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On the Global Structure of Special Cycles
on Unitary Shimura Varieties
Nicolas Vandenbergen

Abstract. In this paper, we study the reduced loci of special cycles on local models of the Shimura
variety for GU(1, n − 1). Those special cycles are defined by Kudla and Rapoport. We explicitly
compute the irreducible components of the reduced locus of a single special cycle, as well as of an
arbitrary intersection of special cycles, and their intersection behaviour in terms of Bruhat–Tits theory.
Furthermore, as an application of our results, we prove the connectedness of arbitrary intersections of
special cycles, as conjectured by Kudla and Rapoport.

1 Introduction

Motivation

A local analogue for the Shimura variety for GU(1, n − 1) has been defined in Vol-
laard’s paper [Vo] as a formal moduli scheme N(1, n− 1) of p-divisible groups with
certain additional structures. In the subsequent paper [VW], Vollaard and Wed-
horn give an explicit description of its reduced locus Nred by stratifying it with locally
closed subvarieties over Fp. The strata will be referred to as “Bruhat–Tits strata”,
because they are in bijection to the set of vertices of the Bruhat–Tits building of a cer-
tain special unitary group over Qp. In their paper [KR], Kudla and Rapoport define
special homomorphisms as elements of a certain hermitian Qp2 -vector space (V, h).
Given x ∈ V, they define its associated special cycle Z(x) as a certain formal sub-
scheme of N(1, n−1). One should think of those special cycles as the local analogues
of special arithmetic cycles on the Shimura variety for GU(1, n−1); the latter, as well
as the link between the local and the global situation, are explained in [KR2].

Kudla and Rapoport show [KR, Theorem 1.1(i)], that, given n special homomor-
phisms x1, . . . , xn, the reduced locus of the intersection

Z(x) := Z(x1) ∩ · · · ∩ Z(xn)

of their associated special cycles is a union of Bruhat–Tits strata in Nred under the
assumption that the fundamental matrix T(x) :=

(
h(xi , x j)

)
i, j

is nonsingular. They

also compute the dimension of Z(x)red as a function of the fundamental matrix [KR,
Theorem 1.1(ii)], and give a condition on the fundamental matrix that is necessary
and sufficient for Z(x)red to be irreducible [KR, Theorem 1.1(iii)]. In the case of
proper intersections, i.e., in the zero-dimensional case, they show connectedness and
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compute the intersection multiplicity, relating it to representation densities of her-
mitian forms [KR, Theorem 1.1(iv)].

Kudla and Rapoport also conjectured [KR, Conjecture 1.3] that the reduced locus
of an improper intersection Z(x) of n special cycles is connected, and that the relation
between intersection multiplicities and representation densities should also hold in
this case.

The aim of this paper is to prove the first part of this conjecture and, more gener-
ally, to describe the reduced locus of intersections of special cycles. We will give a full
description of the reduced locus Z(x)red for any x ∈ V as an union of Bruhat–Tits
strata, as well as of the reduced locus of an intersection of arbitrarily many special
cycles.

Main Results

We now recall the definitions from [Vo], [VW] and [KR] necessary to state our re-
sults. We fix an odd prime p and a positive integer n. Let F := Fp. We denote
by W := W (F) the corresponding ring of Witt vectors and by WQ := W ⊗Z Q its
quotient field. The Frobenius lifts to an automorphism of W , resp. WQ, which we
denote by σ. There are two embeddings of Zp2 , resp. Qp2 , into W , resp. WQ, which
we denote by ϕ0 and ϕ1 = σ ◦ ϕ0.

The moduli scheme N(1, n− 1) on which we work is described as follows. We fix
a triple (X, ιX, λX), where X is a supersingular p-divisible group of dimension n and
height 2n over F, equipped with an action ιX : Zp2 → End(X) satisfying the signature
condition (1, n− 1), i.e.,

charpol
(
ιX(α), LieX

)
=
(

T − ϕ0(α)
)(

T − ϕ1(α)
) n−1 ∈ F[T] ∀α ∈ Zp2 ,

and with a p-principal polarization λX for which the Rosati involution ∗ satisfies
ιX(α)∗ = ιX(ασ). Note that such a triple always exists and is unique up to isogeny.

Let NilpW be the category of W -schemes on which p is locally nilpotent. Let

N = N(1, n− 1) : NilpW → Sets

be the functor that associates to a scheme S ∈ NilpW the set of isomorphism classes
of quadruples (X, ιX, λX, ρX), where X is a p-divisible group over S, where ιX and λX

are as above, and where
ρX : X ×W F→ X×F S

is a quasi-isogeny of height 0 compatible with the additional structures imposed.
Here, S = S×W F denotes the special fibre of S. (See Section 2 for a precise definition
of N.)

N is represented by a formal scheme that we also denote by N. This formal scheme
is separated, locally formally of finite type over W , and formally smooth of dimension
n−1 over W . The underlying reduced scheme Nred is a singular scheme of dimension
b(n− 1)/2c over F.

In order to explain our results, we have to recall some of the results of Vollaard
and Wedhorn [Vo, VW] on the structure of Nred. By Dieudonné theory the triple
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(X, ιX, λX) defines a n-dimensional non-degenerate hermitian vector space (C, h)
over Qp2 for which ord det(C, h) is odd. Note that this condition determines (C, h)
up to isomorphism. A vertex is then by definition a Zp2 -lattice Λ in C satisfying

pΛ ⊆ Λ]⊂Λ,

where Λ] := {x ∈ C | h(x,Λ) ⊆ Zp2} is the dual lattice of Λ. The set L of all

vertices is made into a simplicial complex in the following way: Two vertices Λ, Λ̃

are by definition neighbours in the simplicial complex L if and only if Λ ⊂ Λ̃ or
Λ̃ ⊂ Λ. Then Vollaard shows that L is isomorphic to the simplicial complex of the
Bruhat–Tits building B

(
SU(C, ph),Qp

)
, hence our use of the term “vertex”. Here,

SU(C, ph) denotes the special unitary group of the non-degenerate hermitian vector
space (C, ph) over Qp2 , which is a reductive algebraic group over Qp. To each vertex
Λ ∈ L, Vollaard and Wedhorn associate a closed irreducible subvariety of Nred, the
closed Bruhat–Tits stratum NΛ. They show that Nred is covered by the NΛ.

We furthermore write tmax for the maximal odd integer less than or equal to n,
and Lmax for the set of vertices of maximal type in L ; that is, Lmax is the set of
vertices Λ ∈ L for which the length of the quotient Zp2 -module Λ/Λ] (which is
always an odd integer between 1 and n) equals tmax. Vollaard and Wedhorn show
that the closed Bruhat–Tits strata NΛ corresponding to these vertices are precisely
the irreducible components of Nred.

We now define special cycles. Let (Y, ιY, λY) be the basic triple over F used in
the definition of N(1, 0). Let (Y, ιY, λY) = (Y, ιY ◦ σ, λY). The space of special
homomorphisms is the Qp2 -vector space

V := HomZp2 (Y,X)⊗Z Q,

endowed with the non-degenerate Qp2 -valued hermitian form h given by

h(x, y) := λ−1
Y ◦ y∨ ◦ λX ◦ x ∈ EndZp2 (Y)⊗Z Q ∼= Qp2 ,

where the last isomorphism is induced by ι−1. Kudla and Rapoport show that
(V, h) ∼= (C, h).

The pair (Y, ιY) admits a unique lift to W as a formal Zp2 -module, which we de-
note by (Y , ιY ). Now for a special homomorphism x, we define the special cycle Z(x)
to be the subfunctor of N such that Z(x)(S) consists of the tuples (X, ιX, λX, ρX) ∈
N(S) for which the quasi-homomorphism

ρ−1
X ◦ x : (Y ×W S)×W F = Y×F S −→ X ×W F

lifts to a Zp2 -linear homomorphism (Y ×W S) → X. Finally, we associate to a tuple
(x1, . . . , xm) of m special homomorphisms (m any positive integer) its fundamental
matrix,

T(x1, . . . , xm) :=
(

h(xi , x j)
)

i, j
∈ Hermm(Qp2 ).

We now state our results. First, we generalize Theorem 1.1(i) and (ii) of [KR] to
the case of arbitrary intersections of special cycles.
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1128 N. Vandenbergen

Proposition 1.1 The reduced locus Z(x1, . . . , xm)red of any intersection

Z(x1, . . . , xm) := Z(x1) ∩ · · · ∩ Z(xm)

of special cycles is a union of Bruhat–Tits strata. If T(x1, . . . , xm) is non-singular with
integral entries, then Z(x1, . . . , xm)red is pure of dimension

dimZ(x1, . . . , xm)red =
⌊

(n− rk(red(T))− 1)
/

2
⌋
,

where red(T) is the image of T := T(x1, . . . , xm) in Hermm(Fp2 ).

Therefore, the irreducible components of the reduced locus Z(x1, . . . , xm)red of
the intersection of the special cycles associated to x1, . . . , xm ∈ V, as well as their
intersection behaviour, are determined by the following simplicial subcomplex of L:

S(x1, . . . , xm) := {Λ ∈ L | xi ∈ Λ] ∀ 1 ≤ i ≤ m}.

Here, we view special homomorphisms as vectors in C via the isomorphism (V, h) ∼=
(C, h).

We then turn to computing the simplicial complex S(x) for a single special homo-
morphism x. We write r(x) := v

(
h(x, x)

)
, where v is the discrete valuation on Qp,

and call this number the valuation of x. We may assume that r(x) is a nonnegative
integer, thus the dimension computation of Proposition 1.1 applies.

We will give a recursive formula for S(x), using the cases where r(x) = 0 and
r(x) = 1 as base cases. The recursion step will give an explicit formula for S(x) in
terms of S(p−1x) if r(x) > 1 (note that r(p−1x) = r(x)− 2).

In order to state our results for the two base cases, we view the special homo-
morphism x as an element of C and write C⊥ := (Qp2 · x)⊥, where the orthogonal
complement is taken with respect to h.

Theorem 1.2 Let x ∈ V be a special homomorphism of nonnegative valuation.

(i) [KR3, Proposition 5.2] If r(x) = 0, then there is an isomorphism of simplicial
complexes

S(x) ∼= B
(

SU(C⊥, ph),Qp

)
.

(ii) If r(x) = 1, then there is an injective morphism of simplicial complexes

Φ : B
(

SU(C⊥, ph),Qp

)
→ S(x),

which is surjective in maximal type, i.e., S(x) ∩ Lmax is contained in the image
of Φ.

(iii) If r(x) ≥ 2, then

S(x) = {Λ ∈ L | ∃Λ̃ ∈ L, Λ̂ ∈ S(p−1x) : Λ ⊆ Λ̃, Λ̂ ⊆ Λ̃}.
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The first part is due to Kudla and Rapoport, while the other two results are new.
Kudla and Rapoport explicitly compare Z(x)(F) to N(1, n−2)(F) for x of valuation 0
in their unpublished notes [KR3], introducing a certain stratification of Z(x)(F). The
Bruhat–Tits building B

(
SU(C⊥, ph),Qp

)
comes into play because it encodes the

incidence relation of Bruhat–Tits strata in N(1, n − 2)red. I should note that Kudla
and Rapoport actually prove a stronger result, namely that Z(x) ∼= N(1, n − 2) as
formal schemes [KR2, Proposition 9.2].

In the case r(x) = 1, the order of determinant of h on C⊥ is even and thus
B
(

SU(C⊥, ph),Qp

)
does not encode the incidence relation of Bruhat–Tits strata in

N(1, n− 2)red. In our paper, B
(

SU(C⊥, ph),Qp

)
will not arise from a stratification

of a moduli scheme. Instead, we will interpret B
(

SU(C⊥, ph),Qp

)
as the simplicial

complex of lattices Λ⊥ in C⊥ satisfying a chain condition pΛ⊥ ⊆ Λ]
⊥ ⊆ Λ⊥ and

use a “stratification” of the set L similar to the one on Z(x)(F) used by Kudla and
Rapoport. The key point is to show that any vertex Λ ∈ S(x) that is of maximal type
in L decomposes orthogonally as Λ = p−1Zp2 x ⊕ (Λ ∩ C⊥). From this we then
deduce Theorem 1.2(ii), which, together with pure-dimensionality of Z(x)red, shows
that S(x) can explicitly be computed from B

(
SU(C⊥, ph),Qp

)
.

To prove Theorem 1.2(iii), we generalize the approach of Terstiege, who in his
paper [Te] gives an explicit formula for S(x) for arbitrary x in the first non-trivial case
n = 3 by using ad hoc methods for x of valuation 0 or 1 and showing an inductive
formula of the type claimed in (iii). The generalization of Terstiege’s proof is quite
straightforward in the case where n is odd. If n is even, some extra work has to be
done to show that x ∈ Λ] implies p−1x ∈ Λ for vertices Λ of maximal type.

Finally, for any m and any x1, . . . , xm ∈ V, we explicitly compute the simplicial
complex S(x1, . . . , xm) of vertices whose associated Bruhat–Tits strata are contained
in
(
Z(x1) ∩ · · · ∩ Z(xm)

)
red

. For this, we assume (without loss of generality, see 4.6)
that the xi are perpendicular to each other with respect to h, that all valuations r(xi)
are nonnegative integers and that the xi are ordered increasingly by valuation. The
rough idea is to apply the formulae of Theorem 1.2 alternatingly. More precisely:

Let r be any nonnegative integer. Write mr := max{i | r(xi) < r}. Denote by Cr

the orthogonal complement of the subspace of C spanned by x1, . . . , xmr . Set

Lr := {Λ ⊂ Cr a Zp2 -lattice | pΛ ⊆ Λ] ⊆ Λ}.

By the results of Vollaard, in particular [Vo, Theorem 3.6], we can endow the set Lr

with a simplicial complex structure as we did for L, and then we have an isomor-
phism Lr

∼= B
(

SU(Cr, ph),Qp

)
of simplicial complexes. Note that, if m = n (i.e.,

in the case considered in [KR]) and r > r(xm), then Cr is the zero space and thus the
simplicial complex Lr consists of a single point.

We then construct injections of simplicial complexes

Φs : L2s+2 → L2s

for any s ≥ 0. To do this, we basically iterate the maps Φ : B
(

SU(C⊥, ph),Qp

)
→ L

constructed in the proofs of Theorem 1.2(i) and (ii). We also show that the Φs have
properties “similar” to those maps and furthermore that the procedure of the proof

https://doi.org/10.4153/CJM-2013-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-004-1


1130 N. Vandenbergen

of Theorem 1.2(iii) generalizes to intersections of special cycles and to arbitrary order
of determinant of h. Putting together, we obtain the following.

Theorem 1.3 Let x = (x1, . . . , xm) ∈ Vm satisfy our assumptions above. Then S(x)
is equal to the simplicial complex S0 computed by the following algorithm:

(0) Set s := br(xm)/2c. Set S ′s+1 := L2s+2.

(1) Set Ss := {Λ ∈ L2s | ∃Λ̃ ∈ Φs(S ′s+1) : Λ ⊆ Λ̃}.
(2) Set S ′s := {Λ ∈ L2s | ∃Λ̃ ∈ L2s, Λ̂ ∈ Ss : Λ ⊆ Λ̃, Λ̂ ⊆ Λ̃}.
(3) If s = 0, stop, else replace s by s− 1 and go to Step 1.

Using the connectedness of the Bruhat–Tits buildings B
(

SU(C⊥, ph),Qp

)
in the

case m = 1, resp. B
(

SU(C2s+2, ph),Qp

)
in the case m > 1, a closer look at the

explicit descriptions of S(x), resp. S(x1, . . . , xm), proves our main theorem.

Theorem 1.4 Let m be any positive integer. Let x1, . . . , xm ∈ V be any set of special
homomorphisms. Then the intersection Z(x1, . . . , xm)red of the reduced loci of their
associated special cycles is connected.

Structure

The layout of this paper is as follows. We recall in Section 2 the definition of the mod-
uli space N = N(1, n− 1) and the description of its F-valued points as lattices in an
isocrystal with certain additional structures. We also define the hermitian Qp2 -vector
space C . In Section 3, we review the construction of the Bruhat–Tits stratification.
The results of those sections are cited from Vollaard’s paper [Vo] and her paper with
Wedhorn [VW].

In Section 4, we define special homomorphisms and special cycles, review the re-
sults of Kudla and Rapoport, prove Proposition 1.1 (i.e., generalize Theorem 1.1(i)
and (ii) of [KR] to arbitrary intersections) and show that the connectedness con-
jecture of Kudla and Rapoport (i.e., Theorem 1.4) can be reformulated in terms of
Bruhat–Tits theory.

In Sections 5–8, we deal with the case of a single special homomorphism, i.e., of
m = 1. Section 5 is preparatory to the proof of our main results and basically an
elaboration of Sections 6 and 7 of the notes [KR3]. We give a complete proof of
Lemma 5.1 of [KR3], define the Kudla–Rapoport stratification on Z(x)(F) (allowing
us to treat r = 0), and generalize it to the level of vertices (a key idea in our treatment
of r ≥ 1).

In Sections 6–8, the recursive formula for computing S(x) is set up, with Sections 6
and 7 devoted to the two base cases. In Section 6, we review Kudla and Rapoport’s
proof of Theorem 1.2(i) and of connectedness in case of a single special homomor-
phism of valuation 0. Section 7 is devoted to the second base case, that is, to showing
Theorem 1.2(ii) and connectedness in case of a single special homomorphism of val-
uation 1.

In Section 8, we deal with the recursion step, i.e., prove Theorem 1.2(iii) and con-
nectedness of Z(x)red under the assumption that Z(p−1x)red is nonempty and con-
nected.
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Finally, Section 9 is devoted to showing our claims on intersections of special cy-
cles, i.e., correctness of the algorithm of Theorem 1.3 and connectedness for inter-
sections of special cycles. We will also give a new proof of Theorem 1.1(iii) of [KR]
as an application of Theorem 1.3.

2 Basic Definitions

In this section, we recall the definition of the moduli space N with which we will
work. The exposition follows [KR]. All proofs are to be found in [Vo].

2.1 We fix an odd prime p. LetF := Fp. We denote by W := W (F) the correspond-
ing ring of Witt vectors and by WQ := W ⊗Z Q its quotient field. The Frobenius lifts
to an automorphism of W , resp. WQ, which we denote by σ. There are two embed-
dings of Zp2 , resp. Qp2 , into W , resp. WQ, which we denote by ϕ0 and ϕ1 = σ ◦ ϕ0.
The discrete valuation on WQ will be denoted by v.

2.2 We also fix a positive integer n and a triple

(X, ιX, λX),

where X is a supersingular p-divisible group of dimension n and height 2n over F,
on which we have an action ιX : Zp2 → End(X) satisfying the signature condition
(1, n− 1), i.e.,

charpol
(
ιX(α), LieX

)
=
(

T − ϕ0(α)
)(

T − ϕ1(α)
) n−1 ∈ F[T]∀α ∈ Zp2 ,

and a p-principal polarization λX for which the Rosati involution ∗ satisfies

ιX(α)∗ = ιX(ασ).

Note that such a triple always exists and is unique up to isogeny.

2.3 Let NilpW be the category of W -schemes on which p is locally nilpotent. Let

N = N(1, n− 1) : NilpW → Sets

be the functor that associates to a scheme S ∈ NilpW with special fibre S = S ×W F
the set of isomorphism classes of quadruples

(X, ιX, λX, ρX),

where X is a p-divisible group over S, endowed with an Zp2 -action ιX satisfying the
signature condition (1, n − 1) and a p-principal polarization λX defined over S for
which the Rosati involution ∗ satisfies ιX(α)∗ = ιX(ασ). Finally,

ρX : X ×W F→ X×F S
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is a quasi-isogeny of height1 0 compatible with the polarizations, i.e., locally on S one
has

ρ∨X ◦ λX ◦ ρX = ξλX ∈ HomZp2 (X,X∨)⊗Q

for some scalar ξ ∈ Z×p .
Here, two such tuples (X, ιX, λX, ρX) and (Y, ιY , λY , ρY ) are said to be isomorphic

if there is an isomorphism α : X → Y compatible with the Zp2 -actions and the quasi-
isogenies ρ, such that, locally on S, the polarization α∨ ◦ λY ◦ α equals λX up to a
scalar in Z×p .

2.4 As explained in [KR], N is represented by a formal scheme, which we also de-
note by N. This formal scheme is separated, locally formally of finite type over W ,
and formally smooth of dimension n− 1 over W .

We are interested in the geometry of the reduced locus Nred of N. We have N(F) =
Nred(F). Theorem 4.2 of [VW] states that Nred is connected of pure dimension
b(n− 1)/2c.

2.5 Let M be the covariant Dieudonné module of X. Thus M is a free W -module
of rank rk(M) = ht(X) = 2n endowed with a σ-linear endomorphism F (the Frobe-
nius) and a σ−1-linear endomorphism V (the Verschiebung), satisfying

FV = V F = p idM .

The polarization λX induces a perfect skew-symmetric W -bilinear pairing 〈 · , · 〉 on
M satisfying

〈Fx, y〉 = 〈x,V y〉σ ∀x, y ∈M.

Furthermore, the Zp2 -action ιX induces an action of Zp2 on M, which we denote by ι.
The condition on the Rosati involution translates as

〈ι(α)x, y〉 = 〈x, ι(ασ)y〉.

The decomposition Zp2 ⊗Zp W ∼= W ⊕W yields a decomposition

M = M0 ⊕M1

into eigenspaces for the Zp2 -action. The submodules Mi are free of rank n, with Zp2

acting by scalar multiplication via ϕi . It follows that the Mi are isotropic with respect
to 〈 · , · 〉 and that both F and V have degree 1 with respect to this decomposition.
The signature condition on the Zp2 -action translates as the chain condition

pM0
n−1
⊂ FM1

1
⊂M0, pM1

1
⊂ FM0

n−1
⊂ M1.

1I should point out that the definition we are using slightly differs from the definition of N in [Vo] and
[KR], as they do not impose the “height 0” condition. The moduli functor N of [Vo] and [KR] admits
a direct sum decomposition N =

∐
i Ni , where Ni denotes the subfunctor of N of isogenies of height i.

However, the Ni are either empty or isomorphic to N0 [Vo, Lemma 1.9 and Proposition 1.22].
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Here, for two free W -modules M and M̃ and any nonnegative integer m, the notation

“M
m
⊂ M̃” means that M ⊂ M̃ and that the quotient module M̃/M has length m.

Finally, we denote by
N := M⊗Z Q

the isocrystal associated to X and remark that, by scalar extension, N is endowed with
a σ-linear isomorphism F, a σ−1-linear isomorphism V , a non-degenerate skew-
symmetric WQ-bilinear form 〈 · , · 〉 and a Qp2 -action ι, which satisfy all of the prop-
erties above. The Qp2 -action induces a decomposition

N = N0 ⊕ N1

into n-dimensional WQ-subspaces, with Qp2 acting on Ni by scalar multiplication
via ϕi .

Proposition 2.6 (Vollaard, [Vo, Proposition 1.3 and Lemma 1.5]) As a point set,
N(F) may be identified with the set of W -lattices M ⊂ N that are stable under F, V ,
and ι and that satisfy both the chain condition

pM0
n−1
⊂ FM1

1
⊂ M0, pM1

1
⊂ FM0

n−1
⊂ M1,

with Mi := M ∩ Ni , and the self-duality condition M = M∨, where

M∨ := {x ∈ N | 〈x,M〉 ⊆W}

denotes the dual lattice of M with respect to 〈 · , · 〉.

2.7 Define
τ := V−1F = pV−2 = p−1F2.

This defines a σ2-linear automorphism of N of degree 0, having all Newton slopes 0.
Let C = Nτ=1

0 be the space of τ -invariants. This is a Qp2 -vector space of dimension n,
and we regain N0 from C by base change to WQ.

Fix a trace zero element δ ∈ Z×p2 , i.e., one for which δσ = −δ. We define a WQ-
sesquilinear (with respect to σ) form h on N by

h(x, y) := p−1δ−1〈x, Fy〉.

This satisfies h(τx, τ y) = h(x, y)σ
2

and thus defines a Qp2 -valued hermitian form
on C , which one checks to be non-degenerate. Note that, since p is odd and
Nm(Qp2 ) = {α ∈ Qp | v(α) ≡ 0(2)} (where Nm denotes the norm of Qp2/Qp),
non-degenerate hermitian forms on finite-dimensional Qp2 -vector spaces are classi-
fied by the parity of the valuation of their determinant (see [Ja, Theorem 3.1]). In our
situation, the signature condition for X implies that the valuation of the determinant
of h is odd. For a W -lattice L in N0, denote by L] the dual of L with respect to h, i.e.,

L] := {x ∈ N0 | h(x, L) ⊆W}.
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One checks L] = (V−1L)∨ = FL∨. Note that taking the dual with respect to h is not
an involution on the set of W -lattices in N0. Indeed, one has L]] = τL, thus the self-
dual lattices in N0 are the τ -invariant ones, i.e., those which arise from Zp2 -lattices
in C via scalar extension.

Proposition 2.8 (Vollaard, [Vo, Proposition 1.12]) N(F) may be identified with the
set of W -lattices A ⊂ N0 satisfying the chain condition

pA
1
⊂ A] n−1

⊂ A.

Proof Associate to a lattice M = M0 ⊕M1 in N(F) the lattice

A := M0

in N0. As M is self-dual, we have M1 = M∨0 = F−1M]
0. Thus, the chain condition

for M translates into the chain condition claimed in the proposition.
On the other hand, associate to a given A ⊂ N0 with the imposed properties a

lattice M ∈ N(F) by setting

M0 := A, M1 := F−1A].

These constructions are clearly inverse to each other.

3 The Bruhat–Tits Stratification

In this section, we recall Vollaard’s and Wedhorn’s construction of the Bruhat–Tits
stratification of Nred. For proofs, see [Vo] and [VW].

Definition 3.1 For any odd integer 1 ≤ t ≤ n, set

L(t) := {Λ ⊂ C a Zp2 -lattice | pΛ ⊆ Λ] t
⊂ Λ}.

L(t) will be called the set of vertices of type t .
For notational purposes, set

L :=
⋃
t
L(t).

For any vertex Λ, the integer t(Λ) will always denote the type of Λ. Furthermore tmax

will denote the maximal type occurring, i.e., the maximal odd integer less than or
equal to n, and we let Lmax := L(tmax).

The following proposition justifies our use of the word “vertex”.

Proposition 3.2 (Vollaard [Vo, Theorem 3.6]) The set L is canonically in bijection
with the set of vertices of the Bruhat–Tits building B

(
SU(C, ph),Qp

)
. Given two lat-

tices Λ 6= Λ̃ ∈ L, one of them contains the other if and only if the corresponding vertices
neighbour each other in the simplicial complex of B

(
SU(C, ph),Qp

)
.

https://doi.org/10.4153/CJM-2013-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-004-1


Global Structure of Special Cycles on Unitary Shimura Varieties 1135

Note that we will frequently consider L as a simplicial complex with the simplicial
complex structure induced by this bijection.

Definition 3.3 Let Λ ∈ L. Set

V(Λ) := {A ∈ N(F) | A ⊆ ΛW}.

Here, points of N(F) are viewed as W -lattices in N0 via Proposition 2.8, and ΛW

denotes the scalar extension Λ⊗Zp2 W , which is a W -lattice in N0.

3.4 Let Λ ∈ L be of type t . Vollaard and Wedhorn show that V(Λ) is the set of F-
valued points of a (t − 1)/2-dimensional irreducible smooth projective subvariety of
Nred over F, which we denote by NΛ [VW, equation 3.3.2 and Corollary 3.11]. They
also show the following facts about the V(Λ) in [VW]:

(1) Theorem 4.1(4): N(F) =
⋃

L V(Λ).

(2) Theorem 4.1(1): V(Λ) ⊂ V(Λ̃)⇔ Λ ⊂ Λ̃.
(3) Theorem 4.1(2): V(Λ) ∩ V(Λ̃) is nonempty if and only if Λ ∩ Λ̃ is a vertex, in

which case it equals V(Λ ∩ Λ̃).
(4) Theorem 4.2(2): The irreducible components of Nred are precisely the NΛ corre-

sponding to the vertices Λ of maximal type tmax.

Furthermore they show [VW, Proposition 4.3] that we have a stratification of Nred

by the locally-closed subvarieties

N◦Λ := NΛ −
⋃

Λ̃(Λ

NΛ̃,

the so-called Bruhat–Tits stratification.

3.5 (Vollaard [Vo, Corollary 2.10]) Let Λ be a vertex of arbitrary type t . We will
need a convenient description of the set of Bruhat–Tits strata contained in V(Λ) in
terms of linear algebra over finite fields. To achieve this, set V := Λ/Λ]. This is a
t-dimensional Fp2 -vector space endowed with a non-degenerate hermitian form ph
induced by ph. For any odd t̃ ≤ t , the map

{Λ̃ ∈ L(t̃) | Λ̃ ⊆ Λ} → {U ⊂ V | dim U = (t − t̃)/2, U isotropic for ph}

Λ̃ 7→ Λ̃]/Λ] = (Λ̃/Λ])⊥

is a bijection.
In the same fashion, we get a description of the set of Bruhat–Tits strata con-

taining V(Λ). We just consider the (n − t)-dimensional non-degenerate hermitian
Fp2 -vector space (V ′, h), where V ′ := Λ]/pΛ and where h is induced by h. We then
have a bijection

{Λ̃ ∈ L(t̃) | Λ ⊆ Λ̃} ↔ {U ⊂ V ′ | dim U = (t̃ − t)/2, U isotropic for h}

Λ̃ 7→ pΛ̃/pΛ = (Λ̃]/pΛ)⊥.
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3.6 We will use the following generalization of the distance function on the sim-
plicial complex of B

(
SU(C),Qp

)
introduced in Terstiege’s paper [Te]. Let S be any

subset of L. Set NS :=
⋃

Λ̃∈S NΛ̃. Let Λ ∈ Lmax. We define the distance d(Λ, S)
to be 0 if Λ ∈ S. Otherwise d(Λ, S) is defined to be the minimal positive integer d
for which there exists a sequence Λ1, . . . ,Λd = Λ of vertices of maximal type such
that NΛ1 intersects NS non-trivially (i.e., there is a vertex in S whose intersection with
Λ1 is again a vertex) and such that the irreducible components NΛi , NΛi+1 of Nred in-
tersect non-trivially (i.e., the intersections Λi∩Λi+1 are vertices) for all 1 ≤ i ≤ d−1.

4 Special Cycles

In this section, we recall the notions of special homomorphisms and special cycles, as
defined by Kudla and Rapoport in [KR]. We will then show Proposition 1.1 and re-
duce our main theorem 1.4 to a question about connectedness of a certain simplicial
subcomplex of L and thus to Bruhat–Tits theory.

4.1 Let (Y, ιY, λY) be the triple (unique up to isogeny) consisting of a supersingular
p-divisible group Y of dimension 1 and height 2 over F, a Zp2 -action ιY on Y satis-
fying the signature condition (0,1) (i.e., inducing the action by scalar multiplication
via ϕ1 on LieY) and a p-principal polarization λY for which the Rosati involution
satisfies ιY(α)∗ = ιY(ασ). Note that (Y, ιY) admits a unique lift to W as a formal
Zp2 -module, which we denote by (Y , ιY ) [KR, Remark 2.5].

Definition 4.2 (Kudla–Rapoport, [KR, Definition 3.1]) The space of special ho-
momorphisms is defined to be the Qp2 -vector space

V := HomZp2 (Y,X)⊗Z Q,

endowed with the non-degenerate Qp2 -valued hermitian form h given by

h(x, y) := λ−1
Y ◦ y∨ ◦ λX ◦ x ∈ EndZp2 (Y)⊗Z Q,

identifying EndZp2 (Y)⊗Q with Qp2 via the isomorphism ιY.

Definition 4.3 (Kudla–Rapoport, [KR, Definition 3.2]) Let 1 ≤ m ≤ n = dimV
be an integer. Let x = (x1, . . . , xm) ∈ Vm be a tuple of special homomorphisms. The
special cycle associated to x, denoted Z(x), is the formal subscheme of N associating
to a scheme S ∈ NilpW the set of tuples (X, ιX, λX, ρX) ∈ N(S) for which all the
quasi-homomorphisms

(Y ×W S)×W F = Y×F S
xi−→ X×F S

ρ−1
X−−→ X ×W F

lift to Zp2 -linear homomorphisms Y ×W S→ X.
In the case of a single special homomorphism x ∈ V, we write

Z(x) := Z((x)).
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Given two tuples x = (x1, . . . , xm) and z = (z1, . . . , zl), we will occasionally write

Z(x, z) := Z((x1, . . . , xm, z1, . . . , zl)).

Definition 4.4 For x ∈ Vm, the fundamental matrix T(x) is the hermitian matrix(
h(xi , x j)

)
i, j
∈ Hermm(Qp2 ).

4.5 It is obvious from the definition that Z(x) ∩ Z(z) = Z(x, z) for any tuples x, z
of special homomorphisms.

Kudla and Rapoport prove in [KR, Proposition 3.5] that for any special homo-
morphism x 6= 0, the special cycle Z(x) is either empty or a relative effective divisor
in N, in particular a closed formal subscheme of N.

By Lemma 3.9 of [KR], we may identify (V, h) with (C, h), and this induces an
identification

Z(x)(F) = {A ∈ N(F) | xi ∈ A]∀i},

where x = (x1, . . . , xm) is considered as a tuple of special homomorphisms on the
left-hand side and as a tuple of elements of C on the right-hand side. In particular,
Z(x)red is nonempty if and only if all entries of the fundamental matrix are integral,
i.e., if and only if T(x) ∈ Hermm(Zp2 ).

4.6 Whenever we talk about “a tuple x ∈ Vm of special homomorphisms”, we will
simplify notation and exclude pathological cases by making the following assump-
tions on x unless specified otherwise.

First, we assume that T(x) ∈ Hermm(Zp2 ). Furthermore, the action ιY defines

an action of GLm(Zp2 ) on Ym
, which induces a right action of GLm(Zp2 ) on Vm by

precomposition. One has Z(x) = Z(x.g) for any g ∈ GLm(Zp2 ), i.e., the special
cycle Z(x) does depend on the orbit of x under the GLm(Zp2 )-action only [KR, Re-
mark 3.3(i)]. One then checks

T(x.g) = gt · T(x) · g(σ).

As p is odd and Qp2 is unramified over Qp, each orbit of the right GLm(Zp2 )-action
on Hermm(Zp2 ) given by this formula has a representative of diagonal form [Ja, Sec-
tion 7]. Thus we may and will assume that T(x) has diagonal form, i.e., that the xi

are h-perpendicular to each other.
We may also assume that T(x) is nonsingular,2 because otherwise there is some i

such that xi = 0 and then Z(xi) = N does not give any contribution.
In the following, we write r(xi) := v

(
h(xi , xi)

)
and refer to this number (which,

by our assumptions, is a nonnegative integer) as the “valuation of xi”.

In the remaining part of this section, we show Proposition 1.1, i.e., that Z(x)red is
a union of closed Bruhat–Tits strata NΛ and that it is pure of some dimension only
depending on the number of xi of valuation 0 involved.

2If m = n, then this is the case where the cycles do not meet in the generic fiber in the global situation.
See [KR2, Lemma 2.21].
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Lemma 4.7 Let x = (x1, . . . , xm) ∈ Vm. Let Λ ∈ L be a vertex such that the set
V(Λ) of F-valued points of the closed Bruhat–Tits stratum NΛ intersects Z(x)(F) non-
trivially. Then V(Λ) ⊆ Z(px)(F).

Proof Let Λ ∈ L be as assumed. Let A ∈ V(Λ) ∩ Z(x)(F). By definition, we have
xi ∈ A ⊆ Λ ⊆ p−1Λ] and thus pxi ∈ Λ]. But as A ∈ V(Λ) implies Λ] ⊆ A], the
condition pxi ∈ Λ] is sufficient for V(Λ) ⊆ Z(px).

4.8 Let x ∈ Vm. We fix the following notation:

S(x) := {Λ ∈ L | V(Λ) ⊆ Z(x)(F)}.

S(x) will be viewed as a simplicial subcomplex of L. Note that

Λ ∈ S(x)⇔ xi ∈ Λ]∀i.

We will later also use the notations S(x)(t) := S(x) ∩ L(t) and S(x)max := S(x)(tmax).

Proposition 4.9 Let x ∈ Vm. We have the equality

Z(x)red =
⋃

Λ∈S(x)
NΛ.

In other words, Z(x)red is a union of Bruhat–Tits strata.

Remark 4.10 Using the properties of the Bruhat–Tits stratification, the proposition
states that the simplicial complex S(x) contains the complete information about the
intersection behaviour of irreducible components of Z(x)red. In particular,

Z(x)red is connected if and only if S(x) is.

Proof of 4.9 As Z(x)red is a closed subscheme of Nred, hence locally of finite type over
the algebraically closed field F, it is enough to show

Z(x)(F) =
⋃

Λ∈S(x)
V(Λ).

For m = n, this is Proposition 4.1 of [KR].
For m < n, fix z = (zm+1, . . . , zn) ∈ Vn−m such that (x1, . . . , xm, zm+1, . . . , zn)

forms an orthogonal basis of V. Let A ∈ Z(x)(F) be arbitrary. Let Λ ∈ L be of
minimal type such that A ∈ V(Λ) = NΛ(F). The minimal type condition means
A ∈ N◦Λ(F). We have to show that the whole set V(Λ) belongs to Z(x)(F).

Since Nred is connected and the irreducible components are the Bruhat–Tits strata
coming from vertices of maximal type, Lemma 4.7 implies that for any special ho-
momorphism y and any vertex Λ̃, we find an integer l0 such that

V(Λ̃) ⊆ Z(pl y)(F) for l ≥ l0.

In particular, V(Λ) ⊆ Z(plz)(F) for l � 0. Thus A ∈ Z(x, plz)(F). Proposition 4.1
of [KR] now implies V(Λ) ⊆ Z(x, plz)(F) ⊆ Z(x)(F).
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Proposition 4.11 For x ∈ Vm, let

m1 := Card{1 ≤ i ≤ m | r(xi) = 0}.

Then Z(x)red is of pure dimension

dimZ(x)red = b(n−m1 − 1)/2c,

in other words, of pure codimension bm1/2c in Nred if n is even, of pure codimension
b(m1 + 1)/2c in Nred if n is odd.

Proof For m = n, this is Corollary 4.3 of [KR].
For m < n, choose z with the same properties as in the proof of Proposition 4.9.

By Proposition 4.9, all irreducible components of Z(x)red are Bruhat–Tits strata. Let
Λ, Λ̃ ∈ S(x) be such that NΛ,NΛ̃ are irreducible components of Z(x)red. We have to

show that t(Λ) = t(Λ̃).
However, by the same reasoning as in the mentioned proof, both V(Λ) and V(Λ̃)

are in Z(plz)(F) for l � 0. Thus, they are sets of F-valued points of irreducible
components of Z(x, plz)(F). Now apply [KR, Corollary 4.3].

5 The Kudla–Rapoport Stratification and Related Concepts

For the next four sections, we assume m = 1. In this section, we introduce a lattice-
theoretical stratification of Z(x)(F), following Kudla and Rapoport’s unpublished
notes [KR3]. For convenience of the reader, we give complete proofs. We also gener-
alize the ideas of [KR3] to give an analogous “stratification” of the set L of vertices.

5.1 Let x ∈ C ⊂ N0. Write x0 := x, x1 := F−1x ∈ N1. Set r = v
(

h(x, x)
)

. We
introduce the following notation:

N‖ := WQx0 + WQx1 ⊆ N, N⊥ := N⊥‖ ,

where ⊥ denotes the orthogonal complement with respect to 〈 · , · 〉. We then have
orthogonal projections

pr‖ : N � N‖, pr⊥ : N � N⊥.

Both N‖ and N⊥ are F-, V - and Zp2 -stable and 〈 · , · 〉 induces a non-degenerate form
on both of them.

For i = 0, 1, write

N‖,i := Ni ∩ N‖, N⊥,i := Ni ∩ N⊥.

As x ∈ C , the WQ-vector spaces N‖,0 and N⊥,0 have a canonical Qp2 -rational struc-
ture induced by C . In other words, writing

C‖ := N‖,0 ∩C, C⊥ := N⊥,0 ∩C,
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we have
N‖,0 = (C‖)⊗Qp2 WQ, N⊥,0 = (C⊥)⊗Qp2 WQ.

In particular, C⊥ is a (n − 1)-dimensional Qp2 -vector space. The hermitian form h
induces a non-degenerate hermitian form, which we also denote by h, on C⊥.

For any W -lattice M in N, write

M‖ := M ∩ N‖, M⊥ := M ∩ N⊥.

If M is Zp2 -stable, we also write for i = 0, 1

M‖,i = M ∩ N‖,i , M⊥,i = M ∩ N⊥,i .

Furthermore, for any W -lattice L in N‖ (resp. N⊥), we will denote the dual lattice
of L with respect to the form induced by 〈 · , · 〉 on N‖ (resp. N⊥) by L∨.

Let M be a W -lattice in N. One has obvious inclusions

M‖ ⊕M⊥ ⊆ M ⊆ pr‖(M)⊕ pr⊥(M).

Lemma 5.2 (Kudla–Rapoport, [KR3, Lemma 5.1]) Let M be self-dual. Then

M∨‖ = pr‖(M), M∨⊥ = pr⊥(M).

The quotient module

M/(M‖ ⊕M⊥) ⊆ (M∨‖ ⊕M∨⊥)/(M‖ ⊕M⊥) = (M∨‖ /M‖)⊕ (M∨⊥/M⊥)

is the graph of a W -linear isomorphism

γ : M∨‖ /M‖ → M∨⊥/M⊥,

which is an anti-isometry with respect to the WQ/W -valued symplectic forms induced
by 〈 · , · 〉 on M∨‖ /M‖ and M∨⊥/M⊥.

If M is F-, V -, and Zp2 -stable, we have induced σ-linear endomorphisms F and σ−1-
linear endomorphisms V , as well as induced Zp2 -actions, on M∨‖ /M‖ and M∨⊥/M⊥. In
this case, γ is equivariant for them.

Proof Let z ∈ pr‖(M). By definition, there exists y ∈ N⊥ with z + y ∈ M. For
any z ′ ∈ M‖, by self-duality of M, we know that 〈z, z ′〉 = 〈z + y, z ′〉 is in W . Thus,
z ∈ M∨‖ .

By duality, the other inclusion M∨‖ ⊆ pr‖(M) is equivalent to the following claim:

pr‖(M)∨ ⊆ M‖.
Let z ∈ pr‖(M)∨. Let z ′+ y ′ ∈ M, with z ′ ∈ N‖ and y ′ ∈ N⊥. Then 〈z, z ′+ y ′〉 =

〈z, z ′〉 is in W , since z ′ ∈ pr‖(M). This shows z ∈ M∨. By self-duality, we have
z ∈ M, proving the claim and thus the first equality

M∨‖ = pr‖(M).
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Next, we show that the projection

pr‖ : M/(M‖ ⊕M⊥)→ pr‖(M)/M‖

is a W -module isomorphism. We have the following commutative diagram:

M
pr‖
// //

��

pr‖(M)

��
��

M/(M‖ ⊕M⊥)
pr‖
// pr‖(M)/M‖.

From this, the surjectivity of pr‖ is immediate. To show the injectivity, take any
z ∈ M/(M‖ ⊕ M⊥) with pr‖(z) = 0. Let z be a preimage of z in M. We have to
show z ∈ M‖ ⊕ M⊥. But by choice of z, we know that pr‖(z) is in M‖, and thus
z − pr‖ z ∈ M ∩ N⊥ = M⊥.

Of course, the same proofs (with the ‖s and the ⊥s interchanged) work for the
other assertions so far.

All this means that M/(M‖ ⊕M⊥) is the graph of the W -linear isomorphism

γ := pr⊥ ◦ (pr‖)
−1 : M∨‖ /M‖ → M∨⊥/M⊥.

Explicitly, if z ∈ M∨‖ /M‖ is the coset of z ∈ M∨‖ , then γ(z) ∈ M∨⊥/M⊥ is the coset of

elements y ∈ M∨⊥ such that z + y ∈ M.
The symplectic form 〈 · , · 〉 is W -valued on M∨‖ × M‖ and M∨⊥ × M⊥ and thus

induces WQ/W -valued forms 〈 · , · 〉 on M∨‖ /M‖ and M∨⊥/M⊥. Denote the cosets of

z, z ′ ∈ M∨‖ by z resp. z ′ ∈ M∨‖ /M‖. Let y, y ′ ∈ M∨⊥ be representatives of γ(z) resp.

γ(z ′). Then we have

〈z, z ′〉 + 〈y, y ′〉 = 〈z + y, z ′ + y ′〉 ∈W,

since z + y and z ′ + y ′ are in M = M∨, and thus

〈z, z ′〉 + 〈γ(z), γ(z ′)〉 = 0.

In other words, γ is an anti-isometry for 〈 · , · 〉.
Now assume M to be F-stable. Let z ∈ M∨‖ /M‖. We want to show the F-

equivariance of γ, i.e.,
γ(Fz) = Fγ(z).

Let z ∈ M∨‖ be a representative of z and y ∈ M∨⊥ be a representative of γ(z), i.e.,

z + y ∈ M. Then Fz is a representative of Fz and Fy be a representative of Fγ(z) by
definition of F. But, by F-invariance of M, we have

Fz + Fy = F(z + y) ∈ M.

This means that Fy is a representative of γ(Fz), i.e., Fγ(z) = γ(Fz).
The proofs of V - and Zp2 -equivariance work analogously.
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Remark 5.3 One trivial, but particularly important special case is the equivalence

M‖ = M∨‖ ⇔ M⊥ = M∨⊥ ⇔ M = M‖ ⊕M⊥.

5.4 (Kudla–Rapoport [KR3, Section 5]) For any pair of integers (a, b), write

L(a,b) := p−aW x0 + p−bW x1 ⊂ N‖.

Any M ∈ N(F) decomposes into eigenspaces for the Zp2 -action, thus so does M‖,
hence M‖ is of the form M‖ = L(a,b) for some pair of integers (a, b). Since

FL(a,b) = p−bW x0 + p−a+1W x1 = L(b,a−1),

the signature condition for M implies a− 1 ≤ b ≤ a. An easy calculation yields

L∨(a,b) = L(r−b,r−a),

where r = v
(

h(x, x)
)

as defined at the beginning of this section. Thus the inclusion
M‖ ⊆ M∨‖ implies a + b ≤ r.

5.5 A given M ∈ N(F) is an F-valued point of the special cycle Z(x) if and only if
x0 = x ∈ M]

0 = FM1, i.e., if and only if x1 ∈ M1. Writing M‖ = L(a,b), this holds if
and only if a, b ≥ 0. We write

Z(x)(a,b) := {M ∈ Z(x)(F) | M‖ = L(a,b)}.

This yields a stratification (which will be referred to as the Kudla–Rapoport stratifica-
tion)3

Z(x)(F) = Z(x)(0,0) ∪ Z(x)(1,0) ∪ Z(x)(1,1) ∪ Z(x)(2,1) ∪ · · · ∪ Z(x)max,

where Z(x)max denotes the last occurring stratum, i.e., Z(x)( r
2 ,

r
2 ) if r is even, and

Z(x)( r+1
2 , r−1

2 ) if r is odd. (Of course, the union is disjoint.)

5.6 We may also consider vertices Λ as self-dual lattices in N. To do this, one simply
inverts the procedure of Proposition 2.8. Given a vertex Λ ∈ L, i.e., a Zp2 -lattice in
C , we associate the τ -invariant W -lattice ΛW := Λ⊗Zp2 W in N0. Then we set

Λ0 := ΛW , Λ1 := F−1Λ]
W .

The (Z/2Z)-graded W -module Λ• := Λ0 ⊕ Λ1 is a W -lattice in N which is obvi-
ously F-, V - and Zp2 -invariant, self-dual (with respect to 〈 · , · 〉) by construction,
and satisfies the signature condition

pΛ0 ⊆ FΛ1 = V Λ1
t
⊂ Λ0, pΛ1

t
⊂ FΛ0 = V Λ0 ⊆ Λ1,

3One may ask whether the Kudla–Rapoport strata are “strata” in the geometric sense, i.e., whether they
arise as sets of F-valued points of locally closed subsets of Z(x). This is probably true, but we will not use
this.
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where t = t(Λ). We write

Λ‖ := (Λ•)‖, Λ⊥ := (Λ•)⊥

and observe that Λ• satisfies the assumptions of Lemma 5.2. Writing Λ‖ = L(a,b), we
carry through the computations of the last two paragraphs. They yield the analogous
results

a− 1 ≤ b ≤ a; a + b ≤ r; Λ ∈ S(x)⇔ x1 ∈ Λ1 ⇔ b ≥ 0.

Thus we have a “stratification” of the simplicial complex S(x) that is analogous to the
Kudla–Rapoport stratification on Z(x)(F), i.e., we can write the set of vertices of S(x)
as a disjoint union

S(x) = S(x)(0,0) ∪ S(x)(1,0) ∪ · · · ∪ S(x)max,

where S(x)max = S(x)( r
2 ,

r
2 ) if r is even and S(x)max = S(x)( r+1

2 , r−1
2 ) if r is odd.

5.7 Finally, we translate our stratification results into the (N0, h) language. Recall
from the proof of Proposition 2.8 that we have a bijection

{F-, V -, Zp2 -invariant self-dual W -lattices in N} ↔ {W -lattices in N0}

M = M0 ⊕M1 7→ M0

with inverse
A 7→ A⊕ F−1A],

and that under this identification, the chain condition in N:

pM0
n−t
⊂ FM1

t
⊂ M0, pM1

t
⊂ FM0

n−t
⊂ M1

is equivalent to the chain condition in N0:

pM0
n−t
⊂ M]

0

t
⊂ M0.

Lemma 5.8 The assertion M‖ = L(a,b), i.e.,

M‖ = p−aW x0 ⊕ p−bW x1

is equivalent to
M‖,0 = p−aW x, (M]

0) ∩ N‖,0 = p−bW x,

where x = x0.

Proof The first identity is trivial. For the second, put together (M]
0) ∩ N‖,0 =

(FM1) ∩ N‖,0 and F(p−bW x1) = p−bW Fx1 = p−bW x0.
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6 Base Case I: The Case r = 0

We have now introduced all the tools needed for our proof of Theorems 1.2 and 1.4.
The aim of this section is to prove Theorem 1.2(i), which corresponds to r = r(x) =
v
(

h(x, x)
)

= 0, which we assume throughout this section. We will also prove The-
orem 1.4 in this case. The results are from the unpublished notes [KR3]; we give an
elaboration of those results and the proofs.

6.1 We saw in Proposition 2.8 that the set N(F) may be reconstructed from the
knowledge of (N0, h) alone. Since r is even, h is odd on C⊥ (i.e., has odd order of
determinant), which means that (N⊥,0, h) is isomorphic to the ϕ0-eigenspace of the
isocrystal obtained from the data used in defining the moduli scheme N(1, n − 2).
We fix an isomorphism, which then induces a bijection

N(1, n− 2)(F)↔ {A⊥ ⊂ N⊥,0 a W -lattice | pA⊥
1
⊂ A]

⊥
n−2
⊂ A⊥}.

The right hand side will be denoted by N⊥. Of course, N⊥ can be identified with the
set of self-dual F-, V - and Zp2 -invariant W -lattices M⊥ in N⊥ satisfying the signature
condition

pM⊥,0
n−2
⊂ FM⊥,1

1
⊂ M⊥,0, pM⊥,1

1
⊂ FM⊥,0

n−2
⊂ M⊥

by the usual construction.

Proposition 6.2 (Kudla–Rapoport [KR3, Proposition 5.2]) One has a map

N⊥ → Z(x)(F), M⊥ 7→ L(0,0) ⊕M⊥ ⊂ N,

which is a bijection with inverse

Z(x)(F)→ N⊥, M 7→ M⊥.

Proof Let M⊥ ∈ N⊥ be given. Using Remark 5.3, it follows immediately from the
self-duality of M⊥ that L(0,0)⊕M⊥ is self-dual. The stability conditions for L(0,0)⊕M⊥
follows from the ones for M⊥ and L(0,0), and the signature condition follows from the
one for M⊥ using FL(0,0) = L(0,−1). Finally, x1 ∈ (L(0,0)⊕M⊥)1 holds by construction.
Thus L(0,0) ⊕M⊥ ∈ Z(x)(F).

On the other hand, since r = 0, the Kudla–Rapoport stratification is trivial, i.e.,
Z(x) = Z(x)(0,0). In other words, for M ∈ Z(x)(F), one has

M‖ = L(0,0) = L∨(0,0) = M∨‖ .

Thus, Lemma 5.3 states that

M = L(0,0) ⊕M⊥

and that M⊥ is self-dual. The stability conditions for M⊥ are trivial, and the signa-
ture condition follows from the one for M and the equality FL(0,0) = L(0,−1). Also,
equation 6 shows that the two maps are inverse to each other.
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6.3 By the very same reasoning, using the “translation lemma” 5.8, we get an iden-
tification of the set of vertices of type t in S(x) with the set of Zp2 -lattices Λ⊥ in C⊥
satisfying the chain condition

pΛ⊥ ⊆ Λ]
⊥

t
⊂ Λ⊥.

Thus, applying Theorem 3.6 of [Vo], we have an isomorphism of simplicial com-
plexes

S(x) ∼= B
(

SU(C⊥, ph),Qp

)
,

proving Theorem 1.2(i).

Corollary 6.4 Theorem 1.4 holds true for x = (x) and r(x) = 0, i.e., Z(x)red is
connected in this case.

Proof It is a general fact from Bruhat–Tits theory (see e.g., [Ti, 2.2.1]) that the sim-
plicial complex of the Bruhat–Tits building B

(
SU(C⊥, ph),Qp

)
is connected. Now

use the isomorphism of Theorem 1.2(i) and Remark 4.10, which states that connect-
edness of S(x) implies connectedness of Z(x)red.

Remark 6.5 One can show that the map of Proposition 6.2 defines an isomorphism
of schemes Z(x)red

∼= N(1, n− 2)red. Indeed, Kudla and Rapoport show that Z(x) is
isomorphic to N(1, n− 2) as formal schemes. The statement is included and proved
in Terstiege’s note [Te2] as Lemma 2(i).

We will not need to use those results in the following.

7 Base Case II: The Case r = 1

We now come to the proof of Theorem 1.2(ii), i.e., to the case r = r(x) =
v
(

h(x, x)
)

= 1, which we assume throughout this section. We will also prove Theo-
rem 1.4 and compute the Kudla–Rapoport stratification in this case.

7.1 As in the last section, we will relate the incidence behaviour of irreducible com-
ponents of Z(x)red to the simplicial complex of the building B

(
SU(C⊥, ph),Qp

)
.

We know from 5.6 and [Vo, Theorem 3.6] that we have an isomorphism of simplicial
complexes

L⊥ ∼= B
(

SU(C⊥, ph),Qp

)
,

where the underlying set ofL⊥ is the set of all F-, V - andZp2 -invariant W -lattices Λ⊥
in N⊥ that are self-dual with respect to 〈 · , · 〉, are τ -invariant, and satisfy some chain
condition

pΛ⊥,0 ⊆ Λ]
⊥,0 ⊆ Λ⊥,0,

and where two distinct lattices Λ⊥, Λ̃⊥ in L⊥ by definition neighbour each other if
and only if Λ⊥,0 ⊂ Λ̃⊥,0 or Λ̃⊥,0 ⊂ Λ⊥,0. We will use the terms “vertex”, “type”, L(t)

⊥ ,
etc., as in the “non-⊥” situation.

Note that, since r is odd, the hermitian form h on C⊥ has even order of determi-
nant. Thus, the type of a vertex in B

(
SU(C⊥, ph),Qp

)
is an even integer between 0

and n− 1.
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Remark 7.2 By Proposition 4.11, the variety Z(x)red is of pure codimension 0 in
Nred. Its irreducible components are thus all of the form NΛ with Λ ∈ Lmax. Hence
in order to show connectedness it is sufficient to show that all vertices of maximal
type in S(x) are in the same connected component of S(x).

Lemma 7.3 For any Λ ∈ S(x)max, we have Λ‖ = L(1,0).

Proof Let Λ ∈ S(x)max. From the general considerations in 5.6, writing Λ‖ = L(a,b),
we get either (a, b) = (1, 0) or (a, b) = (0, 0). We have to show that the latter case
does not occur.

We first assume n to be odd. Then tmax = n and thus the signature condition for Λ
may be written as

pΛ0 = FΛ1
n
⊂ Λ0, pΛ1

n
⊂ FΛ0 = Λ1.

In particular, we have

L(b,a−1) = FΛ‖ = pΛ‖,0 ⊕ Λ‖,1 = L(a−1,b).

This means b = a− 1, and if we ask for Λ to be in S(x), we get Λ‖ = L(1,0).
Now assume n to be even. Then tmax = n − 1 and a vertex Λ of maximal type

satisfies the signature condition

pΛ0
1
⊂ FΛ1

n−1
⊂ Λ0, pΛ1

n−1
⊂ FΛ0

1
⊂ Λ1.

Now unfortunately FΛ‖ = p(Λ0)‖ ⊕ (Λ1)‖ does not follow immediately, so we have
to put more work into this case.

Assume Λ‖ = L(0,0). By Lemma 5.2, the W -module Λ•/(Λ‖⊕Λ⊥) is the graph of
an isomorphism γ : Λ∨‖ /Λ‖ → Λ∨⊥/Λ⊥. Since pr‖ and pr⊥ map N0 to N‖,0 = (N‖)0

and N⊥,0, respectively, this isomorphism restricts to an isomorphism

γ0 : Λ∨‖,1/Λ‖,0 → Λ∨⊥,1/Λ⊥,0

whose graph is Λ0/(Λ‖,0 ⊕ Λ⊥,0). Of course, an analogous result holds for the de-
gree 1 component. We have inclusion diagrams

Λ∨‖,1 ⊕ Λ∨⊥,1
∪

FΛ1
n−1
⊂ Λ0

∪ ∪
F(Λ‖,1 ⊕ Λ⊥,1)

α
⊂ Λ‖,0 ⊕ Λ⊥,0 ,

Λ∨‖,0 ⊕ Λ∨⊥,0
∪
Λ1

1
⊃ FΛ0

∪ ∪

Λ‖,1 ⊕ Λ⊥,1
β
⊃ F(Λ‖,0 ⊕ Λ⊥,0).

The indices for the inclusions in the middle columns all equal 1 by the graph condi-
tion just mentioned, since Λ∨‖ /Λ‖ = F · p−1x0 ⊕ F · p−1x1. The index for the left
column equals 1 by applying F on the third column, while the index for the right col-
umn equals 1 by applying F on the second column. Finally, the indices in the middle
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row come from the signature condition for Λ. It follows that α = n − 1 and β = 1,
hence the signature condition for Λ‖ ⊕ Λ⊥ ( Λ•:

p(Λ‖,0 ⊕ Λ⊥,0)
1
⊂ F(Λ‖,1 ⊕ Λ⊥,1)

n−1
⊂ Λ‖,0 ⊕ Λ⊥,0,

p(Λ‖,1 ⊕ Λ⊥,1)
n−1
⊂ F(Λ‖,0 ⊕ Λ⊥,0)

1
⊂ Λ‖,1 ⊕ Λ⊥,1.

By assumption, we have

FΛ‖ = FL(0,0) = L(0,−1) = Λ‖,0 ⊕ pΛ‖,1

and thus

(1) pΛ⊥,0 = FΛ⊥,1
n−1
⊂ Λ⊥,0, pΛ⊥,1

n−1
⊂ FΛ⊥,0 = Λ⊥,1.

On the other hand,

Λ∨‖ /Λ‖ = L(1,1)/L(0,0) = F · p−1x0 ⊕ F · p−1x1

is endowed with a σ-linear endomorphism F induced by the Frobenius F. As usual,
we write F0 resp. F1 for the restriction of F to (Λ∨‖ /Λ‖)0 = Λ∨‖,1/Λ‖,0 resp. (Λ∨‖ /Λ‖)1.

Since FL(1,1) = L(1,0), we get that F1 is an isomorphism, while F0 is the zero map.
We have the same notions of F0 and F1 on Λ∨⊥/Λ⊥. By Lemma 5.2, we have a

Zp2 -linear isomorphism
γ : Λ∨‖ /Λ‖ → Λ∨⊥/Λ⊥,

and γ is F-equivariant.
Thus, on Λ∨⊥/Λ⊥, we have that F1 is an isomorphism, while F0 is the zero map.

The latter means FΛ∨⊥,1 = Λ⊥,1. By the injectivity of F, we get that FΛ⊥,0 is properly
contained in Λ⊥, contradicting the signature condition (1).

Corollary 7.4 For any Λ ∈ S(x)max, the corresponding self-dual W -lattice Λ• in N is
of the form Λ• = L(1,0) ⊕ Λ⊥ with

Λ⊥ ∈ Lmax
⊥ = L(tmax−1)

⊥ .

Proof Lemma 7.3 states Λ‖ = L(1,0). This is self-dual, thus by Remark 5.3, we get
the desired direct sum decomposition. Checking that Λ⊥ is a vertex of maximal type
tmax − 1 in C⊥ is straightforward.

7.5 We now come to the proof of Theorem 1.2(ii). It is immediate that, given a
vertex Λ⊥ ∈ L⊥, the lattice

Λ := (L(1,0) ⊕ Λ⊥)τ=1
0

is a vertex in S(x) of type t(Λ) = t(Λ⊥) + 1. Thus, we have injections of sets

Φ : L(t)
⊥ → S(x)(t+1), Λ⊥ 7→ (L(1,0) ⊕ Λ⊥)τ=1

0 .
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We just proved that this map is a bijection in maximal type. However, it is never
surjective in lower types (see Remark 7.6 below). Since Z(x)red is of pure codimen-
sion 0, any vertex in S(x) is contained in some vertex in S(x)max and we can thus still
compute S(x) from L⊥. We have

S(x) = {Λ ∈ L | ∃Λ̃⊥ ∈ L⊥ : Λ ⊆ (L(1,0) ⊕ Λ̃⊥)τ=1
0 }.

Also, the induced map
Φ : L⊥ → S(x)

is obviously a morphism of simplicial complexes. That is, if two vertices Λ⊥, Λ̃⊥
neighbour each other in B

(
SU(C⊥, ph),Qp

)
, then Λ = (L(1,0) ⊕ Λ⊥)τ=1

0 and Λ̃ =

(L(1,0) ⊕ Λ̃⊥)τ=1
0 neighbour each other in S(x). This proves Theorem 1.2(ii).

Remark 7.6 As claimed in the previous paragraph 7.5, the map Φ is never surjective
in lower than maximal types.

Indeed, let Λ ∈ L be of type t = t(Λ) ≥ 3. Assume Λ• = L(1,0) ⊕ Λ⊥. As

explained in 3.5, the set of vertices Λ̃ ⊂ Λ of type t − 2 is in bijection with the set
of isotropic lines of the t-dimensional non-degenerate hermitian Fp2 -vector space

(Λ/Λ], ph).

In the same way, the set of lattices Λ̃⊥,0 in L(t−3)
⊥ satisfying Λ̃⊥,0 ⊂ Λ⊥,0 is in

bijection with the set of isotropic lines of the (t − 1)-dimensional non-degenerate
hermitian Fp2 -vector space (Λ⊥,0/Λ

]
⊥,0, ph).

But Vollaard and Wedhorn have counted those two sets of isotropic lines in [VW,
Example 4.6]. While there are

ν(t − 1, t) = (pt + 1)

t−3
2∑

j=0

p2 j

isotropic lines in (Λ/Λ], ph), there are

ν(t − 2, t − 1) = (pt−2 + 1)

t−3
2∑

j=0

p2 j < ν(t − 1, t)

isotropic lines in (Λ⊥,0/Λ
]
⊥,0, ph).4

Therefore, Φ is not surjective on the level of Bruhat–Tits strata contained in a
given stratum and thus cannot be surjective in any type t < tmax.

Also, let Λ ∈ L. Assume Λ• = L(1,0) ⊕ Λ⊥. Then neighbours of Λ⊥ give rise
to neighbours of Λ via Φ. However, the vertex Λ has more neighbours than Λ⊥ by
the considerations above. It may occur (not in maximal type) that two Bruhat–Tits
strata intersect although the intersection of the corresponding vertices in C⊥ (if those
exist) is not a vertex in C⊥.

4See [VW, Example 4.6] for an explanation of the notation ν(t1, t2).
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Corollary 7.7 Theorem 1.4 holds true for x = (x) and r(x) = 1, i.e., Z(x)red is
connected in this case.

Proof Consider two arbitrary irreducible components NΛ, NΛ̃ of Z(x)red. As Z(x)red

is of pure codimension 0 in Nred, those are irreducible components in Nred and the
corresponding vertices Λ and Λ̃ are of maximal type. By the preceding corollary, Λ⊥
and Λ̃⊥ are vertices of maximal type in L⊥.

As in the case r = 0, the simplicial complex B
(

SU(C⊥, ph),Qp

)
is connected by

Bruhat–Tits theory. By our identification of L⊥ with that complex, we find a “path”

Λ⊥ = Λ(0)
⊥ ,Λ

(1)
⊥ , . . . ,Λ

(s)
⊥ = Λ̃⊥

consisting of vertices in L⊥ such that, for 1 ≤ i ≤ s, the two consecutive vertices
Λ(i−1)
⊥ , Λ(i)

⊥ neighbour each other. Now set

Λ(i) := (L(1,0) ⊕ Λ(i)
⊥ )τ=1

0 .

The Λ(i) are vertices in C , all in S(x), with Λ(0) = Λ, Λ(s) = Λ̃, and two consecutive
Λ(i) neighbour each other.

Thus, Λ and Λ̃ are in the same connected component of the simplicial complex
S(x).

We will now give an explicit computation of the Kudla–Rapoport stratification
Z(x)(F) = Z(x)(0,0) ∪ Z(x)(1,0).

Lemma 7.8 (Kudla–Rapoport, [KR3, Proposition 5.2]) All lattices M in Z(x)(1,0)

have τ -invariant degree zero component M0.

Proof Let M ∈ Z(x)(1,0). Then by self-duality of L(1,0) and Remark 5.3, we have
M = M‖ ⊕ M⊥ = L(1,0) ⊕ M⊥. It is thus sufficient to show τ -invariance of both
M‖,0 and M⊥,0. The former is automatic, because x ∈ C . For the latter, we use the
signature condition for M,

p(M‖,0 ⊕M⊥,0)
n−1
⊂ F(M‖,1 ⊕M⊥,1)

1
⊂ M‖,0 ⊕M⊥,0,

p(M‖,1 ⊕M⊥,1)
1
⊂ F(M‖,0 ⊕M⊥,0)

n−1
⊂ M‖,1 ⊕M⊥,1.

By assumption, we have

FM‖ = FL(1,0) = L(0,0) = pM‖,0 ⊕M‖,1

and thus

pM⊥,0
n−1
⊂ FM⊥,1 = M⊥,0, pM⊥,1 = FM⊥,0

n−1
⊂ M⊥,1.

In particular, F2M⊥ = pM⊥, i.e., τM⊥,0 = M⊥,0.
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The τ -invariance of M0 means that M0 arises from some lattice in C via scalar
extension. Thus, all M ∈ Z(x)(1,0) are of the form M = Λ• = ΛW ⊕ F−1Λ]

W for
some type 1 vertex Λ ∈ L(1). The converse does not hold in general, as will be clear
from the examples n = 3, 4 below. We thus still have to give a necessary and sufficient
condition for Λ ∈ L(1) to define a lattice Λ• in Z(x)(1,0). Note that Λ• ∈ Z(x)(1,0)

means that Λ• = L(1,0) ⊕ Λ⊥, i.e., Λ = p−1Zp2 x ⊕ (Λ⊥)τ=1
0 .

Proposition 7.9 Let Λ ∈ S(x) be of arbitrary type t. Then Λ• = Λ‖ ⊕ Λ⊥ if and
only if all irreducible components of Nred that contain NΛ are contained in Z(x)red.

Proof By 3.5, the set of irreducible components NΛ̃ of Nred that contain NΛ is
in bijection with the set of ((tmax − t)/2)-dimensional isotropic subspaces of the
(n− t)-dimensional hermitian Fp2 -vector space (V ′, h), where V ′ := Λ]/pΛ and h

is induced by h. As the hermitian form h is non-degenerate, the intersection of all
such subspaces is trivial, implying

Λ =
⋂

{Λ̃∈Lmax|Λ⊂Λ̃}
Λ̃.

If we assume that all irreducible components V(Λ̃) of N(F) are in Z(x)(F), then
all Λ̃ ⊃ Λ of type tmax satisfy Λ̃‖ = L(1,0) by Lemma 7.3. Thus Λ‖ = L(1,0) and
Remark 5.3 implies the “if” part.

For the “only if” part, note that

Λ• = Λ‖ ⊕ Λ⊥ ⇒ Λ‖ = L(1,0) ⇒ p−1x ∈ Λ⇔ x ∈ pΛ

and that, for any vertex Λ̃ containing Λ, we have the chain of inclusions

pΛ ⊆ pΛ̃ ⊆ Λ̃] ⊆ Λ].

Thus x ∈ pΛ implies x ∈ Λ̃], which means Λ̃ ∈ S(x). The statement on irreducible
components is simply obtained by specializing to t(Λ̃) = tmax in these considerations.

Proposition 7.10 Let Λ ∈ S(x) be of type tmax − 2. Then if Λ• = Λ‖ ⊕Λ⊥, i.e., if Λ

comes from a vertex of B
(

SU(C⊥),Qp

)
, then all the irreducible components of Nred

passing through the codimension 1 stratum NΛ are in Z(x)red.
Otherwise, there is exactly one irreducible component NΛ̃ of Nred that contains NΛ

and is contained in Z(x)red.

Proof The first assertion is the case t(Λ) = tmax − 2 of the last proposition.
For the second one, first we observe that there is (in any case) an irreducible com-

ponent NΛ̃ contained in Z(x)red and containing NΛ. This is because Z(x)red has pure
codimension 0 in Nred. Now assume that two irreducible components of Z(x)red pass
through NΛ, i.e.,

V(Λ) ⊆ V(Λ(1)) ∩ V(Λ(2))
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for some distinct Λ(1), Λ(2) ∈ S(x)max. Then the inclusion is an equality, because NΛ

has codimension 1 in Nred and the intersection NΛ(1) ∩NΛ(2) is irreducible. Therefore
by [VW, Theorem 4.1(2)], we have Λ = Λ(1) ∩ Λ(2) and in particular

Λ‖ = Λ(1)
‖ ∩ Λ(2)

‖ .

Both irreducible components NΛ(1) , NΛ(2) are in Z(x)red, thus Λ(i)
‖ = L(1,0) for i = 1, 2

and therefore Λ‖ = L(1,0). By Remark 5.3, we have Λ• = Λ‖ ⊕ Λ⊥.

Remark 7.11 Note that, in the situation of the proposition, the set of irre-
ducible components of Nred containing NΛ is in bijection with the set of isotropic
lines of the (n − t(Λ))-dimensional non-degenerate hermitian Fp2 -vector space

(V ′ := Λ]/pΛ, h).
Vollaard and Wedhorn computed the cardinality of this set in [VW, Example 4.6].

The answer is p + 1 if n is odd, p3 + 1 if n is even.

Example 7.12 (n = 3) We now examine the first non-trivial case n = 3. Vollaard
computed the simplicial complex of B

(
SU(C⊥, ph),Qp

)
in [Vo, Proposition 3.8].

We cite the following results:

• Nred is pure of dimension 1.
• The irreducible components of Nred are isomorphic to plane Fermat curves

(xp+1
0 + xp+1

1 + xp+1
2 = 0)

in P2
F.

• Irreducible components intersect precisely in the Fp2 -valued points, of which
there are p3 + 1 on a given irreducible component.

• In such a point, precisely p + 1 irreducible components intersect.

For special homomorphisms x of valuation 0, Terstiege shows [Te, Proposition 2.1(1)]
that Z(x)red consists of a single F-valued point, which is τ -invariant. This agrees
with the results of Section 6. Indeed, if r(x) = 0, then C⊥ is two-dimensional, with
ord det(C⊥, h) odd. Therefore, only one type (namely type 1) of vertices occurs in
B
(

SU(C⊥, ph),Qp

)
and the latter is connected, hence consists of a single point.

By Theorem 1.2(i), S(x) consists of a single point, which by Proposition 4.9 implies
Terstiege’s statement.
Let now x be a special homomorphism of valuation 1. Terstiege showed in [Te,
Proposition 2.1(3)] that Z(x)red is connected of pure dimension 1, and that, given
Λ ∈ S(x)max, there are precisely p + 1 out of the p3 + 1 type 1 vertices Λ̃ ⊂ Λ for
which all p + 1 irreducible components passing through NΛ̃ belong to Z(x)red. He

also showed that for the other p3 − p vertices Λ̃ ⊂ Λ, the stratum NΛ is the only
irreducible component out of those passing through NΛ̃ which belongs to Z(x)red.
We will deduce this from our general results as an illustration.

In fact, connectedness has just been proven in general for special homomorphisms
of valuation 1. Fixing a vertex Λ of maximal type 3 in S(x)max, we also saw that Λ•
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decomposes as Λ• = Λ‖ ⊕ Λ⊥, with Λ⊥ a vertex of type 2 in L⊥. The vertices Λ̃

of type 1 contained in Λ fall into two categories, those for which Λ̃‖ = L(0,0) and

those for which Λ̃‖ = L(1,0). By Remark 5.3 and Proposition 7.10, the latter are
exactly those for which all irreducible components passing through NΛ̃ are in Z(x)red,
while in the former case, the closed stratum NΛ is the only irreducible component of
Z(x)red passing through NΛ̃.

We thus have to count the Λ̃ as above which satisfy Λ̃‖ = L(1,0). By Remark 5.3,

those are precisely those for which Λ̃• decomposes as Λ̃• = Λ̃‖ ⊕ Λ̃⊥, with Λ̃⊥ a
vertex of type 0 in L⊥, contained in the vertex Λ⊥ of type 2. Now the argument of 3.5
does not in any way depend on the order of determinant. Thus we may just count
isotropic subspaces in the 2-dimensional hermitian Fp2 -vector space Γ/Γ] = Γ/pΓ,
where Γ := (Λ⊥)τ=1

0 . It follows from [VW, Example 4.6] that there are precisely p+1
of those, yielding Terstiege’s result.

This argument also shows that the “superspecial” stratum Z(x)(1,0) consists exactly
of the points where the irreducible components of Z(x)red intersect.

Example 7.13 (n = 4) The other one-dimensional case is n = 4. For this case, the
global structure of the reduced locus Nred was computed by Vollaard and Wedhorn
[VW, Example 4.8] with the following results:

• Nred is pure of dimension 1.
• The irreducible components of Nred are isomorphic to plane Fermat curves

(xp+1
0 + xp+1

1 + xp+1
2 = 0) in P2

F.
• Irreducible components intersect precisely in the Fp2 -valued points, of which

there are p3 + 1 on a given irreducible component.
• In such a point, precisely p3 + 1 irreducible components intersect.

In other words, the irreducible components are isomorphic to those in the case n = 3,
but there are more of them passing through a given zero-dimensional Bruhat–Tits
stratum.

We know from the results of the last section that, given a special homomorphism
x ∈ V of valuation 0, we have an isomorphism of formal schemes Z(x) ∼= N(1, 2).
By 6.3, this bijection is compatible with the Bruhat–Tits stratifications of Z(x)red and
N(1, 2)red. Thus computing the combinatorics of B

(
SU(C⊥, ph),Qp

)
shows the

following.

Proposition 7.14 Let n = 4. Let x ∈ V be of valuation 0. Then Z(x)red is of pure
codimension 0. Given any vertex Λ of type 1 in S(x), precisely p + 1 out of the p3 + 1
irreducible components of Nred passing through NΛ belong to Z(x)red.

Now assume r(x) = v
(

h(x, x)
)

= 1. We have proved that Z(x)red is connected.
Let Λ ∈ L be of maximal type 3. By the same argument as in the case n = 3, one
shows that out of the p3 + 1 vertices Λ̃ of type 1 contained in Λ, precisely p + 1 have
the property that Λ̃• decomposes as Λ̃• = Λ̃‖⊕Λ̃⊥. Again, one uses Proposition 7.10
and computes the “superspecial” stratum as for n = 3 to get the next proposition.
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Proposition 7.15 Let n = 4. Let x ∈ V be of valuation 1. Then Z(x)(F) is of pure
codimension 0. All lattices in the “superspecial” stratum Z(x)(1,0) come from vertices
in L, i.e., are τ -invariant. Out of the p3 + 1 type 1 vertices contained in any given type
3 vertex Λ ∈ S(x)max, precisely p + 1 give rise to points in Z(x)(1,0) via 5.6.

Let Λ ∈ S(x)max. Let Λ̃ be a vertex of type 1, contained in the type 3 vertex Λ. If Λ̃•
belongs to Z(x)(1,0), then all p3 + 1 irreducible components of Nred passing through NΛ̃

belong to Z(x)red. If Λ̃• belongs to Z(x)(0,0), then NΛ is the only irreducible component
of Z(x)red passing through NΛ̃.

8 Recursion Step: The Case r > 1

In this section, we prove Theorem 1.2(iii), i.e., compute S(x) in terms of S(p−1x)
under the assumption r = (x) = v

(
h(x, x)

)
> 1. As a consequence, we obtain a

formula for S(x) for any r ≥ 0 and a complete proof of Theorem 1.4 for m = 1 by
induction on br/2c, starting with br/2c = 0, i.e., with the two cases treated in the
previous two sections. In this section, we assume r > 1 unless specified otherwise.

8.1 We may reformulate Lemma 4.7 as the inclusion of subsets of L,{
Λ ∈ Lmax | d

(
Λ, S(p−1x)

)
≤ 1
}
⊆ S(x)max.

We will prove Lemma 8.4, which implies that this inclusion is an equality (see 8.5),
thus giving an explicit description of the set S(x) in terms of S(p−1x) and proving
Theorem 1.2(iii). (Note that we know from Proposition 4.11 that Z(x)red is of pure
codimension 0. Thus, all irreducible components of Z(x)red correspond to vertices of
maximal type, i.e., S(x)max determines S(x).)

Lemma 8.2 Let Λ ∈ S(x)max. Then either Λ ∈ S(p−1x) or Λ‖ = L(1,0).

Proof Let Λ ∈ S(x)max. From the general considerations in 5.6, writing Λ‖ = L(a,b),
we get the three possibilities b ≥ 1 (i.e., Λ ∈ S(p−1x) by Lemma 5.8), (a, b) = (1, 0)
and (a, b) = (0, 0). We have to show that the last case does not occur.

If n is odd, one proceeds exactly as in the proof of Lemma 7.3. If n is even, we run
into the same difficulties as in that proof. We assume Λ‖ = L(0,0) and proceed as in
the mentioned proof to get the inclusion diagram

Λ∨‖,1 ⊕ Λ∨⊥,1
∪

FΛ1
n−1
⊂ Λ0

∪ ∪
F(Λ‖,1 ⊕ Λ⊥,1)

α
⊂ Λ‖,0 ⊕ Λ⊥,0 ,

Λ∨‖,0 ⊕ Λ∨⊥,0
∪
Λ1

1
⊃ FΛ0

∪ ∪

Λ‖,1 ⊕ Λ⊥,1
β
⊃ F(Λ‖,0 ⊕ Λ⊥,0),

where the indices for all inclusions in the columns are r. It follows that α = n − 1
and β = 1, which implies the signature condition

(2) pΛ⊥,0 = FΛ⊥,1
n−1
⊂ Λ⊥,0, pΛ⊥,1

n−1
⊂ FΛ⊥,0 = Λ⊥,1.
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On the other hand, Λ∨‖ /Λ‖ is the W -module

L(r,r)/L(0,0) = (W/prW )p−rx0 ⊕ (W/prW )p−rx1,

endowed with a σ-linear endomorphism F induced by F. As usual, we write F0,
resp. F1, for the restriction of F to (Λ∨‖ /Λ‖)0 = Λ∨‖,1/Λ‖,0, resp. (Λ∨‖ /Λ‖)1. Since

FL(r,r) = L(r,r−1) and FL(1,0) = L(0,0), we get that, while F1 is an isomorphism, F0 has
the non-trivial kernel

ker(F0) = (pr−1W/prW )p−rx0.

We have the same notions of F0 and F1 on Λ∨⊥/Λ⊥. By Lemma 5.2, we have a W -
linear isomorphism

γ : Λ∨‖ /Λ‖ → Λ∨⊥/Λ⊥,

and γ is F-equivariant.
Thus, on Λ∨⊥/Λ⊥, we have that F1 is an isomorphism, while the kernel of F0 is

a free (pr−1W/prW )-module of rank 1. The preimage of this module in Λ∨⊥,1 is a

W -lattice Γ in N⊥,0 satisfying Λ⊥,0
1
⊂ Γ. By construction of Γ, we have

FΓ ⊆ Λ⊥,1.

But F is injective, which implies that FΛ⊥,0 is a proper sublattice of FΓ. This contra-
dicts the signature condition (2).

Remark 8.3 We will now translate this result to the (C, h) language. Consider a ver-
tex Λ of maximal type tmax in L. By definition and our “translation lemma” 5.8, the
assumption of Lemma 8.2 (i.e., Λ‖ = L(a,b) with b ≥ 0) translates into the statement
that x ∈ Λ]. The assertion of the lemma, namely that in this case a ≥ 1, translates
into

x ∈ Λ] ⇒ p−1x ∈ Λ.

Of course, this is trivial for odd n, but not at all obvious for even n.

Lemma 8.4 Let Λ ∈ S(x)max. Then either Λ ∈ S(p−1x) or

NΛ ∩ Z(p−1x)red = NΛ̃

for some Λ̃ ∈ L of type tmax − 2.

Proof Let Λ ∈ S(x)max, i.e., x ∈ Λ]. The previous lemma states that p−1x ∈ Λ.
Let (V = Λ/Λ], ph) be the hermitian Fp2 -vector space defined in 3.5. There,

we stated that vertices Λ̃ of type t contained in Λ (i.e., NΛ̃ ⊆ NΛ) correspond to(
(tmax − t)/2

)
-dimensional isotropic subspaces U = Λ̃]/Λ] of V . Furthermore,

p−1x ∈ Λ̃] is equivalent to p−1x ∈ U , where p−1x is the image of p−1x in V .
But p−1x is isotropic (since v

(
h(x, x)

)
≥ 2), hence is either zero (which means

p−1x ∈ Λ], i.e., Λ ∈ S(p−1x)) or spans an isotropic line U . In the latter case, the
intersection NΛ ∩Z(x)red is of the form NΛ̃, where Λ̃ is the dual of the preimage of U
in Λ and thus a vertex of type tmax − 2.
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8.5 Combining this with Lemma 4.7, we get an explicit formula describing the ir-
reducible components of Z(x)red in terms of those of Z(p−1x)red, namely

S(x)max =
{

Λ ∈ Lmax
∣∣ d
(

Λ, S(p−1x)
)
≤ 1
}
.

This proves Theorem 1.2(iii).

Corollary 8.6 Let x ∈ V be of valuation r > 1. Then

S(x)max =
{

Λ ∈ Lmax
∣∣ d
(

Λ, S(p−br/2cx)
)
≤ br/2c

}
,

with S(p−br/2cx) being known from Theorem 1.2(i) and (ii).

Proof By induction on br/2c. The case br/2c = 1 (i.e., r = 2 or r = 3) is the
content of the previous paragraph 8.5. For the induction step, we therefore assume
br/2c > 1.

Then we have the following equations:

S(x)max =
{

Λ ∈ Lmax | d
(

Λ, S(p−1x)max
)
≤ 1
}

= {Λ ∈ Lmax | ∃Λ̃ ∈ Lmax,Λ ∩ Λ̃ ∈ L, Λ̃ ∈ S(p−1x)}

=
{

Λ ∈ Lmax
∣∣ ∃Λ̃ ∈ Lmax,Λ ∩ Λ̃ ∈ L, d

(
Λ̃, S(p−br/2cx)

)
≤ b(r/2)c − 1

}
=
{

Λ ∈ Lmax
∣∣ d
(

Λ, S(p−br/2cx)
)
≤ br/2c

}
.

Here, the first equation follows from 8.5 using that, since by assumption on x one has
r(p−1x) > 0, the pure-dimensionality statement of Proposition 1.1 shows Z(p−1x)
is pure of codimension 0.

The second equation is immediate from the definition of the distance function d,
while the third one is a direct application of the induction assumption.

Finally, for the fourth inclusion, observe that d
(

Λ, S(p−br/2cx)
)
≤ br/2c means

that there is a chain Λ = Λ1,Λ2, . . . ,Λbr/2c of vertices of maximal type such that,
for all indices i < br/2c, the intersection Λi ∩ Λi+1 is a vertex and such that NΛbr/2c

intersects Z(p−br/2cx) non-trivially. But the existence of such a chain means that
there is a vertex Λ̃ := Λ2 of maximal type whose intersection with Λ is a vertex and
for which we have d

(
Λ̃, S(p−br/2cx)

)
≤ b(r/2)c − 1.

Corollary 8.7 Assumptions as in the last corollary. Then Theorem 1.4 holds true for x,
i.e., Z(x)red is connected.

Proof It is enough to prove connectedness of S(x) as a simplicial subcomplex of L.
We will show that connectedness of S(p−1x) implies connectedness of S(x). Since
Theorem 1.4 is known to hold for special homomorphisms of valuation 0 or 1, this
implies our claim by induction on br/2c. Thus assume that S(p−1x) is connected.

Let Λ, Λ̃ be in S(x). We have to construct a sequence

Λ = Λ(0),Λ(1), . . . ,Λ(s) = Λ̃
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of vertices in S(x) with the property that for any 1 ≤ i ≤ s, the vertices Λ(i−1) and
Λ(i) neighbour each other.

Since Z(x)red is pure of codimension 0 in Nred, one finds Λ(1), Λ̃(1) ∈ S(x)max

containing Λ, resp. Λ̃. By Lemma 8.4, one finds Λ(2), Λ̃(2) ∈ S(p−1x) contained in
Λ(1), resp. Λ̃(1). By assumption, S(p−1x) is connected, hence one finds a path

Λ(2),Λ(3), . . . ,Λ(s−2) = Λ̃(2)

in S(p−1x) connecting Λ(2) and Λ̃(2). Then set Λ(s−1) := Λ̃(1) and Λ(s) := Λ̃.

9 Intersections of Special Cycles

Finally we consider the case m > 1. Let x = (x1, . . . , xm) ∈ V be according to
our general assumptions and conventions of 4.6. The aim of this section is to show
Theorem 1.3 for

S(x) = S(x1) ∩ · · · ∩ S(xm)

and then to show Theorem 1.4 in full generality.

9.1 Recall that, according to 4.6, we assume the xi to be perpendicular to each other
with respect to h and to be of nonnegative finite valuation ri := r(xi) = v

(
h(xi , xi)

)
.

We will furthermore simplify notation by assuming that the xi are ordered increas-
ingly by valuation. For any nonnegative integer r ≥ 0, we fix the following notations:

mr := max{i | ri < r},

Cr :=
(

spanQp2
(x1, . . . , xmr )

)⊥
,

L(t)
r := {Λ ⊂ Cr a Zp2 -lattice | pΛ ⊆ Λ]

t
⊆ Λ},

Lr :=
⋃
t
L(t)

r .

(Note that all those notions depend not only on r, but also on x.)
Cr is an (n − mr)-dimensional Qp2 -vector space endowed with a non-degenerate

hermitian form induced by h. Since h has odd order of determinant on C , the order
of determinant of h on C is odd if and only if the number of indices i ≤ mr for which
ri ≡ 1(2) is even. Note that we have

Cr = spanQp2
(xmr+1, . . . , xmr+1 )⊕Cr+1.

Also, C0 = C , whereas in the case m = 1 and r > r(x), the space Cr is simply C⊥ as
defined in Section 5.

By Theorem 3.6 of [Vo], for any r, the set Lr is in bijection with the set of vertices
of B

(
SU(Cr, ph),Qp

)
. We endow Lr with the simplicial complex structure induced

by this bijection, i.e., two distinct vertices Λ, Λ̃ neighbour each other in the simplicial
complex Lr if and only if one of them contains the other. By Bruhat–Tits theory, the
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simplicial complex Lr is connected. Furthermore, we have distance functions on Lr

defined by analogy with 3.6, which we denote by dr. Of course, L0 = L, while for
m = 1 and r > r(x), the simplicial complex Lr is isomorphic to the complex L⊥ that
we used in Sections 6 and 7 via the bijection Λ 7→ Λ• introduced in 5.6.

9.2 Let s be any nonnegative integer. Let

N(s) :=
(

spanWQ
(x1, . . . , xm2s , F

−1x1, . . . , F
−1xm2s )

)⊥
,

where the orthogonal complement is taken with respect to the symplectic form
〈 · , · 〉. Given Λ ∈ L2s, we construct a self-dual W -lattice Λ• in N(s) following the
procedure of 5.6. We furthermore write for 1 ≤ i ≤ m:

Li := p−aW xi ⊕ p−bW F−1xi ,

where (a, b) = (ri/2, ri/2) if ri is even, (a, b) =
(

(ri + 1)/2, (ri − 1)/2
)

if ri is odd.
This is the choice of a, b for which Li is self-dual with respect to 〈 · , · 〉. Now, for
Λ ∈ L2s+2, set

Φs(Λ) :=
(( m2s+2⊕

i=m2s+1
Li

)
⊕ Λ•

) τ=1

0
⊂ C2s.

Checking that this defines a vertex in L2s is straightforward, using the self-duality
of Li and Λ• with respect to 〈 · , · 〉. Thus we have an injective morphism of simplicial
complexes

Φs : L2s+2 → L2s.

One observes that, if Λ ∈ L2s+2 is of type t , the type of Φs(Λ) is t + m2s+2 −m2s+1.

Definition 9.3 Let 0 ≤ s ≤ brm/2c. Set

Ss = Ss(x) := {Λ ∈ L2s | p−sxi ∈ Λ]∀i > m2s}.

For 1 ≤ s ≤ brm/2c + 1, we set

S ′s = S ′s (x) := {Λ ∈ L2s | p−s+1xi ∈ Λ]∀ i > m2s}.

In particular, S0 is the simplicial complex S(x) that we were originally interested
in.

On the other hand, for the maximal occurring index s = brm/2c+1, the condition
defining S ′s is empty, i.e., S ′s simply equals L2s = Lrm+1 as simplicial complexes. The-
orem 3.6 of [Vo] provides us with an explicit description of Lrm+1 as the simplicial
complex of a specific Bruhat–Tits building.
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This case will serve as the starting point for explicitly computing Ss and S ′s (and
thus S(x)) by downwards induction on s. We now give the algorithm:

(0) Set s := brm/2c. Set V ′s+1 := L2s+2 = Lrm+1.

(1) Set Vs := {Λ ∈ L2s | ∃Λ̃ ∈ Φs(V ′s+1) : Λ ⊆ Λ̃}.
(2) Set V ′s := {Λ ∈ L2s | ∃Λ̃ ∈ Lmax

2s : Λ ⊆ Λ̃, d2s(Λ̃,Vs) ≤ 1}.
(3) If s > 0, continue with Step 1, replacing s by s− 1. If s = 0, stop.

Theorem 9.4 The equalities

Ss = Vs, S ′s = V ′s

hold for any 0 ≤ s ≤ brm/2c resp. 1 ≤ s ≤ brm/2c + 1.

We will prove the theorem (which immediately implies Theorem 1.3) by down-
wards induction on s, using the obvious equality Sbrm/2c+1 = Vbrm/2c+1 as starting
point and doing the induction step by proving the implications

S ′s+1 = V ′s+1 ⇒ Ss = Vs ⇒ S ′s = V ′s .

We will now sketch the proof of these two implications. First, we show Lemma 9.5,
which states that S ′s+1 = V ′s+1 implies the “easy” inclusion Vs ⊆ Ss. The follow-
ing Lemma 9.6 states that the “hard” inclusion holds for s = 0, i.e., that S ′1 = V ′1
implies S0 = V0. This special case has to be done first because we have no “pure-
dimensionality” statements for any Ss or S ′s , except for S0 (Proposition 4.11). The
proof goes by applying the results of Sections 6 and 7. The general case is then re-
duced to this special case in the proof of Lemma 9.7. This concludes the proof of the
first implication.

For the second implication, we first prove Lemma 9.8, which states that Ss =
Vs implies V ′s ⊆ S ′s . This is a straightforward generalization of Lemma 4.7. We
then prove Lemma 9.9, which states that S ′s is “pure of codimension 0” in L2s (this
will be made precise in the statement of the lemma), by reduction to Lemma 9.6.
Having proven this, we obtain the “hard” inclusion S ′s ⊆ V ′s as a straightforward
generalization of the results of Section 8. This is done in Lemma 9.10 and concludes
the proof of Theorem 9.4.

Lemma 9.5 Let 0 ≤ s ≤ brm/2c be arbitrary. Assume that S ′s+1 = V ′s+1. Then
Vs ⊆ Ss.

Proof By definition of Vs, it is enough to prove Φs(V ′s+1) ⊆ Ss. Let Λ ∈ Φs(V ′s+1).
This means

Λ• =
( m2s+2⊕

i=m2s+1
Li

)
⊕ Λ̃•

for some Λ̃ ∈ V ′s+1. By definition of m2s and m2s+2, one has (Li)1 = p−sW F−1xi for
m2s < i ≤ m2s+2. It follows that

Λ] = (FΛ1)τ=1 =
( m2s+2⊕

i=m2s+1
p−sZp2 xi

)
⊕ Λ̃]

https://doi.org/10.4153/CJM-2013-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-004-1


Global Structure of Special Cycles on Unitary Shimura Varieties 1159

contains p−sxi for m2s < i ≤ m2s+2. But the p−sxi with i > ms+1 are contained
in Λ̃] since Λ̃ is in S ′s+1 = V ′s+1 by assumption. Thus these p−sxi are also contained
in Λ].

Lemma 9.6 Assume that S ′1 = V ′1 . Then S0 ⊆ V0.

Proof Recall from the definitions above that

S0 = {Λ ∈ L | xi ∈ Λ]∀1 ≤ i ≤ m} = S(x).

By Proposition 4.11, Z(x)red is pure of dimension b(n−m1− 1)/2c, i.e., every vertex
in S(x) is contained in some vertex in S(x)(t0) = S(x) ∩ Lt0 , where t0 is the largest
odd integer ≤ n−m1. One checks that t0 −m2 + m1 is the maximal type of vertices
in L2.

Let Λ ∈ S(x). Using the results on a single special homomorphism of valuation 0,
in particular 6.3, we get for any t ≤ m1:

(Λ•) ∩ (WQxi ⊕WQF−1xi) = W xi ⊕W F−1xi = Li ,

which is self-dual with respect to 〈 · , · 〉. By Remark 5.3, this implies that Λ• decom-
poses orthogonally as Λ• = (

⊕m1

i=1 Li)⊕ Λ(1)
• for some Λ(1) ∈ L1 of type t(Λ).

Now assume t(Λ) = t0. Then Λ(1) is a vertex of type t0, i.e., of maximal type,
in L1. Using Lemma 7.3 on special homomorphisms of valuation 1, we have for
m1 < i ≤ m2:

(Λ(1)
• ) ∩ (WQxi ⊕WQF−1xi) = p−1W xi ⊕W F−1xi = Li ,

which is again self-dual with respect to 〈 · , · 〉. Again, we use Remark 5.3 to get the
orthogonal decomposition

Λ• =
( m1⊕

i=1
Li

)
⊕ Λ(1)

• =
( m2⊕

i=1
Li

)
⊕ Λ(2)

•

for some Λ(2) ∈ L2 of type t0 − m2 + m1. But the right hand side is precisely(
Φ1(Λ(2))

)
•, and Λ(2) is in S ′1 because Λ is in S0. Thus by assumption, Λ ∈ Φ1(V ′1 ),

which is a subset of V0 by definition. This proves the lemma.

Lemma 9.7 Let 0 ≤ s ≤ brm/2c be arbitrary. Assume that S ′s+1 = V ′s+1. Then
Ss = Vs.

Proof We observe that S ′s+1 = {Λ ∈ L2s+2 | p−sxi ∈ Λ]∀i > m2s+2} is the simplicial
complex S ′1(z) obtained by applying Definition 9.3 to

z := (p−b
r1
2 cx1, . . . , p−b

rm2s+2
2 cxm2s+2 , p−sxm2s+2+1, . . . , p−sxm).

The morphism Φ0 ◦ · · · ◦Φs−1 : L2s → L of simplicial complexes is injective and, by
definition of z, maps Ss into S(z), sending vertices of type t in L2s to vertices of type
t +
∑2s

i=1(−1)imi in L.
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On the other hand, by pure-dimensionality (Proposition 4.11), there is an odd
integer t0 such that any vertex in S(z) is contained in some vertex in S(z)(t0). By the
proof of Lemma 9.6, we have

S(z)(t0) = (Φ0 ◦ · · · ◦ Φs)(S ′s+1 ∩ L
(t0−

∑2s+2
i=1 (−1)i mi )

2s+2 ).

Since Φ0 ◦ · · · ◦ Φs : S ′s+1 → S(z) factors over Ss and Φ0 ◦ · · · ◦ Φs−1 : L2s → L is
injective, it follows that we have the expected “pure-dimensionality statement” for Ss,

namely that every vertex in Ss is contained in a vertex in Ss ∩ L
(t0−

∑2s
i=1(−1)i mi )

2s , and
that

Ss ∩ L
(t0−

∑2s
i=1(−1)i mi )

2s = Φs(S ′s+1 ∩ L
(m2s−2−m2s−1)
2s+2 ).

Therefore, S ′s+1 = V ′s+1 implies Ss = Vs.

Lemma 9.8 Let 1 ≤ s ≤ brm/2c. Assume that Ss = Vs. Then V ′s ⊆ S ′s .

Proof First, note that by definition of V ′s , any vertex in V ′s is contained in some
vertex Λ of maximal type in L2s for which d2s(Λ,Vs) ≤ 1. Therefore it suffices to
show that any Λ ∈ Lmax

2s for which d2s(Λ,Vs) ≤ 1 is in S ′s . Let Λ be such a vertex. By
assumption Vs = Ss, thus Λ satisfies d2s(Λ, Ss) ≤ 1, which means that there is some
vertex Λ̃ ∈ Ss contained in Λ. Thus

p−s+1xi ∈ pΛ̃] ⊆ pΛ̃ ⊆ pΛ ⊆ Λ] ∀i > m2s.

Lemma 9.9 Let 1 ≤ s ≤ brm/2c. Assume that Ss = Vs. Then S ′s is “pure of codimen-
sion 0” in L2s, that is, every vertex in S ′s is contained in some vertex in S ′s ∩ Lmax

2s .

Proof The rough idea is, as in the proof of Lemma 9.7, to use Lemma 9.6 on some
variation of x to reduce to the known case of S0. In our situation, we have S ′s = S ′1(z),
where

z = (p−b
r1
2 cx1, . . . , p−b

rm2s
2 cxm2s , p−s+1xm2s+1, . . . , p−s+1xm).

By Proposition 4.11, every vertex in S(z) is contained in some vertex of type t0, where
t0 −

∑2s
i=1(−1)imi is the maximal type of vertices in L2s. But we can describe S ′s in

terms of S0(z) = S(z) in the same way as we did in the proof of Lemma 9.7. The
result is an injection of simplicial complexes

Φ0 ◦ · · · ◦ Φs−1 : S ′s → S0(z)

sending vertices in L(t)
2s to vertices in L(t+

∑2s
i=1(−1)i mi ), and surjective in maximal type.

Therefore, the “pure-dimensionality” statement Proposition 4.11 for S(z) implies the
claimed “pure-dimensionality” statement for S ′s .

Lemma 9.10 Let 1 ≤ s ≤ brm/2c. Assume that Ss = Vs. Let Λ ∈ S ′s be of maximal

type in L2s. Then Λ ∈ V ′s ; that is, there is some vertex Λ̃ ∈ Vs = Ss contained in Λ.

Remark 9.11 This lemma is a generalization of Lemma 8.4 to the case of m > 1
and arbitrary order of determinant of h. However, unlike in the m = 1 case, we
do not have any lower bound on the maximal possible type of Λ̃. Indeed, Ss can be
arbitrarily small, even consist of a single vertex of type 0.
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Proof Let Λ ∈ S ′s be of maximal type in L2s. The type of Λ is either dim(C2s) or
dim(C2s)− 1, depending on the parity of dim(C2s) and on the parity of the order of
determinant of (C2s, h).

Let m2s < i ≤ m. By assumption, we have p−s+1xi ∈ Λ]. This implies (using that
r(xi) > 2s) that p−sxi ∈ Λ. Indeed, Lemma 8.2 generalizes to our situation, since the
proof does not depend on the order of determinant of h being odd (except for that,
if ord det(C, h) was even, the case of n even would be the easy one to prove and the
case of n odd the hard one).

We now proceed as in the proof of Lemma 8.4. We consider the hermitian
Fp2 -vector space (V, ph), where V = Λ/Λ] and ph is induced by ph. By 3.5, ver-

tices Λ̃ of type t contained in Λ correspond to
(

(t(Λ)− t)/2
)

-dimensional isotropic

subspaces U = Λ̃]/Λ] of V . Furthermore, p−sxi ∈ Λ̃] is equivalent to p−sxi ∈ U ,
where p−sxi is the image of p−sxi in V .

Now the p−sxi are isotropic (since v
(

ph(p−sxi , p−sxi)
)

= 2ri − 2s + 1 > 0) and
perpendicular to each other (since the xi were already assumed to be perpendicular
to each other with respect to h). Therefore, they span an isotropic subspace U of V ,
whose preimage Λ̃] is the dual of some vertex of type t(Λ)−2 dim U in L2s belonging
to Ss and contained in Λ.

This concludes the proof of Theorem 9.4, and thus Theorem 1.3 is proved.

9.12 We now prove our main theorem 1.4 in full generality.
First we observe that, by Bruhat–Tits theory, the simplicial complex Lbrm/2c+1

∼=
B
(

SU(Cbrm/2c+1, ph),Qp

)
is connected. Theorem 9.4 provides us with an algorithm

for computing S(x) = S0 from Lbrm/2c+1. To show connectedness of S(x), it is enough
to prove that each step of this algorithm preserves connectedness.

Let 0 ≤ s ≤ brm/2c. We want to show that Ss is connected under the assumption
that S ′s+1 is connected. By Theorem 9.4, we have

Ss := {Λ ∈ L2s | ∃Λ̃ ∈ Φs(S ′s+1) : Λ ⊆ Λ̃}.

Now Φs is a morphism of simplicial complexes, thus preserves connectedness, there-
fore Φs(S ′s+1) is connected. But any vertex in Ss is contained in (i.e., a neighbour
of) some vertex in Φs(S ′s+1). Thus passing from Φs(S ′s+1) to Ss does not create new
connected components.

Now let 1 ≤ s ≤ brm/2c. We assume that Ss is connected. Recall that by Theo-
rem 9.4:

S ′s := {Λ ∈ L2s | ∃Λ̃ ∈ Lmax
2s : Λ ⊆ Λ̃, d2s(Λ̃, Ss) ≤ 1}.

Connectedness of Ss now implies connectedness of S ′s . Indeed, we saw in Section 8
how connectedness of S(p−1x) implies connectedness of S(x) for a single special ho-
momorphism x. The argument for this implication generalizes straightforwardly to
our situation. This concludes the proof of Theorem 1.4.

As a further application of Theorem 9.4, we will now give a new proof of the
criterion of Kudla and Rapoport for irreducibility in the case m = n, which will
highlight the role of Bruhat–Tits theory.
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Proposition 9.13 (Kudla–Rapoport [KR, Theorem 1.1(iii)]) Let m = n. Let x ∈ Vn

be according to the assumptions of 4.6 and the notational conventions of this section. Let

n+
even = Card({i | ri ≥ 2, ri even}),

n+
odd = Card({i | ri ≥ 3, ri odd}).

Then Z(x)red is irreducible if and only if

max(n+
even, n

+
odd) ≤ 1.

Proof We first observe that Z(x) is irreducible if and only if there is Λ ∈ L for which
Z(x)red = NΛ. The latter statement means that Λ ∈ S(x) and that every Λ̃ ∈ S(x) is
contained in Λ. In other words, Z(x)red is irreducible if and only if S(x) has a unique
element maximal for inclusion.

Now take a look at the behaviour of “irreducible components” under the opera-
tions of the algorithm of Theorem 9.4. First, the simplicial complex Lrn+1 consists of
a single point, because we assumed m = n and thus Crn+1 is the zero space. Therefore,
S ′brn/2c+1 consists of a single point, thus is trivially “irreducible”.

Then for any s, passing from S ′s+1 to Ss does not create or destroy maximal ele-
ments. Indeed, Φs is an injection of simplicial complexes that preserves inclusions,
i.e., Λ̃ ⊆ Λ ⇒ Φs(Λ̃) ⊆ Φs(Λ). Therefore, maximal elements Λ in S ′s+1 give rise to
maximal elements Φs(Λ) in Φs(S ′s+1), and no new maximal elements are generated.
Also, any element in Ss is contained in some element in Φs(S ′s+1), hence the maximal
elements in Ss are the same as those in Φs(S ′s+1).

On the other hand, passing from Ss to S ′s creates new inclusion maximal elements
whenever L2s is not a single point. Indeed, if L2s is not a single point, then different
types of vertices occur (e.g., any two vertices that neighbour each other are of different
type). Let Λ ∈ Ss be arbitrary, not of maximal type in L2s. Then there is more than
one vertex of maximal type containing Λ. Indeed, Λ can be written as the intersection
of the vertices of maximal type containing it (see the proof of Proposition 7.9). By
Theorem 9.4, all such vertices are in S ′s , and maximal because they are maximal inL2s.

Therefore, S0 = S(x) has a unique maximal element if and only if the L2s for s ≥ 1
are single points. The latter is equivalent to saying that L2 consists of a single point,
since Φs−1 ◦ · · · ◦ Φ1 : L2s → L2 is injective. But L2

∼= B
(

SU(C2, ph),Qp

)
consists

of a single point if and only if either dim C2 ≤ 1, or dim C2 = 2 and the order of
determinant of h on C2 is odd.

Since C2 is by definition spanned by the xi with ri > 1, dim C2 = 0 means that
n+

odd = n+
even = 0, while dim C2 = 1 means that one of the sums n+

odd, n+
even equals 1,

while the other one vanishes, and finally dim C2 = 2 together with the assumption
that ord det(C2, h) is odd means that n+

odd = n+
even = 1.
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