sz WQ, NL,O =(C)) ®sz WQ.

In particular, C, is a (n — 1)-dimensional QQ-vector space. The hermitian form h
induces a non-degenerate hermitian form, which we also denote by h,on C; .
For any W -lattice M in N, write

My:=MNN), My :=MNN].
If M is sz—stable, we also write fori = 0, 1
MH-,i :MmNH,ia MJ_yi:MﬁNJ_,,‘.

Furthermore, for any W-lattice L in N (resp. N ), we will denote the dual lattice
of L with respect to the form induced by (-, -) on Ny (resp. N1 ) by L".
Let M be a W-lattice in N. One has obvious inclusions

My&ML M Cpr(M)®pr, (M).
Lemma 5.2 (Kudla—Rapoport, [KR3, Lemma 5.1]) Let M be self-dual. Then
MW = PrH(M)7 MY = pr, (M).
The quotient module
M/(My @M)€ M ®MY)/(My®M,) =M /My)® M /M)
is the graph of a W -linear isomorphism
v MY /My — MY /My,

which is an anti-isometry with respect to the Wq /W -valued symplectic forms induced
by (-, ) on M /M and M{ /M. B

IfMisF-, V-, and S -stable, we have induced o-linear endomorphisms F and o l-
linear endomorphisms V, as well as induced Z.-actions, on M/ /M) and MY /M. . In
this case, v is equivariant for them.

Proof Let z € pr (M). By definition, there exists y € N, withz+y € M. For
any z' € M), by self-duality of M, we know that (z,z") = (z+ y,2’) is in W. Thus,
z € M.

By duality, the other inclusion M ﬁ/ C pr; (M) is equivalent to the following claim:
pry (M)Y C M.

Letz € pr|(M)". Letz'+y’ € M,withz’ € Njand y" € N1. Then (z,z"+y’) =
(z,2') is in W, since z' € pr|(M). This shows z € M". By self-duality, we have
z € M, proving the claim and thus the first equality

MW = er(M).
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Next, we show that the projection
m: M/(MH M) — pry (M)/M”
is a W-module isomorphism. We have the following commutative diagram:

Pry)

I

M/(M” OM,|) — er(M)/MH.

From this, the surjectivity of pr;; is immediate. To show the injectivity, take any
z € M/(M; © M) with WH(Z) = 0. Let z be a preimage of z in M. We have to
show z € M| @& M, . But by choice of z, we know that ot (2) is in M|, and thus
Z_erZEMmNJ_ =M,.

Of course, the same proofs (with the ||s and the Ls interchanged) work for the
other assertions so far.

All this means that M /(M|; © M_ ) is the graph of the W -linear isomorphism

y::@o(m)“ :Mﬂ//MH — MY /M, .

Explicitly, if z € M| /M| is the coset of z € M}/, then () € M /M is the coset of
elements y € MY such thatz+ y € M.

The symplectic form (-, -) is W-valued on M)/ x M) and MY x M and thus
induces Wg /W -valued forms (-, - ) on Mﬂ//MH and MY /M . Denote the cosets of
z,2' € M|/ byZresp.z' € M/ /M. Let y, y' € MY be representatives of (2) resp.

~(z’). Then we have

(@2)+(ny) =G@+yd +y) ew,

sincez+ y and z’ + y’ arein M = MY, and thus

(z,2') + (+(2),7(@)) = 0.
In other words, - is an anti-isometry for (-, - ).
Now assume M to be F-stable. Let Z € M|/M). We want to show the F-
equivariance of 7, i.e.,
v(Fz) = Fy(z).
Letz € Mﬁ/ be a representative of Z and y € MY be a representative of v(2), i.e.,

z+y € M. Then Fz is a representative of FZ and Fy be a representative of Fy(z) by
definition of F. But, by F-invariance of M, we have

Fz+Fy=F(z+y) € M.

This means that Fy is a representative of v(Fz), i.e., Fy(Z) = v(Fz).
The proofs of V- and Z . -equivariance work analogously. ]
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Remark 5.3 One trivial, but particularly important special case is the equivalence
My=M/ &M, =M{ &M=M &M,.

5.4 (Kudla—Rapoport [KR3, Section 5])  For any pair of integers (a, b), write
Ly :==p "Wxo + p_thl C Ny

Any M € N(IF) decomposes into eigenspaces for the Z . -action, thus so does M,
hence M| is of the form M| = L(,) for some pair of integers (a, b). Since

FL(u’b) = p_bWxO + p_aHle = L(b,u71)7
the signature condition for M implies a — 1 < b < a. An easy calculation yields
L?ﬁl,b) = L(r—b,r—a)a

where r = v( h(x, x)) as defined at the beginning of this section. Thus the inclusion
M) C MW impliesa + b < r.

5.5 Agiven M € N(F) is an [F-valued point of the special cycle Z(x) if and only if
Xg=x € M(t) = FMj, i.e., if and only if x; € M;. Writing M|| = L(,), this holds if
and only ifa, b > 0. We write

2(x) " == {M € 2(x)(F) | M| = Lap) }-

This yields a stratification (which will be referred to as the Kudla—Rapoport stratifica-
tion)?

2(x)(F) = 2(x) % U Z(x) M0 U 2(x) Y U Z(x) PV U - U Zx)™m,

where Z(x)™* denotes the last occurring stratum, i.e., Z(x)(2'2) if r is even, and
rtl r—1

Z(x)(5 77 if ris odd. (Of course, the union is disjoint.)

5.6 'We may also consider vertices A as self-dual lattices in N. To do this, one simply
inverts the procedure of Proposition 2.8. Given a vertex A € £, i.e,, a Ly -lattice in
C, we associate the T-invariant W-lattice Ay := A ®z, W in Ny. Then we set

Ag:=Aw, Ap:=F'AL.
The (Z/27Z)-graded W-module Ay := A¢ @ A, is a W-lattice in N which is obvi-

ously F-, V- and Z-invariant, self-dual (with respect to (-, -)) by construction,
and satisfies the signature condition

pAo CFAL = VA, C Ay, pA, C FAg = VA C Ay,

30One may ask whether the Kudla—Rapoport strata are “strata” in the geometric sense, i.e., whether they
arise as sets of F-valued points of locally closed subsets of Z(x). This is probably true, but we will not use
this.
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where t = t(A). We write
AH = (A.)H7 AL = (AO)L

and observe that A, satisfies the assumptions of Lemma 5.2. Writing A” = Lap), We
carry through the computations of the last two paragraphs. They yield the analogous
results

a—1<b<ag a+b<r AecSx)excA <b>0.

Thus we have a “stratification” of the simplicial complex 8(x) that is analogous to the
Kudla—Rapoport stratification on Z(x)(IF), i.e., we can write the set of vertices of 8(x)
as a disjoint union

8(x) = 8(x) P USx) IV U U S(x)™,

r—1

where 8(x)™> = §(x)(5°%) if r is even and $(x)™ = $(x)('z =) if r is odd.

5.7 Finally, we translate our stratification results into the (Np, #) language. Recall
from the proof of Proposition 2.8 that we have a bijection

{F-, V-, Zp-invariant self-dual W-lattices in N} <» {W -lattices in Np }
M = My & M; — M,

with inverse
A AgF AR,

and that under this identification, the chain condition in N:

n—t t t n—t

pMo C FM, C M,, le C FM, C M,
is equivalent to the chain condition in Ny:
n—t u t
pM() C M() C M,.
Lemma 5.8 The assertion M| = L), i.e.,
M| =p “Wxo & p "Wx

is equivalent to
Mo =p "Wx, (M)NNj,=p "Wx,

where x = x.

Proof The first identity is trivial. For the second, put together (Mg) N Njo =
(FM;) NN g and F(p~"Wx;) = p~"WFx; = p~"Wx. [
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6 Base Case I: The Case r =0

We have now introduced all the tools needed for our proof of Theorems 1.2 and 1.4.
The aim of this section is to prove Theorem 1.2(i), which corresponds to r = r(x) =
v( h(x, x)) = 0, which we assume throughout this section. We will also prove The-
orem 1.4 in this case. The results are from the unpublished notes [KR3]; we give an
elaboration of those results and the proofs.

6.1 We saw in Proposition 2.8 that the set N(IF) may be reconstructed from the
knowledge of (Ny, h) alone. Since r is even, h is odd on C (i.e., has odd order of
determinant), which means that (N g, h) is isomorphic to the y-eigenspace of the
isocrystal obtained from the data used in defining the moduli scheme N(1,n — 2).
We fix an isomorphism, which then induces a bijection

1 -2
N(1,n—2)(F) > {A) C Ny oaW-lattice | pA, C A 'C AL}

The right hand side will be denoted by N . Of course, N | can be identified with the
set of self-dual F-, V- and Z > -invariant W -lattices M | in N satisfying the signature
condition

PMyo 'C FMi, C Mo, pMi, CFMi,'C M,
by the usual construction.
Proposition 6.2 (Kudla—Rapoport [KR3, Proposition 5.2])  One has a map
N = Z(x)(F), My~ Loo®M; CN,
which is a bijection with inverse
Z(x)(F) >N, M—M,.

Proof Let M| € N, be given. Using Remark 5.3, it follows immediately from the
self-duality of M | that Lo g)@M | is self-dual. The stability conditions for L o)®M |
follows from the ones for M| and L(g o), and the signature condition follows from the
one for M| using FL(g o) = L(o,—1). Finally, x; € (L(0,0)®M 1 )1 holds by construction.
Thus L) & M1 € Z(x)(F).

On the other hand, since r = 0, the Kudla—Rapoport stratification is trivial, i.e.,
2(x) = Z(x)©9 In other words, for M € Z(x)(FF), one has

My = Log) = Ljg g = M| .
Thus, Lemma 5.3 states that
M = Lo &ML

and that M is self-dual. The stability conditions for M are trivial, and the signa-
ture condition follows from the one for M and the equality FL o) = L,—1). Also,
equation 6 shows that the two maps are inverse to each other. [ ]
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6.3 By the very same reasoning, using the “translation lemma” 5.8, we get an iden-
tification of the set of vertices of type ¢ in §(x) with the set of Z .-lattices A| in C
satisfying the chain condition

pAL A C AL

Thus, applying Theorem 3.6 of [Vo], we have an isomorphism of simplicial com-
plexes

S(X) = %(SU(CLa ph)a @p) y
proving Theorem 1.2(i).

Corollary 6.4 Theorem 1.4 holds true for x = (x) and r(x) = 0, i.e, Z(x)req is
connected in this case.

Proof It is a general fact from Bruhat-Tits theory (see e.g., [Ti, 2.2.1]) that the sim-
plicial complex of the Bruhat—Tits building %5 ( SU(C, ph), Qp) is connected. Now
use the isomorphism of Theorem 1.2(i) and Remark 4.10, which states that connect-
edness of 8(x) implies connectedness of Z(x)yed. |

Remark 6.5 One can show that the map of Proposition 6.2 defines an isomorphism
of schemes Z(x);eqd = N(1, 1 — 2)1eq. Indeed, Kudla and Rapoport show that Z(x) is
isomorphic to N(1,n — 2) as formal schemes. The statement is included and proved
in Terstiege’s note [Te2] as Lemma 2(i).

We will not need to use those results in the following.

7 Base Case Il: The Case r =1

We now come to the proof of Theorem 1.2(ii), i.e., to the case r = r(x) =
v( h(x, x)) = 1, which we assume throughout this section. We will also prove Theo-
rem 1.4 and compute the Kudla—Rapoport stratification in this case.

7.1 Asin the last section, we will relate the incidence behaviour of irreducible com-
ponents of Z(x)eq to the simplicial complex of the building %(SU(C 1, ph), Qp) .
We know from 5.6 and [Vo, Theorem 3.6] that we have an isomorphism of simplicial
complexes

L1 =B(SUCL, ph),Qy),

where the underlying set of £ | is the set of all F-, V- and Z > -invariant W -lattices A |
in N, that are self-dual with respect to (-, - ), are T-invariant, and satisfy some chain
condition

PALo C Aio CAlyo,

and where two distinct lattices A |, A 1 in £ by definition neighbour each other if
andonlyif A; o C KJ_,() or KJ__() C A o. We will use the terms “vertex”, “type”, L(f,
etc., as in the “non-_L” situation.

Note that, since r is odd, the hermitian form % on C | has even order of determi-
nant. Thus, the type of a vertex in B ( SU(CL, ph), Qp) is an even integer between 0

andn — 1.
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Remark 7.2 By Proposition 4.11, the variety Z(x),eq is of pure codimension 0 in
Nred. Its irreducible components are thus all of the form N with A € £™*. Hence
in order to show connectedness it is sufficient to show that all vertices of maximal
type in 8(x) are in the same connected component of 8(x).

Lemma 7.3 Forany A € 8(x)™, we have || = L(1 ).

Proof Let A € 8(x)™. From the general considerations in 5.6, writing A\ = L),
we get either (a,b) = (1,0) or (a,b) = (0,0). We have to show that the latter case
does not occur.

We first assume 7 to be odd. Then #,,x = # and thus the signature condition for A
may be written as

pAo=FA; C Ay, pA, C FAg=A,.
In particular, we have
Lpa—1) = FA| = pAj o ® A1 = Lia—10)-

This means b = a — 1, and if we ask for A to be in 8(x), we get A|| = L(; ).
Now assume # to be even. Then tn.x = # — 1 and a vertex A of maximal type
satisfies the signature condition

1 n— n—
pAo C FA] Cl Ao, pAl Cl FAO é A1~

Now unfortunately FA| = p(Aq)| © (A1) does not follow immediately, so we have
to put more work into this case.

Assume A|| = L(o0). By Lemma 5.2, the W-module A, /(A & A1) is the graph of
an isomorphism ~: A\\l//AH — AY /A . Since pr and pr; map Ny to Njjo = (N))o
and N | o, respectively, this isomorphism restricts to an isomorphism

Yo: AW,I/AH,O — A]/_,I/AJ_70

whose graph is Ao/(AH,o @ A o). Of course, an analogous result holds for the de-
gree 1 component. We have inclusion diagrams

A|\\/,1 ® Ail A|\|/.,0 & Aj/_,o
U U
n— 1
FA, c Ao Ay D FA,
U U U U
X B
F(A||,1 ©AL) C AH.O@AJ_,O ) A||_1 @A, D F(A|\,0@AJ_,O)~

The indices for the inclusions in the middle columns all equal 1 by the graph condi-
tion just mentioned, since AN/AH =F-p~lx & F - p~'x;. The index for the left
column equals 1 by applying F on the third column, while the index for the right col-
umn equals 1 by applying F on the second column. Finally, the indices in the middle
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row come from the signature condition for A. It follows that « = n —1and 8 = 1,
hence the signature condition for Ay & AL C As:

1 n—1
PN ®ALo) CFA 1@ AL C Ajo® ALy,
n—1 1
PA 1 DALY C F(A gD AL CALD AL
By assumption, we have

FAH = FL(OA,O) = L(O,—l) = A”70 D pA”l

and thus

n—1 n—1
(1) pPALo=FA , C Ao, pAiy C FALo=A,,.
On the other hand,

A‘\(/AH = L(l,l)/L(O,O) =F. p—lxo oF.- P_1X1

is endowed with a o-linear endomorphism F induced by the Frobenius F. As usual,
we write Fy resp. F; for the restriction of F to (AI\\/ /Ao = AWJ/AH,O resp. (AW/AH )1
Since FL(;.1) = L(1,0), we get that F; is an isomorphism, while Fj is the zero map.

We have the same notions of Fy and F; on AY /A . By Lemma 5.2, we have a
Zy:-linear isomorphism

v A|\\//AH —)AX/AL,

and v is F-equivariant.

Thus, on AY /A |, we have that F, is an isomorphism, while F, is the zero map.
The latter means FAY | = A ;. By the injectivity of F, we get that FA | ¢ is properly
contained in A | , contradicting the signature condition (1). [ |

Corollary 7.4 Forany A € 8(x)™, the corresponding self-dual W -lattice Ao in N is
of the form Ay = L(10) & A, with

max — 1
Ay e L =g,

Proof Lemma 7.3 states A = L(;9). This is self-dual, thus by Remark 5.3, we get
the desired direct sum decomposition. Checking that A | is a vertex of maximal type
tmax — 1 in C is straightforward. [ |

7.5 We now come to the proof of Theorem 1.2(ii). It is immediate that, given a
vertex A | € L |, the lattice

A= (Lo @A)
is a vertex in 8(x) of type t(A) = t(A 1) + 1. Thus, we have injections of sets

O: LD = 80V, AL (Lug @ AL
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We just proved that this map is a bijection in maximal type. However, it is never
surjective in lower types (see Remark 7.6 below). Since Z(x)eq is of pure codimen-
sion 0, any vertex in 8(x) is contained in some vertex in 8(x)™** and we can thus still
compute S$(x) from £ . We have

Sx)={AeL|FA, €L, :AC (Lug®AL);}.

Also, the induced map
d: L) — 8(x)

is obviously a morphism of simplicial complexes. That is, if two vertices A l,~1~X 1
neighbour each other in EB(SU(CL, ph), (@p) ,then A = (Lo @A )j  and A =
(Lao @ /N\l)gzl neighbour each other in 8(x). This proves Theorem 1.2(ii).

Remark 7.6 As claimed in the previous paragraph 7.5, the map @ is never surjective
in lower than maximal types.

Indeed, let A € £ be of type t = #(A) > 3. Assume Ay = L) @ Ai. As
explained in 3.5, the set of vertices A C A of type t — 2 is in bijection with the set
of isotropic lines of the ¢-dimensional non-degenerate hermitian IF>-vector space
(A/A2, ph). R R

In the same way, the set of lattices A | ¢ in L(i%) satisfying A | o C Ay isin
bijection with the set of isotropic lines of the (f — 1)-dimensional non-degenerate
hermitian I ,.-vector space (ALO/AﬁLO, ﬁ).

But Vollaard and Wedhorn have counted those two sets of isotropic lines in [VW,
Example 4.6]. While there are

t—3
2

vt—1,0)=(p"+1)> p

=0

2j

-.

isotropic lines in (A /A%, ph), there are

vt =2t =1)=(p' 2+ 1)) p <w(t—11)

j=0

isotropic lines in (A o /Ai.ov ph).t

Therefore, ® is not surjective on the level of Bruhat-Tits strata contained in a
given stratum and thus cannot be surjective in any type t < fiax.

Also, let A € L. Assume Ay = L10) @ Aj. Then neighbours of A give rise
to neighbours of A via ®. However, the vertex A has more neighbours than A, by
the considerations above. It may occur (not in maximal type) that two Bruhat-Tits
strata intersect although the intersection of the corresponding vertices in C (if those
exist) is not a vertexin C | .

4See [VW, Example 4.6] for an explanation of the notation v/(t, ).
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Corollary 7.7 Theorem 1.4 holds true for x = (x) and r(x) = 1, i.e., Z(xX)req 15
connected in this case.

Proof Consider two arbitrary irreducible components Ny, Nt of Z(x)red. As Z(X)red
is of pure codimension 0 in N4, those are irreducible components in N4 and the
corresponding vertices A and A are of maximal type. By the preceding corollary, A |
and A 1 are vertices of maximal typein £ .

As in the case r = 0, the simplicial complex B ( SU(C_, ph), Qp) is connected by
Bruhat-Tits theory. By our identification of £ | with that complex, we find a “path”

Ay =ADAD O AY =A,

consisting of vertices in £ such that, for I < i < s, the two consecutive vertices
A(j__l), A(J’_) neighbour each other. Now set

AD = (L ® AV

The A® are vertices in C, all in 8(x), with A©@ = A, A = 1~X, and two consecutive
A neighbour each other.

Thus, A and A are in the same connected component of the simplicial complex
S8(x). ]

We will now give an explicit computation of the Kudla—Rapoport stratification
Z(x)(F) = Z(x) %0 U Z(x)10.

Lemma 7.8 (Kudla—Rapoport, [KR3, Proposition 5.2]) All lattices M in Z(x)?
have T-invariant degree zero component M.

Proof Let M € Z(x)"?. Then by self-duality of L(1,0) and Remark 5.3, we have
M = M; & My = Luo © M. Itis thus sufficient to show 7-invariance of both
M, o and M . The former is automatic, because x € C. For the latter, we use the
signature condition for M,

n—1 1
P(Myo®Myo) C F(Mj; ©Mp,) CMjodMyp,
1 n—1
pPMy &My 1) CEFMyo@&Mio) C My &M,
By assumption, we have
FM” = FL(LO) = L(O,O) = pMH,O @D MHJ
and thus
n—1 n—1
pMio C FMy =M o, pM, 1 =FM, o C M, ;.

In particular, M| = pM | ,i.e, TM | g = M o. ]
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The 7-invariance of My means that M, arises from some lattice in C via scalar
extension. Thus, all M € Z(x)? are of the form M = Ay = Ay & F‘IA‘ﬂN for
some type 1 vertex A € £V, The converse does not hold in general, as will be clear
from the examples n = 3, 4 below. We thus still have to give a necessary and sufficient
condition for A € LW to define a lattice Ao in Z(x)1?. Note that Ay € Z(x)10
means that Ay = L0y ® Ay, ie, A= p ' Zpx & (AL)§~"

Proposition 7.9 Let A € 8(x) be of arbitrary type t. Then Ay = A & Ay if and
only if all irreducible components of N4 that contain Ny are contained in Z(X) eq.

Proof By 3.5, the set of irreducible components N3 of Nyeq that contain Ny is
in bijection with the set of ((f™* — t)/2)-dimensional isotropic subspaces of the
(n — t)-dimensional hermitian IF,.-vector space (V’, h), where V' := A*/pA and h
is induced by h. As the hermitian form & is non-degenerate, the intersection of all
such subspaces is trivial, implying

A= n A
{AeLmsx|ACA}

If we assume that all irreducible components V(K) of N(IF) are in Z(x)(IF), then
alA O A of type tmay satisfy KH = L0 by Lemma 7.3. Thus A = L) and
Remark 5.3 implies the “if” part.

For the “only if” part, note that

A :A” DAL :>A|| =Luyo :>p_1x€ A& xepA
and that, for any vertex A containing A, we have the chain of inclusions
pA C pA C AP C AL

Thus x € pA implies x € A%, which means A € $(x). The statement on irreducible

components is simply obtained by specializing to t(K) = tmax 1N these considerations.
|

Proposition 7.10 Let A € 8(x) be of type tmax — 2. Thenif A = A © Ay, ie, if A
comes from a vertex of %(SU(C 1), Qp) , then all the irreducible components of Nyed
passing through the codimension 1 stratum Ny are in Z(X)red-

Otherwise, there is exactly one irreducible component Ni of Nreq that contains Ny
and is contained in Z(X)ed.

Proof The first assertion is the case t(A) = . — 2 of the last proposition.

For the second one, first we observe that there is (in any case) an irreducible com-
ponent N5 contained in Z(x)rq4 and containing Ny . This is because Z(x)req has pure
codimension 0 in N.q. Now assume that two irreducible components of Z(x)..q4 pass
through Ny, i.e.,

V(A) € VAD) N V(AP)
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for some distinct A1V, A € §(x)™*, Then the inclusion is an equality, because N
has codimension 1 in N,.q and the intersection Ny NNy is irreducible. Therefore
by [VW, Theorem 4.1(2)], we have A = A" N A® and in particular

Ay =AP N AP

Both irreducible components N o), Ny are in Z(x)eq, thus A‘(Ii) =Ly fori=1,2
and therefore A\ = L(;0). By Remark 5.3, we have Ag = A © A . ]

Remark 7.11 Note that, in the situation of the proposition, the set of irre-
ducible components of Nyeq containing Ny is in bijection with the set of isotropic
lines of the (n — #(A))-dimensional non-degenerate hermitian IF,.-vector space
(V' := A*/pA, h).

Vollaard and Wedhorn computed the cardinality of this set in [VW, Example 4.6].
The answer is p + 1 if nis odd, p* + 1 if n is even.

Example 7.12 (n = 3) We now examine the first non-trivial case n = 3. Vollaard
computed the simplicial complex of %(SU(CJ_, ph), Qp) in [Vo, Proposition 3.8].
We cite the following results:

¢ Nieq is pure of dimension 1.
¢ The irreducible components of N4 are isomorphic to plane Fermat curves

p+1 p+1
(kg +x

+ x5 =0
in P%.

* Irreducible components intersect precisely in the IF.-valued points, of which
there are p> + 1 on a given irreducible component.

¢ In such a point, precisely p + 1 irreducible components intersect.

For special homomorphisms x of valuation 0, Terstiege shows [Te, Proposition 2.1(1)]
that Z(x)req consists of a single F-valued point, which is 7-invariant. This agrees
with the results of Section 6. Indeed, if r(x) = 0, then C | is two-dimensional, with
orddet(C, , h) odd. Therefore, only one type (namely type 1) of vertices occurs in
%(SU(C 1, ph), Qp) and the latter is connected, hence consists of a single point.
By Theorem 1.2(i), 8(x) consists of a single point, which by Proposition 4.9 implies
Terstiege’s statement.
Let now x be a special homomorphism of valuation 1. Terstiege showed in [Te,
Proposition 2.1(3)] that Z(x).q is connected of pure dimension 1, and that, given
A € 8(x)™™, there are precisely p + 1 out of the p® + 1 type 1 vertices A C A for
which all p + 1 irreducible components passing through N7 belong to Z(x).q. He
also showed that for the other p> — p vertices A C A, the stratum Ny is the only
irreducible component out of those passing through Nt which belongs to Z(x)ed.
We will deduce this from our general results as an illustration.

In fact, connectedness has just been proven in general for special homomorphisms
of valuation 1. Fixing a vertex A of maximal type 3 in §(x)™**, we also saw that A,

https://doi.org/10.4153/CJM-2013-004-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2013-004-1

1152 N. Vandenbergen

decomposes as Ay = A & A, with A a vertex of type 2 in £ . The vertices A
of type 1 contained in A fall into two categories, those for which KH = L) and
those for which KH = L. By Remark 5.3 and Proposition 7.10, the latter are
exactly those for which all irreducible components passing through N7 are in Z(x)red,
while in the former case, the closed stratum N} is the only irreducible component of
Z,(X)red passing through N7.

We thus have to count the A as above which satisfy KH = L(1,0). By Remark 5.3,

those are precisely those for which /N\. decomposes as Ay = A” a5} A L, with A La
vertex of type 0 in £ | , contained in the vertex A | of type 2. Now the argument of 3.5
does not in any way depend on the order of determinant. Thus we may just count
isotropic subspaces in the 2-dimensional hermitian IF > -vector space I'/ I =r/pl,
where I' := (A );~". It follows from [VW, Example 4.6] that there are precisely p+1
of those, yielding Terstiege’s result.

This argument also shows that the “superspecial” stratum Z (x)"%) consists exactly
of the points where the irreducible components of Z(x),.q intersect.

Example 7.13 (n = 4) The other one-dimensional case is n = 4. For this case, the
global structure of the reduced locus Nyeq was computed by Vollaard and Wedhorn
[VW, Example 4.8] with the following results:

® Nieq is pure of dimension 1.

¢ The irreducible components of Ny are isomorphic to plane Fermat curves
4 P T = 0) in P2,

* Irreducible components intersect precisely in the IF,:-valued points, of which
there are p® + 1 on a given irreducible component.

e In such a point, precisely p* + 1 irreducible components intersect.

In other words, the irreducible components are isomorphic to those in the case n = 3,
but there are more of them passing through a given zero-dimensional Bruhat—Tits
stratum.

We know from the results of the last section that, given a special homomorphism
x € V of valuation 0, we have an isomorphism of formal schemes Z(x) = N(1,2).
By 6.3, this bijection is compatible with the Bruhat-Tits stratifications of Z(x).eq and
N(1,2)1eq- Thus computing the combinatorics of %(SU(C 1, ph), Qp) shows the
following.

Proposition 7.14 Letn = 4. Let x € V be of valuation 0. Then Z(x)req is of pure
codimension 0. Given any vertex A of type 1 in 8(x), precisely p + 1 out of the p> + 1
irreducible components of Nyeq passing through Ny belong to Z(x) eq.

Now assume r(x) = v(h(x, x)) = 1. We have proved that Z(x).q is connected.
Let A € £ be of maximal type 3. By the same argument as in the case n = 3, one
shows that out of the p® + 1 vertices A of type 1 contained in A, precisely p + 1 have
the property that A. decomposes as Ay = /N\H ®A,. Again, one uses Proposition 7.10
and computes the “superspecial” stratum as for n = 3 to get the next proposition.
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Proposition 7.15 Letn = 4. Let x € V be of valuation 1. Then Z(x)(F) is of pure
codimension 0. All lattices in the “superspecial” stratum Z(x)"Y) come from vertices
in L, i.e., are T-invariant. Out of the p> + 1 type 1 vertices contained in any given type
3 vertex A € 8(x)™, precisely p + 1 give rise to points in Z(x)"?) via 5.6.

Let A € 8(x)™. Let A be a vertex of type 1, contained in the type 3 vertex A. IleX.
belongs to Z.(x)"", then all p* + 1 irreducible components of Nyeq passing through Nx

belong to Z(x)red- If/~\. belongs to Z(x) Y, then Ny is the only irreducible component
0f Z(X)red passing through Ny.

8 Recursion Step: The Case r > 1

In this section, we prove Theorem 1.2(iii), i.e., compute §(x) in terms of §(p~'x)
under the assumption r = (x) = v(h(x, x)) > 1. As a consequence, we obtain a
formula for 8(x) for any r > 0 and a complete proof of Theorem 1.4 for m = 1 by
induction on |r/2], starting with |r/2| = 0, i.e., with the two cases treated in the
previous two sections. In this section, we assume r > 1 unless specified otherwise.

8.1 We may reformulate Lemma 4.7 as the inclusion of subsets of £,
{A e LM d(A,S(p_lx)) < 1} C 8(x)™m*,

We will prove Lemma 8.4, which implies that this inclusion is an equality (see 8.5),
thus giving an explicit description of the set §(x) in terms of §(p~'x) and proving
Theorem 1.2(iii). (Note that we know from Proposition 4.11 that Z(x),eq is of pure
codimension 0. Thus, all irreducible components of Z(x),.q correspond to vertices of
maximal type, i.e., S(x)™™* determines 8(x).)

Lemma 8.2 Let A € 8(x)™. Then either A € 8(p~'x) or A = L1 9.

Proof Let A € 8(x)™. From the general considerations in 5.6, writing A = L(,),
we get the three possibilities b > 1 (i.e.,, A € 8(p~'x) by Lemma 5.8), (a, b) = (1,0)
and (a, b) = (0,0). We have to show that the last case does not occur.

If n is odd, one proceeds exactly as in the proof of Lemma 7.3. If n1 is even, we run
into the same difficulties as in that proof. We assume A = L(,0) and proceed as in
the mentioned proof to get the inclusion diagram

A @AY Ajy @AY,
U U
e 1
FA, c' Ao A 5 FA,
U U U U
« B
FAjp©AL) C Ajo®Aip, At @Ay D F(A @ ALp),

where the indices for all inclusions in the columns are r. It follows that « = n — 1
and 8 = 1, which implies the signature condition

n—1 n—1
(2) pPALo=FAi; C Ay, pAiy C FALo=A,.
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On the other hand, AW /A is the W-module

L) /Loy = (W/p"W)p~"x & (W /p"W)p~Tx1,
endowed with a o-linear endomorphism F induced by F. As usual, we write F,
resp. Fy, for the restriction of F to (A /Ao = A/ /A) 0, resp. (A /A));. Since
FL(;;y = L(y,—1) and FL(1 0y = L(o,0), we get that, while F; is an isomorphism, F, has
the non-trivial kernel

ker(Fy) = (p" "W /p"W)p~"xq.

We have the same notions of Fy and F; on AY /A . By Lemma 5.2, we have a W-
linear isomorphism
and v is F-equivariant.

Thus, on AY /A |, we have that F; is an isomorphism, while the kernel of Fj is
a free (p'~'W /p"W)-module of rank 1. The preimage of this module in AY | is a

1
W-lattice I' in N | g satisfying A | o C I'. By construction of I, we have
FI' C Ay

But F is injective, which implies that FA | ¢ is a proper sublattice of FI". This contra-
dicts the signature condition (2). ]

Remark 8.3 We will now translate this result to the (C, ) language. Consider a ver-
tex A of maximal type tmax in £. By definition and our “translation lemma” 5.8, the
assumption of Lemma 8.2 (i.e., A|| = L, with b > 0) translates into the statement
that x € Af. The assertion of the lemma, namely that in this case a > 1, translates
into

xe AN =plxeA

Of course, this is trivial for odd n, but not at all obvious for even n.
Lemma 8.4 Let A € 8(x)™. Then either A € 8(p~'x) or
NANZ(p~ " %)rea = Ny

for some Ael of type tmax — 2.

Proof Let A € 8(x)™, i.e., x € A% The previous lemma states that p~'x € A.
Let (V = A/A*, ph) be the hermitian IF2-vector space defined in 3.5. There,

we stated that vertices A of type t contained in A (i.e., N3 € Nj) correspond to

((1‘max —t) /2) -dimensional isotropic subspaces U = A /A* of V. Furthermore,
p~'x € A is equivalent to p—'x € U, where p—'x is the image of p~'x in V.

But p~lx is isotropic (since v(h(x,x)) > 2), hence is either zero (which means
p~'x € A% ie, A € 8(p~'x)) or spans an isotropic line U. In the latter case, the
intersection N M Z(x)req is of the form N7, where A is the dual of the preimage of U
in A and thus a vertex of type . — 2. [ |
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8.5 Combining this with Lemma 4.7, we get an explicit formula describing the ir-
reducible components of Z(x)eq in terms of those of Z(p~'x) eq, namely

S(x)™ = {A e L™ ] d(A,8(p~'x)) <1}.
This proves Theorem 1.2(iii).
Corollary 8.6 Letx €V be of valuation r > 1. Then
8™ = {A € L™ | d(A,8(p~ ") < [r/2]},

with S(p’wZJ x) being known from Theorem 1.2(i) and (ii).

Proof By induction on |r/2]. The case [r/2] = 1 (i.e, r = 2 or r = 3) is the
content of the previous paragraph 8.5. For the induction step, we therefore assume
|r/2] > 1.

Then we have the following equations:

™ = {A € L™ [d(A,8(p~'x)™) <1}
={Ae L™ |IAe L™ ANAe L, AcS(px}
={Ae ™| IAe L™ AnAeL,d(AS(p x) < [(r/2)] -1}
= {AeLm™ | d(A,8(p~ 1 x) < [r/2]}.

Here, the first equation follows from 8.5 using that, since by assumption on x one has
r(p~'x) > 0, the pure-dimensionality statement of Proposition 1.1 shows Z(p~'x)
is pure of codimension 0.

The second equation is immediate from the definition of the distance function d,
while the third one is a direct application of the induction assumption.

Finally, for the fourth inclusion, observe that d( A, S(p~"/?)x)) < |r/2] means
that there is a chain A = Ay, Ay, ..., A}, of vertices of maximal type such that,
for all indices i < [r/2], the intersection A; N A,y is a vertex and such that N
intersects Z(p~ /2 x) non-trivially. But the existence of such a chain means that
there is a vertex A := A, of maximal type whose intersection with A is a vertex and
for which we have d(K,S(p_V/ZJx)) <|(r/2)] — 1. [ ]

Corollary 8.7 Assumptions as in the last corollary. Then Theorem 1.4 holds true for x,
i.e., Z(X) eq 1s connected.

Proof It is enough to prove connectedness of S(x) as a simplicial subcomplex of £.

We will show that connectedness of §(p~!x) implies connectedness of 8(x). Since

Theorem 1.4 is known to hold for special homomorphisms of valuation 0 or 1, this

implies our claim by induction on |7/2|. Thus assume that 8(p~'x) is connected.
Let A, A bein 8(x). We have to construct a sequence

A=AO AL AY =7
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of vertices in 8(x) with the property that for any 1 < i < s, the vertices A/~ and
A neighbour each other.
Since Z(x)req is pure of codimension 0 in Nyeq, one finds AV, AV € §(x)max

containing A, resp. A. By Lemma 8.4, one finds A, A® ¢ §(p~'x) contained in
AW, resp. AV, By assumption, 8(p~'x) is connected, hence one finds a path

A(Z)7 A(3)7 o ’A(sz) — A@

in 8$(p~'x) connecting A® and A®). Then set A6~V := AM) and A® := A. [

9 Intersections of Special Cycles

Finally we consider the case m > 1. Let x = (x1,...,%s) € V be according to
our general assumptions and conventions of 4.6. The aim of this section is to show

Theorem 1.3 for
8(x) = 8(x1) N -+ - N 8(xp)

and then to show Theorem 1.4 in full generality.

9.1 Recall that, according to 4.6, we assume the x; to be perpendicular to each other
with respect to h and to be of nonnegative finite valuation r; := r(x;) = v( h(x;, x:)).
We will furthermore simplify notation by assuming that the x; are ordered increas-
ingly by valuation. For any nonnegative integer r > 0, we fix the following notations:

m, = max{i | r; <r},
1
C,:= (spansz (x1,... 7xm,)) ,

t
LY = {A C C,aZp-lattice | pA C A* C A},

r

L, :=JLw.
t

(Note that all those notions depend not only on 7, but also on x.)

C, is an (n — m,)-dimensional QQ,-vector space endowed with a non-degenerate
hermitian form induced by h. Since h has odd order of determinant on C, the order
of determinant of 4 on C is odd if and only if the number of indices i < m, for which
r; = 1(2) is even. Note that we have

Cr = spang , (X415 -+ > Xy ) D Cron

Also, Cy = C, whereas in the case m = 1 and r > r(x), the space C, is simply C as
defined in Section 5.

By Theorem 3.6 of [Vo], for any r, the set £, is in bijection with the set of vertices
of B ( SU(C,, ph), Qp) . We endow £, with the simplicial complex structure induced
by this bijection, i.e., two distinct vertices A, A neighbour each other in the simplicial
complex £, if and only if one of them contains the other. By Bruhat-Tits theory, the
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simplicial complex £, is connected. Furthermore, we have distance functions on £,
defined by analogy with 3.6, which we denote by d,. Of course, £, = £, while for
m = land r > r(x), the simplicial complex £, is isomorphic to the complex £ | that
we used in Sections 6 and 7 via the bijection A — A, introduced in 5.6.

9.2 Letsbe any nonnegative integer. Let

_ _ 1
Ng) = (spanWQ(xl,...,meS,F '%1,...,F 1xmh)) ,

where the orthogonal complement is taken with respect to the symplectic form
(-, ). Given A € Ly, we construct a self-dual W-lattice Ao in N, following the
procedure of 5.6. We furthermore write for 1 < i < m:

Li:=p "Wx; & p "WF lx;,

where (a,b) = (r;/2,1;/2) if r; is even, (a,b) = ((ri +1)/2,(r; — 1)/2) if r; is odd.
This is the choice of a, b for which L; is self-dual with respect to (-, - ). Now, for
Ae Loeia, set

Msi2

0= (( & L) @A.)Tl C Gy

i=mys+1

Checking that this defines a vertex in £, is straightforward, using the self-duality
of L; and A, with respect to (-, - ). Thus we have an injective morphism of simplicial
complexes

D: Logrn — Lo
One observes that, if A € L4, is of type t, the type of ®(A) is t + M2 — Mpsi1.

Definition 9.3 Let0 < s < |r,/2]. Set
Ss=8x):={A €Ly | p~°x € AW > Mg }.
For1 <s < |r,/2] + 1, we set
S! =8!(x):={A € Ly | p~x; € Ai > my}.
. In particular, Sy is the simplicial complex 8(x) that we were originally interested
" On the other hand, for the maximal occurring index s = |r,,/2| +1, the condition
defining S! is empty, i.e., S simply equals £, = £,,+ as simplicial complexes. The-

orem 3.6 of [Vo] provides us with an explicit description of £, 1, as the simplicial
complex of a specific Bruhat-Tits building.
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This case will serve as the starting point for explicitly computing S, and S/ (and
thus 8(x)) by downwards induction on s. We now give the algorithm:

(0) Sets:= |r,/2].SetV/,, == Lo = L, 41-
(1) Set Vi :={A € Ly | 3/16 D (V)): Ag A}.~
(2) Set V! := {A € Lo, | 3A € L1 : A C A, doy(A, V) < 1}.

(3) If s > 0, continue with Step 1, replacing s by s — 1. If s = 0, stop.

Theorem 9.4 The equalities
Ss=V, S.=V/
hold forany 0 < s < |r,,/2] resp. 1 < s < |r,, /2| + 1.

We will prove the theorem (which immediately implies Theorem 1.3) by down-
wards induction on s, using the obvious equality S|, »j+1 = V|, 2/+1 as starting
point and doing the induction step by proving the implications

Sl =V, =8=V.=>S =V

We will now sketch the proof of these two implications. First, we show Lemma 9.5,
which states that S!,; = V!, implies the “easy” inclusion V; C S;. The follow-
ing Lemma 9.6 states that the “hard” inclusion holds for s = 0, i.e., that S| = V{
implies Sy = V. This special case has to be done first because we have no “pure-
dimensionality” statements for any S, or S/, except for Sy (Proposition 4.11). The
proof goes by applying the results of Sections 6 and 7. The general case is then re-
duced to this special case in the proof of Lemma 9.7. This concludes the proof of the
first implication.

For the second implication, we first prove Lemma 9.8, which states that §; =
V, implies V! C S.. This is a straightforward generalization of Lemma 4.7. We
then prove Lemma 9.9, which states that S! is “pure of codimension 0” in £, (this
will be made precise in the statement of the lemma), by reduction to Lemma 9.6.
Having proven this, we obtain the “hard” inclusion S/ C V! as a straightforward
generalization of the results of Section 8. This is done in Lemma 9.10 and concludes
the proof of Theorem 9.4.

Lemma 9.5 Let0 < s < |r,/2]| be arbitrary. Assume that S!,, = V/!,,. Then

st+1°
Vs CS..

Proof By definition of V, it is enough to prove ®(V/,;) C S;. Let A € (V).

This means
Mosi2

A.:( 69 Lz)@xo

i=mys+1

for some A € V!,,. By definition of m,, and m,,, one has (L;); = p—*WF~'x; for
My < i < Mygy,. It follows that

Myst2 ~
N=EFN"'=( @ pZpx) oA

i=mys+1
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contains p—°x; for my, < i < mypg,. But the p~x; with i > my, are contained
in A* since A is in S/,; = V/,; by assumption. Thus these p~—x; are also contained
in A%, [

Lemma 9.6 Assume thatS] = V. Then Sy C V.

Proof Recall from the definitions above that
So={AeL]|x€AVI<i<m}=8(x).

By Proposition 4.11, Z(x)eq is pure of dimension | (n — m; — 1)/2], i.e., every vertex

in 8(x) is contained in some vertex in $(x)® = S(x) N L%, where t; is the largest
odd integer < n — m;. One checks that ty — m;, + m, is the maximal type of vertices
in Lz.

Let A € 8(x). Using the results on a single special homomorphism of valuation 0,
in particular 6.3, we get for any t < m;:

(Ae) N (Wox; @ WoF 'x;) = Wx; ® WF 'x; = L,

which is self-dual with respect to (-, - ). By Remark 5.3, this implies that A, decom-
poses orthogonally as Ae = (D", L;) ® A for some AV € £, of type t(A).

Now assume t(A) = to. Then A" is a vertex of type ty, i.e., of maximal type,
in £,. Using Lemma 7.3 on special homomorphisms of valuation 1, we have for
mp <1< myp:

(ALY N (Wox; @ WoF'x) = p~'Wx; @ WFx; = L;,
N Q Q p

which is again self-dual with respect to (-, - ). Again, we use Remark 5.3 to get the
orthogonal decomposition

A= (BL) ®AY = (D L) & AP
i= i=1

for some A® € L, of type ty — m, + m;. But the right hand side is precisely
(@1(A@)) .»and A is in S{ because A is in Sy. Thus by assumption, A € ®;(V/),
which is a subset of V by definition. This proves the lemma. ]

Lemma 9.7 Let0 < s < |r,/2]| be arbitrary. Assume that S.,, = V/!,,. Then
Ss =V,

Proof We observe that S/,; = {A € Los | p~5x; € A'Vi > myg,, ) is the simplicial
complex S7(z) obtained by applying Definition 9.3 to

Tmasip

| | MM2s+2 _ _
Z:= (p szxla"%p L : xm25+27P Sxmzs+2+17""p Sxm)'

The morphism ®yo--- 0o ®,_;: L, — L of simplicial complexes is injective and, by

definition of z, maps S; into 8(z), sending vertices of type t in £, to vertices of type
2s i .

t+ > 7 (=1)'m;in L.

i=1
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On the other hand, by pure-dimensionality (Proposition 4.11), there is an odd
integer t, such that any vertex in 8(z) is contained in some vertex in 8§(z)). By the
proof of Lemma 9.6, we have

N 2st2 -1 Ami
8™ = (By o+ 0B (S, N LY, UMy

Since ®y o -+ 0 P;: S!,; — S(z) factors over S; and Py o -+ 0 O,_: Ly — Lis
injective, it follows that we have the expected “pure-dimensionality statement” for S;,

. . . . . —SF (—1) i
namely that every vertex in S; is contained in a vertex in S; N L;? Lin (=D ), and
that

S5 (1yim _
SSQL;O 21:1( 1)'m;) — (bs(sl mLég’:z;—z st—l))'

s+1

Therefore, S, = V/,; implies S, = V.. [ |
Lemma 9.8 Let1 <s < |r,/2]. Assume thatS; =V,. ThenV] C S..

Proof First, note that by definition of V/, any vertex in V| is contained in some
vertex A of maximal type in £, for which d(A, V) < 1. Therefore it suffices to
show that any A € L5 for which dy(A, V) < 1isin S!. Let A be such a vertex. By
assumption V; = S;, thus A satisfies dps(A, S;) < 1, which means that there is some
vertex A € Ss contained in A. Thus

p~"x; € pAf C pA C pA C AP Vi > my, N

Lemma 9.9 Let1 <s < |r,/2|. AssumethatS; = V. Then S. is “pure of codimen-

max

sion 0” in Lo, that is, every vertex in S, is contained in some vertex in S] N L5~

Proof The rough idea is, as in the proof of Lemma 9.7, to use Lemma 9.6 on some
variation of x to reduce to the known case of Sy. In our situation, we have S! = S (z),
where ) .

z= (p_LTIJxI, . ,p_L ZszmeS,p_SmeZSH, S P
By Proposition 4.11, every vertex in 8(z) is contained in some vertex of type t,, where
to — Z?il(—l)"m,' is the maximal type of vertices in £,;. But we can describe S/ in
terms of Sp(z) = 8(z) in the same way as we did in the proof of Lemma 9.7. The
result is an injection of simplicial complexes

_S+1xm)-

Pyo---0P_y: S — So2)

sending vertices in Lgts) to vertices in £+ (=1'm) and surjective in maximal type.
Therefore, the “pure-dimensionality” statement Proposition 4.11 for §(z) implies the
claimed “pure-dimensionality” statement for S. ]

Lemma 9.10 Let1 <s < |r,/2|. AssumethatS; = V. Let A € S. be of maximal
type in Los. Then A € V/; that is, there is some vertex A € V; = S contained in A.

Remark 9.11 This lemma is a generalization of Lemma 8.4 to the case of m > 1
and arbitrary order of determinant of h. However, unlike in the m = 1 case, we

do not have any lower bound on the maximal possible type of A. Indeed, S, can be
arbitrarily small, even consist of a single vertex of type 0.
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Proof Let A € S/ be of maximal type in L. The type of A is either dim(Cy;) or
dim(C,;) — 1, depending on the parity of dim(C,;) and on the parity of the order of
determinant of (Cs, h).

Let my; < i < m. By assumption, we have p—*x; € AF. This implies (using that
r(x;) > 2s) that p—°x; € A. Indeed, Lemma 8.2 generalizes to our situation, since the
proof does not depend on the order of determinant of / being odd (except for that,
if ord det(C, h) was even, the case of n even would be the easy one to prove and the
case of n odd the hard one).

We now proceed as in the proof of Lemma 8.4. We consider the hermitian
F -vector space (V, ph), where V.= A/A* and ph is induced by ph. By 3.5, ver-
tices A of type t contained in A correspond to ( (t(A) —1)/ 2) -dimensional isotropic
subspaces U = A /AP of V. Furthermore, p~—x; € A is equivalent to p—x; € U,
where p~sx; is the image of p~*x; in V.

Now the p—x; are isotropic (since v(ph(p_sxi,p_sx,-)) =2r; —2s+1 > 0)and
perpendicular to each other (since the x; were already assumed to be perpendicular
to each other with respect to h). Therefore, they span an isotropic subspace U of V,
whose preimage A is the dual of some vertex of type t(A) —2dim U in £, belonging
to S; and contained in A. [ |

This concludes the proof of Theorem 9.4, and thus Theorem 1.3 is proved.

9.12 'We now prove our main theorem 1.4 in full generality.

First we observe that, by Bruhat-Tits theory, the simplicial complex £|,, /}41 =
B ( SU(C,,./2)415 Ph), Qp) is connected. Theorem 9.4 provides us with an algorithm
for computing 8(x) = Sp from £, />|+1. To show connectedness of §(x), it is enough
to prove that each step of this algorithm preserves connectedness.

Let 0 < s < |r;,/2]. We want to show that S; is connected under the assumption
that S.,, is connected. By Theorem 9.4, we have

Se:={A € Ly | IA € B(S.,,): A C A}.

Now @, is a morphism of simplicial complexes, thus preserves connectedness, there-
fore ®(S/,;) is connected. But any vertex in S, is contained in (i.e., a neighbour
of) some vertex in ®4(S.,;). Thus passing from ®(S/,;) to S; does not create new
connected components.
Now let 1 <s < |r,,/2]. We assume that S, is connected. Recall that by Theo-
rem 9.4: _ _ _
Sli={A € Ly | TN € LY : A C A, dy(A,S) < 1}

Connectedness of S; now implies connectedness of S/. Indeed, we saw in Section 8
how connectedness of S(p~'x) implies connectedness of §(x) for a single special ho-
momorphism x. The argument for this implication generalizes straightforwardly to
our situation. This concludes the proof of Theorem 1.4.

As a further application of Theorem 9.4, we will now give a new proof of the
criterion of Kudla and Rapoport for irreducibility in the case m = n, which will
highlight the role of Bruhat-Tits theory.
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Proposition 9.13 (Kudla—Rapoport [KR, Theorem 1.1(iii)]) Letm = n. Letx € V"
be according to the assumptions of 4.6 and the notational conventions of this section. Let

Heen = Card({i | r; > 2,1; even}),

even

noqq = Card({i | r; > 3,1 0dd}).

Then Z(x)req is irreducible if and only if
max(”:venv n:)—dd) <L

Proof We first observe that Z(x) is irreducible if and only if there is A € £ for which
Z(%)red = Na. The latter statement means that A € 8(x) and that every Ac S8(x) is
contained in A. In other words, Z(x) .q is irreducible if and only if $(x) has a unique
element maximal for inclusion.

Now take a look at the behaviour of “irreducible components” under the opera-
tions of the algorithm of Theorem 9.4. First, the simplicial complex £, ., consists of
a single point, because we assumed m = n and thus C,, ., is the zero space. Therefore,

’m 2141 consists of a single point, thus is trivially “irreducible”.

Then for any s, passing from S.,; to S; does not create or destroy maximal ele-
ments. Indeed, ®; is an injection of simplicial complexes that preserves inclusions,
ie, A C A= <I>S(/~\) C ®,(A). Therefore, maximal elements A in S,; give rise to
maximal elements ®;(A) in ®4(S.,;), and no new maximal elements are generated.
Also, any element in S, is contained in some element in ®,(S.,,), hence the maximal
elements in S; are the same as those in D(SL, ).

On the other hand, passing from S, to S! creates new inclusion maximal elements
whenever £,; is not a single point. Indeed, if £,; is not a single point, then different
types of vertices occur (e.g., any two vertices that neighbour each other are of different
type). Let A € S, be arbitrary, not of maximal type in £,,. Then there is more than
one vertex of maximal type containing A. Indeed, A can be written as the intersection
of the vertices of maximal type containing it (see the proof of Proposition 7.9). By
Theorem 9.4, all such vertices are in S/, and maximal because they are maximal in £;.

Therefore, Sy = 8(x) has a unique maximal element if and only if the £,; fors > 1
are single points. The latter is equivalent to saying that £, consists of a single point,
since @,y 00 ®y: Ly; = L, is injective. But £, = %(SU(CZ, ph), Qp) consists
of a single point if and only if either dimC, < 1, or dimC, = 2 and the order of
determinant of h on C, is odd.

Since C; is by definition spanned by the x; with ; > 1, dimC, = 0 means that
1734 = Neven = 0, while dim C, = 1 means that one of the sums #},;, #g,.,, equals 1,
while the other one vanishes, and finally dim C, = 2 together with the assumption
that ord det(C,, h) is odd means that n;, = nl,., = 1. [ |

even

+
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