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By means of three-dimensional direct numerical simulations, we investigate the
influence of the regular roughness of heated and cooled plates on the mean heat
transport in a cylindrical Rayleigh–Bénard convection cell of aspect ratio one. The
roughness is introduced by a set of isothermal obstacles, which are attached to the
plates and have a form of concentric rings of the same width. The considered Prandtl
number Pr equals 1, the Rayleigh number Ra varies from 106 to 108, the number of
rings on each plate is 1, 2, 4, 8 or 10, the height of the rings is varied from 1.5 %
to 49 % of the cylinder height and the gap between the rings is varied from 1.5 % to
18.8 % of the cell diameter. Totally, 135 different cases are analysed. Direct numerical
simulations show that with small Ra and wide roughness rings, a small reduction
of the mean heat transport (the Nusselt number Nu) is possible, but, in most cases,
the presence of the heated and cooled obstacles generally leads to an increase of Nu,
compared to the case of classical Rayleigh–Bénard convection with smooth plates.
When the rings are very tall and the gaps between them are sufficiently wide, the
effective mean heat flux can be several times larger than in the smooth case. For a
fixed geometry of the obstacles, the scaling exponent in the Nu versus Ra scaling
first increases with growing Ra up to approximately 0.5, but then smoothly decreases
back towards the exponent in the no-obstacle case.

Key words: Bénard convection, turbulent convection

1. Introduction
A process of turbulent thermal convection, which occurs widely in nature, is usually

studied in a Rayleigh–Bénard configuration, where a fluid layer is confined between
two isothermal horizontal surfaces, a lower warmer one and an upper colder one. In
classical Rayleigh–Bénard convection (RBC) (cf. reviews by Ahlers, Grossmann &
Lohse (2009), Lohse & Xia (2010) and Chillà & Schumacher (2012)) the heating and
cooling plates are assumed to be smooth, while in most applications this assumption
is not fulfilled. Roughness of the heated and cooled plates or the presence of
heated and cooled obstacles, which are attached to the corresponding plates, can
influence significantly the mean heat and momentum transport in the system, which
are represented by the Nusselt number Nu and Reynolds number Re, respectively.
Moreover, the scaling relations of Nu and Re on the main input parameters of the
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system, which are the Rayleigh number Ra and Prandtl number Pr, are also affected
by the wall roughness.

Most of the experimental and numerical studies of RBC in convection cells with
rough plates have been conducted for regular roughness, which is determined by a
single or only a few roughness scales. These studies generally report an increase of the
heat transport compared to the case of smooth plates, as soon as the roughness height
becomes comparable to or larger than the boundary-layer thickness in the smooth case.
Thus, it was reported in earlier works that, compared to the case of smooth plates, the
scaling exponent γ in the scaling relation Nu∼Raγ can be larger (Roche et al. 2001;
Qiu, Xia & Tong 2005; Stringano, Pascazio & Verzicco 2006; Tisserand et al. 2011;
Salort et al. 2014; Liot et al. 2016; Toppaladoddi, Succi & Wettlaufer 2017; Xie &
Xia 2017; Jiang et al. 2018) and/or the pre-factor in this relation can be increased
(Shen, Xia & Tong 1996; Du & Tong 2000; Wei & Ahlers 2014; Joshi et al. 2017).

A detailed analysis of the dependences of the scaling exponent γ on Ra shows that
for a fixed configuration of the regular roughness, an increased γ is observed only
in a certain restricted interval of Rayleigh number. For moderate Ra up to 108, the
three-dimensional direct numerical simulations (DNS) by Wagner & Shishkina (2015)
in a cubical container with a fixed rectangular roughness showed that the exponent
γ first increases with growing Ra, but then tends to saturate back to the smooth-
wall value. Similar results were obtained using the spectral NEK5000 code in the
two-dimensional DNS by Xu et al. (2018), for a broad Pr range and Ra up to 1010.
Two-dimensional simulations based on the immersed boundary method, which were
conducted by Zhu et al. (2017) for Ra up to 1012, showed that at Ra ≈ 3 × 109

there exists a well-pronounced change from one scaling regime with γ ≈ 1/2 for
Ra< 3× 109 to another regime with γ ≈ 1/3 for Ra> 3× 109. Therefore the regime
with γ ≈ 1/2 can be interpreted neither as the ultimate regime, which can be expected
for extremely high Ra, nor as a transition to the ultimate regime, but rather as an
intermediate regime triggered by the regular roughness. Similar results were obtained
also in experiments by Rusaouën et al. (2018) for Ra up to 1012. More precisely,
it was found that with increasing Ra, the heat transfer first remains unaffected by
the plate roughness, then the heat transport is enhanced and this is reflected in an
increased γ , and finally the heat transfer scaling becomes similar to that in the smooth
case, but with a larger pre-factor.

Important results were obtained in experiments by Ciliberto & Laroche (1999),
who came to different conclusions for regular (periodic) roughness and non-regular
(power-law-distributed) roughness. Only in the latter case was an increase found
in the scaling exponent γ . This result supported a theoretical model by Villermaux
(1998) who proposed a significant increase of γ , which depends on the surface fractal
dimension, if the spectrum of the typical roughness length scales is sufficiently broad.

Thus, in the case of regular roughness, the increased scaling exponent γ can be
observed only in a restricted region of Ra, starting with a certain critical Rayleigh
number, at which roughness starts to perturb the thermal boundary layer. To address
the question as to whether the number of roughness scales influences the Ra range
with increased γ , Zhu et al. (2019) studied the effect of multi-scale roughness in two-
dimensional immersed boundary simulations, for Ra up to 1012. A sinusoidally shaped
roughness, represented by three different length scales, led to enhanced heat transport
with the scaling exponent γ ≈ 1/2, which was observed for more than three decades
of Ra. Note that for a single-scale roughness, this regime is restricted to only one-and-
a-half decades of Ra (Zhu et al. 2017). Therefore, for more roughness scales one can
expect broader Ra range, where the increased scaling exponent γ is observed. With
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an infinite spectrum of roughness length scales, such that for any distance to the plate
there exists a roughness scale which is smaller than this distance, one can anticipate
a scaling regime with an increased γ , which extends to infinitely large Ra and thus
is indistinguishable from the ultimate regime (up to a pre-factor). Note that in RBC,
the scaling exponent γ cannot be larger than 1/2 when the Rayleigh number tends to
infinity, in the case of both smooth and rough plates, as was proved by Goluskin &
Doering (2016).

One should mention also that the plate roughness can not only increase but also
decrease the Nusselt number. This was obtained in two-dimensional DNS by Shishkina
& Wagner (2011), as well as in the two- and three-dimensional simulations by Zhang
et al. (2018) and large-eddy simulations by Foroozani et al. (2019), for small-height
roughness and relatively small Rayleigh numbers. In this case the fluid stagnates
in the gaps between the roughness elements and this leads in general to thicker
thermal boundary layers and smaller overall heat transport in the system, compared
to the case of smooth plates. The effect of the Nusselt number reduction happens
at small roughness heights and this critical roughness height decreases very rapidly
with growing Ra; more precisely as ∼Ra−0.6, as was shown by Zhang et al. (2018).
Therefore the problem of heat transport reduction induced by the plate roughness
becomes irrelevant for high Ra.

From the previous work on regular roughness in cubical domains (Wagner &
Shishkina 2015) we know that for a fixed Ra, the enhancement of heat transport is
determined not only by the increased covering area of the surface, i.e. of the obstacle
height, but also by the distance between the roughness elements. The Nusselt number
is generally larger for wider gaps between the elements, which can be easily ‘washed
out’ by the flow. Moreover, for a fixed number of roughness elements, fixed Ra and
Pr, the global vertical heat flux depends non-monotonically on the distance between
the obstacles. In the Nu versus Ra scaling, the obstacles were shown to work in
two ways: for smaller Ra the scaling exponent γ increases, compared to the smooth
case, while for larger Ra the scaling exponent saturates to the one for smooth plates,
which can be interpreted as a full washing-out of the cavities. It was also shown that
an increase in the roughness height leads to stronger flows both in the gaps between
the roughness elements and in the bulk region, while an increase in the width of the
roughness elements strengthens only the large-scale circulation (LSC) of the fluid and
weakens the secondary flows.

In the present study we investigate the effect of the presence of regularly distributed
isothermal obstacles in a cylindrical domain of aspect ratio 1, which are attached to
heated bottom and cooled top plates and have the temperatures of the corresponding
plates. These obstacles can also be understood as roughness of large heights. The
effect of the plate roughness is not modelled but, instead, three-dimensional DNS,
using a direct Poisson solver, are conducted for Rayleigh numbers from 5 × 105 to
5 × 108, Prandtl number of 1 and various types of concentric ring-shaped obstacles.
The choice of the geometry is motivated by the following reasons. In cylindrical
domains with ring-shaped roughness elements, the turbulent wind, or the LSC that
develops in RBC cells for sufficiently large Ra, unavoidably goes across the roughness
elements, independently from the LSC orientation. Also the choice of such geometry
is motivated by a reduced influence of the sidewall effects compared to the previously
studied case of convection in box-shaped containers with small widths.

The paper is organised as follows. In § 2, the notations, numerical method,
computational code and the studied geometry of the convection cell are discussed.
In § 3, the effective convection cell height and based on it the effective Rayleigh
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number and Nusselt number are introduced. In § 4, the obtained results are presented,
including the dependences of the heat transport on the input geometrical parameters
of the roughness or ring-shaped obstacles, as well as the scaling relations of the
effective Nusselt number and Reynolds number with the effective Rayleigh number.
Some of the most interesting cases are illustrated by two-dimensional snapshots of
the flows. The last section summarises the results and gives a brief outlook.

2. Numerical methodology
Within the Oberbeck–Boussinesq approximation, RBC in a cylindrical container

with smooth or rough plates is described by the following equations for the
conservation of mass, momentum and energy:

∂u/∂t+ (u · ∇)u=−∇p+ ν∇2u+ αgTez, (2.1)
∂T/∂t+ (u · ∇)T = κ∇2T, (2.2)

∇ · u= 0. (2.3)

In the Oberbeck–Boussinesq approximation, the kinematic viscosity ν, the thermal
diffusivity κ , the thermal expansion coefficient α, the gravitational acceleration g and
the density ρ are assumed to be constant, with one exception: to allow a buoyant
motion, a linear temperature dependence of the density in the buoyancy term of the
momentum equation is assumed. In the above equations, u ≡ (ur, uφ, uz) denotes
the velocity, t the time, p the dynamical pressure, ez the unit vector in the vertical
direction and T is the temperature with the subtracted arithmetic mean of the top and
bottom temperatures.

The no-slip boundary conditions are considered for the velocity at all walls. For the
temperature, adiabatic conditions are set at the vertical sidewall and fixed temperatures
at the bottom and top plates, which are T+ and T−, respectively.

For non-dimensionalisation, the free-fall velocity
√
αg1H and the cylinder height H

of the cylindrical container are used. The temperature is non-dimensionlised by ∆≡
T+ − T−. The resulting dimensionless equations in cylindrical coordinates,

∂û/∂ t̂+ (û · ∇̂)û=−∇̂p̂+
√

Pr/Ra ∇̂
2
û+ T̂ez, (2.4)

∂T̂/∂ t̂+ (û · ∇̂)T̂ = 1/
√

PrRa ∇̂
2
T̂,

∇̂ · û= 0,

}
(2.5)

are solved with the finite-volume code GOLDFISH (Kooij et al. 2018). Here the hat
symbol means that the considered quantity is dimensionless and Pr = ν/κ is the
Prandtl number and Ra≡ αg1H3/(νκ) the Rayleigh number.

The considered container is of aspect ratio 1, i.e. the dimensionless height H of
the cylinder equals its diameter, D = 2R, with R being the dimensionless radius of
the cylinder. There are several concentric ring-shaped obstacles, which are attached
to the bottom and top surfaces of the cylinder and which have the temperature of
the corresponding surface. The resulting top and bottom plates are symmetric with
respect to the central horizontal cross-section. An example of the bottom plate with
n= 2 ring-shaped obstacles is sketched in figure 1. For any considered convection cell
configuration, the dimensionless distances between the obstacles are kept constant and
are equal to a, while the dimensionless height of each obstacle equals h.

Simulations of thermal convection in such domains are conducted in a fully direct
numerical way. That is, the contribution of the turbulent fluctuations is not modelled,
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FIGURE 1. Schematic view of a heated bottom plate of a cylindrical container with
two regular concentric isothermal ring-shaped obstacles, where a is the gap between any
neighbouring rings or between the vertical wall and the closest ring or the diameter of the
central gap; ` is the width of each ring and h is the height of each ring; q1 is the mean
heat flux from the lowest horizontal surface of the plate; q2 is the mean heat flux from
the top surfaces of the heated obstacles; and q3 is the mean heat flux from the sidewalls
of the obstacles attached to this plate. The top plate (not shown) is cooled and has the
same geometry as the bottom plate. Convection cells with other numbers of ring-shaped
obstacles are organised in a similar manner.

as is done, for example, in large-eddy simulations, but instead sufficiently fine
computational meshes are used in both space and time to resolve the Kolmogorov
microscales within the bulk and boundary layers (Shishkina et al. 2010; Shishkina,
Horn & Wagner 2013; Shishkina, Wagner & Horn 2014). The computational grids
up to Nr × Nφ × Nz = 294 × 560 × 561 nodes are adapted for particular flow
configurations in such a way that, on the one hand, the microscales are resolved
and, on the other hand, the meshes are not finer than it is necessary for the DNS.
Thus, in all conducted DNS, the inequality d/ηK 6 1 is strictly fulfilled within the
boundary layers (here ηK is the Kolmogorov microscale and d = 3

√
r∆φ∆r∆z is the

mesh diameter). Within the core part of the domain, this ratio varies between 1
and 1.5. Furthermore, the rough surfaces are also not modelled, like is done, for
example, in the immersed boundary methods (Zhu et al. 2017, 2019), but instead
direct solvers are used for the domains, which have a more complicated geometry
than an ordinary cylinder. For this purpose, body-fitted meshes have been used and
the code GOLDFISH has been advanced, where a direct and based on the capacitance
matrix technique Poisson solver for the pressure-related term in the momentum
equation has been implemented in cylindrical coordinates, in a similar way as was
done in the simulations of natural (Shishkina, Shishkin & Wagner 2009; Wagner &
Shishkina 2015), forced (Koerner et al. 2013) and mixed (Bailon-Cuba et al. 2012;
Shishkina & Wagner 2012) convection in parallelepiped domains.

Direct numerical simulations of thermal convection in a cylindrical RBC cell of
aspect ratio 1 and different configurations of plates are conducted with the code
GOLDFISH, for Ra from 106 to 108 and Pr= 1. The statistical averaging of the data
is conducted for at least 300 dimensionless time units in each investigated case. The
considered geometrical parameters of the plate configurations, which are studied in
the DNS, are presented in table 1.

3. Effective height, Rayleigh number and Nusselt number
Throughout the paper we use the following notations for the geometrical parameters

of the obstacles: a is the gap between any neighbouring ring-shaped obstacles, which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.797


882 A3-6 M. S. Emran and O. Shishkina

Ra n h/H a/H Q1 Q2 Q3 Nu Re Heff /H Raeff Nueff Reeff

5× 105 0 — — 21.4 — — 6.81 109.2 1.00 5.0× 105 6.81 109.2
5× 105 1 0.12 0.18 9.1 12.0 6.5 8.78 140.1 0.91 3.8× 105 7.98 127.5
5× 105 2 0.12 0.18 12.7 5.6 14.4 10.42 141.3 0.98 4.7× 105 10.21 138.5
5× 105 4 0.12 0.10 3.1 6.9 20.2 9.56 136.2 0.98 4.7× 105 9.35 133.3

106 0 — — 27.1 — — 8.62 165.7 1.00 106 8.62 165.7
106 1 0.12 0.06 0.3 23.9 2.9 8.61 177.1 0.82 5.4× 105 7.02 144.4
106 1 0.12 0.12 6.3 19.1 6.6 10.12 196.6 0.87 6.5× 105 8.75 170.0
106 1 0.12 0.15 9.5 16.9 7.2 10.62 201.2 0.89 7.0× 105 9.43 178.7
106 1 0.12 0.18 12.7 14.5 7.6 11.10 201.4 0.91 7.5× 105 10.10 183.1
106 1 0.12 0.21 16.3 11.9 7.5 11.35 200.2 0.93 8.0× 105 10.55 186.2
106 1 0.12 0.24 19.6 9.3 7.2 11.50 198.2 0.95 8.5× 105 10.91 188.1
106 1 0.12 0.324 27.5 1.8 7.6 11.73 197.1 0.99 9.9× 105 11.68 196.2
106 2 0.12 0.06 0.3 22.2 5.7 9.00 184.0 0.84 6.0× 105 7.58 154.9
106 2 0.12 0.12 7.7 15.9 14.0 11.98 209.6 0.92 7.7× 105 11.00 191.9
106 2 0.12 0.18 18.9 6.5 18.3 13.97 208.87 0.98 9.4× 105 13.70 204.8
106 2 0.12 0.188 7.9 15.7 14.5 13.69 209.1 0.99 9.7× 105 13.53 206.6
106 2 0.12 0.19 19.9 4.1 17.9 13.38 203.2 0.99 9.7× 105 13.25 201.2
106 4 0.12 0.10 6.7 8.2 30.6 14.48 205.6 0.98 9.4× 105 14.17 201.2

5× 106 0 — — 43.6 — — 13.89 369.1 1.00 5.0× 106 13.89 369.1
5× 106 1 0.12 0.18 26.3 21.7 11.8 19.01 470.6 0.91 3.7× 106 17.30 428.0
5× 106 2 0.12 0.18 41.5 8.6 30.4 25.58 493.8 0.98 4.7× 106 25.08 484.1
5× 106 2 0.12 0.19 44.3 5.5 30.8 25.65 493.8 0.99 4.9× 106 25.40 489.0
5× 106 4 0.12 0.10 26.0 11.7 60.8 31.42 513.9 0.98 4.7× 106 30.74 502.8

107 0 — — 53.3 — — 16.98 540.4 1.00 107 16.98 540.4
107 1 0.06 0.03 0.2 50.5 2.1 16.71 505.4 0.89 7.1× 106 14.94 451.8
107 1 0.06 0.06 4.9 45.9 5.1 17.69 583.8 0.91 7.5× 106 16.05 529.8
107 1 0.06 0.09 12.3 40.2 6.3 18.70 612.1 0.92 7.8× 106 17.21 563.3
107 1 0.06 0.12 18.4 34.9 6.5 18.85 608.2 0.93 8.1× 106 17.58 567.1
107 1 0.06 0.15 24.9 30.2 6.5 19.71 611.6 0.94 8.4× 106 18.60 577.2
107 1 0.06 0.18 30.6 24.7 6.4 19.63 592.7 0.95 8.7× 106 18.74 565.9
107 1 0.06 0.21 36.4 19.3 6.6 19.93 608.2 0.96 9.0× 106 19.23 586.9
107 1 0.06 0.24 40.6 14.5 6.5 19.60 587.6 0.97 9.3× 106 19.10 572.6
107 1 0.06 0.323 51.5 2.3 6.3 19.19 563.3 0.99 9.9× 106 19.14 562.0
107 1 0.12 0.03 0.0 51.6 3.0 17.37 562.7 0.79 4.9× 106 13.69 443.5
107 1 0.12 0.06 5.0 47.1 12.5 20.50 591.7 0.81 5.4× 106 16.71 482.2
107 1 0.12 0.09 13.4 41.8 15.9 22.63 641.6 0.84 5.9× 106 19.02 539.3
107 1 0.12 0.12 20.8 36.1 16.1 23.26 682.1 0.86 6.5× 106 20.12 589.9
107 1 0.12 0.15 27.8 30.8 15.1 23.46 667.3 0.89 7.0× 106 20.83 592.4
107 1 0.12 0.18 33.9 25.6 14.7 23.66 649.5 0.91 7.5× 106 21.52 590.7
107 1 0.12 0.21 39.7 20.4 14.5 23.79 645.3 0.93 8.0× 106 22.12 600.1
107 1 0.12 0.24 44.7 15.3 14.4 23.67 643.5 0.95 8.5× 106 22.46 610.6
107 2 0.015 0.015 0.3 51.3 1.6 16.87 544.2 0.97 9.2× 106 16.41 529.3
107 2 0.015 0.03 1.9 49.0 2.5 17.02 539.2 0.97 9.3× 106 16.60 525.9
107 2 0.015 0.06 8.0 41.2 3.3 16.70 551.6 0.98 9.4× 106 16.37 540.7

TABLE 1. For caption see end of table.
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Ra n h/H a/H Q1 Q2 Q3 Nu Re Heff /H Raeff Nueff Reeff

107 2 0.015 0.104 21.0 28.1 3.7 16.83 538.0 0.98 9.6× 106 16.61 531.1
107 2 0.015 0.12 25.7 23.9 3.7 16.98 545.2 0.99 9.7× 106 16.80 539.4
107 2 0.015 0.152 35.5 15.0 3.7 17.22 546.8 0.99 9.8× 106 17.11 543.5
107 2 0.015 0.176 41.9 8.3 3.7 17.10 529.0 0.99 9.9× 106 17.05 527.4
107 2 0.015 0.188 44.7 5.0 3.7 16.96 527.1 1.00 1.0× 107 16.93 526.3
107 2 0.03 0.015 0.1 51.5 1.9 17.00 536.4 0.94 8.4× 106 16.07 507.1
107 2 0.03 0.03 0.8 48.9 3.7 16.95 550.4 0.95 8.6× 106 16.11 523.1
107 2 0.03 0.06 6.1 42.2 5.8 17.21 573.9 0.96 8.9× 106 16.53 551.2
107 2 0.03 0.104 19.7 29.4 7.1 17.84 550.9 0.97 9.2× 106 17.38 536.6
107 2 0.03 0.12 24.7 25.1 7.1 18.17 572.8 0.98 9.4× 106 17.79 560.7
107 2 0.03 0.152 34.3 15.9 7.1 18.20 555.0 0.99 9.6× 106 17.98 548.3
107 2 0.03 0.176 40.9 9.1 7.1 18.17 550.4 0.99 9.8× 106 18.06 547.1
107 2 0.03 0.18 42.0 7.8 6.9 17.92 534.2 0.99 9.8× 106 17.83 531.5
107 2 0.03 0.188 44.3 5.6 7.2 18.14 552.3 0.99 9.9× 106 18.09 550.7
107 2 0.06 0.015 0.0 52.3 2.0 17.25 561.1 0.89 7.1× 106 15.36 499.8
107 2 0.06 0.03 0.2 49.4 4.8 17.26 555.0 0.90 7.3× 106 15.55 500.1
107 2 0.06 0.06 5.8 42.8 11.3 19.13 587.7 0.92 7.8× 106 17.62 541.2
107 2 0.06 0.104 22.8 31.1 15.8 22.20 643.9 0.95 8.5× 106 21.05 610.6
107 2 0.06 0.12 27.6 26.5 15.7 22.22 636.7 0.96 8.8× 106 21.28 609.8
107 2 0.06 0.152 38.4 17.0 15.9 22.65 618.7 0.97 9.3× 106 22.10 603.6
107 2 0.06 0.176 44.5 9.8 15.6 22.24 600.2 0.99 9.6× 106 21.99 593.1
107 2 0.06 0.188 48.4 6.0 15.8 22.22 593.5 0.99 9.8× 106 22.09 590.0
107 2 0.12 0.015 0.0 52.7 1.9 17.38 545.1 0.78 4.8× 106 13.58 425.9
107 2 0.12 0.03 0.0 50.1 5.8 17.84 560.1 0.80 5.2× 106 14.31 449.3
107 2 0.12 0.06 5.3 45.1 22.9 23.32 626.0 0.84 6.0× 106 19.64 527.1
107 2 0.12 0.104 23.9 33.2 36.3 29.90 709.9 0.89 7.2× 106 26.81 636.6
107 2 0.12 0.12 30.9 28.1 37.1 30.63 693.9 0.91 7.7× 106 28.04 635.3
107 2 0.12 0.152 45.1 18.5 37.7 32.22 708.9 0.95 8.6× 106 30.65 674.3
107 2 0.12 0.176 52.9 11.0 37.5 32.17 703.3 0.98 9.3× 106 31.40 686.6
107 2 0.12 0.18 54.3 9.5 37.6 32.34 700.9 0.98 9.4× 106 31.70 687.1
107 2 0.12 0.188 55.8 6.8 37.3 31.88 688.7 0.99 9.7× 106 31.51 680.7
107 2 0.12 0.19 26.4 12.2 61.7 31.81 691.8 0.99 9.7× 106 31.50 685.1
107 2 0.25 0.015 0.0 52.7 2.1 17.43 497.5 0.55 1.6× 106 9.49 270.8
107 2 0.25 0.03 0.0 50.6 7.9 18.53 506.3 0.59 2.0× 106 10.89 297.6
107 2 0.25 0.06 5.4 49.0 49.6 33.03 601.4 0.67 3.0× 106 22.16 403.5
107 2 0.25 0.104 23.5 36.2 84.5 46.06 696.0 0.78 4.8× 106 36.16 546.3
107 2 0.25 0.12 31.2 30.6 85.0 46.65 707.0 0.82 5.6× 106 38.44 582.6
107 2 0.25 0.152 45.2 18.8 83.3 46.83 711.6 0.90 7.2× 106 42.06 639.2
107 2 0.25 0.176 54.5 10.7 80.9 46.62 711.2 0.95 8.6× 106 44.32 676.1
107 2 0.25 0.188 59.3 6.7 79.8 46.24 708.2 0.97 9.3× 106 45.11 691.0
107 2 0.4 0.015 0.0 59.5 3.2 20.00 326.7 0.27 2.0× 105 5.42 88.6
107 2 0.4 0.06 9.7 61.0 124.4 62.06 481.7 0.48 1.1× 106 29.4 228.0
107 2 0.4 0.104 30.7 41.1 131.4 64.69 542.5 0.66 2.8× 106 42.4 335.8
107 2 0.4 0.188 58.3 8.1 118.3 59.00 595.5 0.96 8.9× 106 56.7 572.3
107 4 0.015 0.10 35.0 9.7 8.0 16.75 535.8 0.99 9.9× 106 16.70 534.4
107 4 0.03 0.10 31.7 11.1 16.0 18.67 573.4 0.99 9.8× 106 18.57 570.3
107 4 0.06 0.10 35.1 11.9 34.7 25.91 653.1 0.99 9.7× 106 25.63 646.1

TABLE 1. For caption see end of table.
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Ra n h/H a/H Q1 Q2 Q3 Nu Re Heff /H Raeff Nueff Reeff

107 4 0.12 0.10 38.3 13.3 77.7 41.10 738.1 0.98 9.4× 106 40.21 722.2
107 4 0.25 0.10 44.6 16.4 194.2 81.53 796.8 0.96 8.7× 106 77.86 761.0
107 4 0.4 0.10 44.5 17.8 270.2 107.00 677.5 0.93 8.0× 106 99.30 628.7
107 4 0.45 0.10 45.0 19.5 294.7 114.36 587.5 0.92 7.8× 106 105.10 539.9
107 4 0.49 0.10 46.6 19.9 326.4 125.07 575.9 0.91 7.6× 106 114.04 525.1
107 10 0.015 0.015 0.9 42.4 9.9 16.90 511.2 0.98 9.4× 106 16.56 500.8
107 10 0.03 0.015 0.1 42.6 10.9 17.08 532.1 0.96 8.8× 106 16.39 510.5
107 10 0.06 0.015 0.0 43.5 11.4 17.49 542.6 0.92 7.8× 106 16.07 498.7
107 10 0.12 0.015 0.0 44.5 11.3 17.79 553.9 0.84 5.9× 106 14.91 464.2

3× 107 0 — — 70.7 — — 23.14 936.4 1.00 3.0× 107 23.14 936.4
3× 107 1 0.12 0.18 48.9 33.5 21.7 33.13 1150.2 0.91 2.3× 107 30.13 1046.1
3× 107 2 0.12 0.18 76.3 11.4 53.0 44.80 1209.1 0.98 2.8× 107 43.92 1185.3
3× 107 2 0.12 0.19 79.3 7.0 53.3 44.30 1196.4 0.99 2.9× 107 43.87 1184.8
3× 107 4 0.12 0.10 68.4 16.3 119.7 65.13 1330.6 0.98 2.8× 107 63.72 1301.8

108 0 — — 101.5 — — 32.30 1707.9 1.00 108 32.30 1707.9
108 1 0.06 0.077 26.8 78.1 16.3 38.25 1813.9 0.91 7.7× 107 34.99 1659.4
108 1 0.12 0.03 2.9 98.3 20.2 38.50 1838.5 0.79 4.9× 107 30.34 1449.0
108 1 0.12 0.06 17.1 88.0 34.7 44.62 1898.6 0.81 5.4× 107 36.37 1547.4
108 1 0.12 0.09 33.8 76.6 37.5 47.06 2032.9 0.84 5.9× 107 39.56 1708.8
108 1 0.12 0.12 46.5 64.8 35.6 46.70 2011.6 0.86 6.5× 107 40.39 1739.7
108 1 0.12 0.15 58.4 54.3 33.8 46.35 2095.6 0.89 7.0× 107 41.15 1860.4
108 1 0.12 0.18 67.1 44.5 33.0 45.89 2065.8 0.91 7.5× 107 41.74 1878.8
108 1 0.12 0.21 76.1 35.3 32.5 45.71 2022.2 0.93 8.0× 107 42.50 1880.4
108 1 0.12 0.24 83.1 26.5 32.3 45.25 1964.0 0.95 8.5× 107 42.94 1863.7
108 2 0.06 0.03 4.1 93.3 19.8 37.38 1801.0 0.90 7.3× 107 33.68 1622.8
108 2 0.06 0.06 25.1 78.2 33.0 43.39 1901.7 0.92 7.8× 107 39.96 1751.5
108 2 0.06 0.08 42.1 67.7 36.0 46.44 1998.3 0.93 8.1× 107 43.36 1865.9
108 2 0.06 0.09 49.9 61.8 36.3 47.26 2009.1 0.94 8.3× 107 44.42 1888.5
108 2 0.06 0.12 69.6 45.2 36.3 48.11 2023.1 0.96 8.8× 107 46.08 1937.7
108 2 0.06 0.15 85.0 28.5 35.7 47.58 1970.6 0.97 9.3× 107 46.37 1920.3
108 2 0.06 0.18 98.6 12.9 35.9 47.25 1996.6 0.99 9.7× 107 46.79 1976.9
108 2 0.12 0.03 2.9 97.6 33.6 42.68 1913.2 0.80 5.2× 107 34.23 1534.6
108 2 0.12 0.06 23.2 83.2 69.7 55.96 2079.4 0.84 6.0× 107 47.12 1751.0
108 2 0.12 0.09 49.5 65.0 77.8 61.12 2099.7 0.88 6.8× 107 53.78 1847.4
108 2 0.12 0.12 74.3 47.9 80.5 65.54 2187.2 0.91 7.7× 107 60.00 2002.4
108 2 0.12 0.15 93.7 31.3 79.7 65.17 2194.3 0.95 8.5× 107 61.85 2082.4
108 2 0.12 0.18 107.1 14.0 78.7 63.46 2143.6 0.98 9.4× 107 62.21 2101.4
108 2 0.12 0.19 109.8 8.3 78.7 62.68 2123.6 0.99 9.7× 107 62.07 2102.9
108 4 0.12 0.10 107.7 20.8 178.6 97.42 2473.3 0.98 9.4× 107 95.32 2419.9
108 4 0.06 0.077 72.5 44.3 79.2 62.12 2199.5 0.96 9.0× 107 60.02 2125.3
108 8 0.06 0.052 65.2 30.4 152.4 79.03 2259.1 0.98 9.6× 107 77.95 2228.3

5× 108 0 — — 162.3 — — 51.65 3427.0 1.0 5.0× 108 51.65 3427.0
5× 108 1 0.12 0.18 104.5 68.4 57.2 73.47 4511.5 0.91 3.8× 108 66.82 4103.1

TABLE 1. For caption see end of table.

is equal to the distance between the vertical wall and the closest obstacle, and it is
also equal to the diameter of the gap near the cylinder centreline, which is formed by
the central ring-shaped obstacle. Further, ` is the width of each obstacle and h is the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.797


Natural convection in cylindrical containers with ring-shaped obstacles 882 A3-9

Ra n h/H a/H Q1 Q2 Q3 Nu Re Heff /H Raeff Nueff Reeff

5× 108 2 0.12 0.18 163.0 19.8 132.0 100.27 4530.8 0.98 4.7× 108 98.30 4441.7
5× 108 4 0.12 0.10 169.9 26.7 288.8 156.00 5138.50 0.98 4.7× 108 152.63 5027.5

TABLE 1. Parameters and results of the conducted DNS of thermal convection in a
cylindrical container of aspect ratio 1 (H=D), filled with a fluid of Prandtl number Pr= 1,
for different numbers n of ring-shaped obstacles attached to each of two plates, the height
of the obstacles being h and the gap between them a. Parameter Q1 is the mean heat flow
from the lowest horizontal surface of the heated plate, Q2 is the mean heat flow from the
top surfaces of the heated obstacles and Q3 is the mean heat flow from the sidewalls of
the heated obstacles. The Rayleigh number Ra, Nusselt number Nu and Reynolds number
Re are based on the height of the cell H, while the corresponding effective quantities Raeff ,
Nueff and Reeff are based on the effective height Heff , defined by the fluid volume and the
area of the central horizontal cross-section of the cell. The cases with n= 0 correspond to
the classical RBC with smooth plates and for which Nu=Nueff =Nus and Re=Reeff =Res.

height of each obstacle (see figure 1). Thus, the following holds:

2R= 2n`+ (2n+ 1)a. (3.1)

The area of each plate in the smooth case is As=πR2. When the wall roughness or the
obstacles are present, the area A of each plate is decomposed into three components:

A= A1 + A2 + A3, A1 + A2 = As, (3.2a,b)

where, using the example of the bottom (top) plate, A1 is the area of the lowest
(topmost) horizontal part of the plate (i.e. the ‘true’ bottom (top), considered at the
same height as it would be in the smooth-plate case), A2 is the area of the upper
(lower) horizontal parts of the obstacles attached to the bottom (top) and A3 is the
area of the sidewalls of the heated (cooled) obstacles.

Analogously we introduce the mean heat fluxes from different surfaces of the plates.
Using the example of the heated bottom plate, they are: q1, the mean heat flux from
the lowest horizontal surface of the plate; q2, the mean heat flux from the top surfaces
of the heated obstacles; and q3, the mean heat flux from the sidewalls of the obstacles
attached to this plate (see figure 1). Thus, the corresponding mean heat flows Q1, Q2

and Q3 are defined as
Qi = qiAi, i= 1, 2, 3. (3.3)

These quantities determine the Nusselt number

Nu= (Q1 +Q2 +Q3)/(q0As), (3.4)

with q0 being the purely conductive heat flux in the smooth-plate case. This quantity
(Nu) is equal to the Nusselt number, defined analogously at the top cooled plate, and
also is equal to the Nusselt number calculated at any distance z from the bottom,
between the heated and cooled obstacles:

Nu=
〈uzT〉z − κ〈∂T/∂z〉z

κ∆/H
, (3.5)
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H Heff = L

Heff = H

L

H L

(a) (b)

(c) (d)

FIGURE 2. (a,c) Sketches of the convection cells with height H, distance between top and
bottom ring-shaped obstacles L=H− 2h and height of obstacles h, for (a) an infinitesimal
gap between the neighbouring obstacles at each plate and (c) an infinitesimal width of
each obstacle. (b,d) The reference convection cells with smooth plates, which correspond
to the convection cells with obstacles from (a,c), respectively. The effective height Heff ,
which is based on the fluid volume and the area of the central horizontal cross-section of
the convection cell, is (a,b) Heff = L and (c,d) Heff =H.

where 〈·〉z means an averaging in time and over a horizontal cross-section at distance
z from the bottom. In the DNS, these evaluated quantities are not exactly the same for
different z, but the standard deviation is less than 0.3 % in all conducted simulations.

The Reynolds number Re is determined by the velocity U of the turbulent wind in
the convection cell, or LSC, which are defined as follows:

Re=
HU
ν
, U = max

z,z∈(h,H−h)

√
〈u2

r + u2
φ + u2

z 〉z. (3.6a,b)

The Nusselt number Nu, Reynolds number Re and heat flows from the different
parts of the heated plate Qi, i=1,2,3, obtained in the DNS, are summarised in table 1.
There one can find also the corresponding effective height Heff of each considered
convection cell and the effective Rayleigh number Raeff , Nusselt number Nueff and
Reynolds number Reeff , which are based on Heff . That is,

Raeff ≡ (Heff /H)3Ra, Nueff ≡ (Heff /H)Nu, Reeff ≡ (Heff /H)Re. (3.7a−c)

The effective height Heff is determined by the fluid volume, i.e. by the volume of
the cylinder minus the volume of all obstacles, divided by the area of the central
horizontal cross-section of the cell, i.e. As.

In the rest of the paper the obtained results are presented exclusively for the
effective quantities Raeff , Nueff and Reeff , which are related to the effective height of
the convection cell Heff , and not for Ra, Nu and Re, which are related to the cylinder
height H. The reason is that in the case of tall obstacles, the usage of H, in contrast
to Heff , can lead to non-physical results. This is illustrated by figure 2 and explained
below.
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(a) (b) (c)

FIGURE 3. Isosurfaces of the instantaneous temperature distributions, for Ra= 108, height
of ring-shaped obstacles h/H= 0.06 and number of rings (a) n= 2, (b) n= 4 and (c) n= 8.
The colour scale ranges from blue (cold fluid) to white (the fluid temperature equals the
arithmetic mean of the top and bottom temperatures) to pink (warm fluid).

When the obstacles are very wide, so that the gaps between them in the horizontal
direction are negligible, the obstacles build a thick plate, and in this case the actual
height h of the obstacles no longer matters (see figure 2a,b). Thus, the reference
height in such convection cells should be the distance L between the top and bottom
ring-shaped obstacles, L = H − 2h. The usage of the reference height H instead of
L would lead, in particular, to a value of the Nusselt number that overestimates the
actual Nusselt number by a factor of H/L and to a Rayleigh number overestimated by
a factor of (H/L)3. In contrast to that, in another limiting case of infinitesimally thin
obstacles (see figure 2c,d), the usage of L as the reference height of the convection
cell would lead to an underestimation of the Nusselt number by a factor of H/L and
of the Rayleigh number by a factor of (H/L)3.

The usage of the effective height Heff , which is determined by the fluid volume and
As, leads to correct reference heights in both limiting cases, which are Heff = L in the
case of infinitesimal gaps between the neighbouring obstacles (figure 2a) and Heff =H
in the case of an infinitesimal width of the obstacles (figure 2c). Obviously, when the
height of the obstacles, or the plate roughness, is small, h� H, the usage of Heff
instead of H is not that influential, but in the case of high and wide obstacles, the
usage of the correct effective convection cell height becomes crucial.

4. Results
Direct numerical simulations of thermal convection in a cylinder of aspect ratio

1, with rough heated and cooled plates or with the ring-shaped obstacles that are
attached at the plates, as described in the previous section, have been conducted for
135 different configurations of the ring-shaped obstacles and different numbers of the
obstacles, for Pr = 1 and Ra from 106 to 108. In figure 3 some flows are visualised
with three-dimensional isosurfaces of the temperature for Ra = 108, obstacle height
h/H = 0.06 and different numbers of ring-shaped obstacles.

Most of the simulations are conducted for the case of Ra = 107, to study the
effects of the gap width, of the obstacle height and of the number of the obstacles.
Quantitative information on the studied convective flows is presented in figures 6, 7,
9–11, 13 and 14. The effective Reynolds numbers and Nusselt numbers, obtained in
the DNS, are presented in table 1. To visualise different DNS results, the symbols
according to table 2 are used in the figures throughout the paper.
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n= 1, h/H = 0.12, a/H = 0.18 RBC with smooth plates
n= 2, h/H = 0.12, a/H = 0.19
n= 4, h/H = 0.12, a/H = 0.10 Q1/(Q1 +Q2 +Q3)

Ra= 106, n= 1, h/H = 0.12 Q2/(Q1 +Q2 +Q3)

Ra= 106, n= 2, h/H = 0.12 Q3/(Q1 +Q2 +Q3)

Ra= 107, n= 1, h/H = 0.06 Ra= 107, n= 10, a/H = 0.015
Ra= 107, n= 1, h/H = 0.12 Ra= 107, n= 2, a/H = 0.015
Ra= 107, n= 2, h/H = 0.015 Ra= 107, n= 2, a/H = 0.03
Ra= 107, n= 2, h/H = 0.03 Ra= 107, n= 2, a/H = 0.06
Ra= 107, n= 2, h/H = 0.06 Ra= 107, n= 2, a/H = 0.104
Ra= 107, n= 2, h/H = 0.12 Ra= 107, n= 2, a/H = 0.12
Ra= 107, n= 2, h/H = 0.25 Ra= 107, n= 2, a/H = 0.152
Ra= 108, n= 1, h/H = 0.12 Ra= 107, n= 2, a/H = 0.176
Ra= 108, n= 2, h/H = 0.06 Ra= 107, n= 2, a/H = 0.188
Ra= 108, n= 2, h/H = 0.12 Ra= 107, n= 4, a/H = 0.10

TABLE 2. Symbols used in figures 6, 7, 9–11 and 13–15, to present different
DNS results.

4.1. The influence of the width of the gaps between the obstacles
From previous studies of the effect of plate roughness in thermal convection (see, e.g.
Roche et al. 2001), it is known that the influence of the roughness on the mean heat
transport is negligible when the roughness height is smaller than or comparable to the
thickness δθ of the thermal boundary layer in the smooth-plate case. In the smooth-
plate case, the thickness of the thermal boundary layer is

δθ =H/(2Nus), (4.1)

where Nus is the Nusselt number in the smooth-plate case. When the obstacle height
h is larger than δθ , the mean heat transport, i.e. the Nusselt number, can be different
from that in the smooth-plate case. Usually, the presence of obstacles at the heated
and cooled plates, which have the same temperature as the corresponding plate, leads
to an increase of the Nusselt number compared to the smooth-plate case. The Nusselt
numbers for the studied smooth-plate cases, Nus, can be found in table 1 for n= 0.
For the smooth cases, Nus = Nu = Nueff , and from these values the corresponding
thicknesses of the thermal boundary layers can be calculated, according to relation
(4.1).

To investigate the influence of the width of the gap between the obstacles, for a
fixed number n=2 of the ring-shaped obstacles, we consider a set of different obstacle
heights, more precisely, h/H = 0.015, 0.03, 0.06, 0.12 and 0.25, and for each of the
chosen h, the DNS have been conducted for different widths of the gap a between
the obstacles. The considered cases are a/H = 0.015, 0.03, 0.06, 0.104, 0.12, 0.152,
0.176 and 0.188.

In the case of Ra=107, for h/H=0.015 (see figure 4), the height of the obstacles is
smaller than the thickness of the thermal boundary layer in the smooth-plate case, and
therefore the width of the gap between the obstacles does not have much influence,
since for any a, most of the time, the obstacles are covered by the thermal boundary
layer and do not influence the heat transport.

A completely different situation is observed for tall obstacles, h/H= 0.25, and Ra=
107. Here, for the same gaps between the obstacles as in figure 4, one obtains a strong
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T- T+Tm
T

(a) (b) (c)

FIGURE 4. Snapshots of the flow fields (temperature and streamlines) in the central
vertical cross-sections, for Ra = 107, number of ring-shaped obstacles n = 2, obstacle
height h/H = 0.015 and gap between obstacles (a) a/H = 0.015, (b) a/H = 0.104 and
(c) a/H = 0.188. The temperature colour scale ranges from blue (cold fluid) to white
(the fluid temperature is Tm ≡ (T+ + T−)/2, the arithmetic mean of the top and bottom
temperatures) to pink (warm fluid).

(a) (b) (c)

FIGURE 5. Snapshots of the flow fields in the central vertical cross-sections, for Ra= 107,
number of ring-shaped obstacles n = 2, obstacle height h/H = 0.25 and gap between
obstacles (a) a/H = 0.015, (b) a/H = 0.104 and (c) a/H = 0.188. The colour scale is
as in figure 4.

dependence of the flow structure on the gap width a. This is illustrated in figure 5.
When the gap is very thin (a/H = 0.015), the fluid stagnates between the heated as
well as between the cooled obstacles (figure 5a), and thus the global flow structure
is expected to be similar to that in RBC in a cylindrical container of aspect ratio
2R/(H − 2h) = 2, with smooth plates, and with the Rayleigh number reduced by a
factor ((H − 2h)/H)3 = 1/8.

With increasing height of the obstacles, as soon as h becomes larger than δθ , the
obstacles start to contribute to the heat transport in the system. For a sufficiently large
gap between the obstacles, a/H = 0.104, from time to time, the fluid is completely
washed out from the gaps between the obstacles, and thus the heated and cooled
obstacles contribute to the heat transport in the system (see figure 5b). Here one can
expect a significant increase of the Nusselt number, compared to the smooth-plate
case.
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FIGURE 6. Dependences of the normalised effective (a,c) Nusselt number Nueff and
(b,d) Reynolds number Reeff on the gap a between one or two ring-shaped obstacles, for
Ra = 106 and obstacle height h/H = 0.12, for Ra = 107 and h/H = 0.015, 0.03, 0.06,
0.12 and 0.25 and for Ra = 108 and h/H = 0.06 and 0.12 (see symbol meanings in
table 2). Here Nueff and Reeff are normalised with respect to the Nusselt number Nus (a)
and Reynolds number Res (b) that correspond to Ra=Raeff in the smooth-plate case (see
equations (4.2) and (4.3)). In (c,d) the data are plotted versus the gap a, normalised with
the thickness of the thermal boundary layer in the smooth case for Ra= Raeff , i.e. with
δθ =Heff /(2Nus).

After a certain sufficiently large value of a, when the obstacles are already strongly
washed from all sides that are open to the fluid, a further increase of a might not lead
to an increase of the Nusselt number, since no additional heated or cooled surfaces
get involved in the heat transport process with the increase of the gap between the
obstacles (see figure 5c). In this respect, for tall roughness elements, we might expect
the existence of an optimal geometrical configuration of the roughness elements that
provide the maximal heat transport in the system, similar to the standard confined
RBC with adiabatic sidewalls (Chong et al. 2018).

The dependences of the effective Nusselt number Nueff , normalised with Nus, and
the effective Reynolds number Reeff , normalised with Res, as functions of the gap
width between the obstacles, a, are presented, respectively, in figures 6(a) and 6(b), for
Ra= 106, 107 and 108, number of ring-shaped obstacles n= 1 or n= 2 and different
combinations of the obstacle heights h. Here Nus and Res are, respectively, the Nusselt
number and Reynolds number in classical RBC with smooth plates, for Ra=Raeff . For
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each particular value of Ra=Raeff , the values of Nus and Res are calculated according
to the formulas

Nus = 0.166Ra0.286, (4.2)
Res = 0.191Ra0.492, (4.3)

which are obtained from the power-law fitting of the DNS data for classical RBC with
smooth plates, for Ra from 106 to 108.

One can see that the normalised effective Nusselt number is generally larger for
larger a (see figure 6a). The data points for larger obstacle heights show larger
effective Nusselt numbers than the data points for lower h. This means that the
presence of tall obstacles can potentially lead to stronger heat transport enhancement,
if the gap between the obstacles is sufficiently large. As is expected from the analysis
of figure 4, an increase of the gap does not lead to an increase of the Nusselt number
if the obstacle height is small, and this is supported by the example of h/H = 0.015
in figure 6(a) (downward triangles). Opposite to this situation, for tall obstacles, the
gap width becomes important, and with growing a, the heat transport is significantly
increased compared to the smooth-plate case, as can be seen by the example of
h/H= 0.25 (upward triangles in figure 6a). A fast growth of the normalised effective
Nusselt number with growing a for the case h/H = 0.25 is observed in the interval
a/H ∈ [0; 0.104]. When the gap width is about a/H = 0.104, the cavities between
the neighbouring obstacles of the same temperature are already fully and regularly
washed out (see also figure 5a), and further increase of the gap width does not lead
to an increase of the Nusselt number.

In figure 6(c) the same data (as in figure 6a) are plotted versus the gap width a,
normalised with the corresponding thickness of the thermal boundary layer (δθ ). One
sees that for tall roughness elements, the Nusselt number increases fast for a up to
approximately 4δθ . After that, a further increase of the gap width does not much
influence the heat transport.

The normalised effective Reynolds numbers, presented in figure 6(b), demonstrate
a non-monotonic behaviour with the gap width a. First, as the gap is small, this
quantity grows with growing a, due to additional heated/cooled surfaces, and the LSC
remains unconstrained by the obstacles (see also figure 5a). As soon as the cavities
between the obstacles are involved in the convective process, the LSC becomes less
pronounced, its structure becomes more complicated (see figure 5c) and its strength
starts to reduce, which is reflected in a slight reduction of of the normalised Reynolds
number for large gaps between the obstacles. Similar (to a certain extent) observations
with respect to the normalised Nusselt numbers and Reynolds numbers were reported
in previous numerical studies, e.g. in Toppaladoddi, Succi & Wettlaufer (2015) and
Wagner & Shishkina (2015).

In figure 7, the normalised effective Nusselt numbers are plotted against the
effective Rayleigh numbers Raeff (figure 7a) and the effective heights Heff (figure 7b).
In figure 7(a), for any fixed Ra, the values of Raeff are larger for larger volume of the
fluid, which, in the case of a fixed obstacle height, is equivalent to larger width of the
gaps between the obstacles. One can see in figure 7(a) that the normalised effective
Nusselt number in the case of the rough plates is not always larger than that in the
case of the smooth plates; sometimes, e.g. for small gaps between the obstacles, it
can be smaller than that in the smooth-plate case. This finding is in good agreement
with the earlier studies by Shishkina & Wagner (2011) and Zhang et al. (2018). The
Nusselt number reduction happens only in a few cases and is possible only for small
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FIGURE 7. Dependences of the normalised effective Nusselt number Nueff on the effective
(a) Rayleigh number Raeff and (b) height Heff , for the cases as in figure 6. Symbols are
according to table 2. The data are normalised with respect to the Nusselt number Nus that
corresponds to Ra= Raeff in the smooth-plate case (see (4.2)).

(a) (b) (c)

FIGURE 8. Snapshots of the flow fields in the central vertical cross-sections, for Ra= 107,
number of ring-shaped obstacles n = 4, gap between obstacles a/H = 0.10 and obstacle
height (a) h/H = 0.015, (b) h/H = 0.25 and (c) h/H = 0.4. The colour scale is as in
figure 4.

Ra. In particular, one can see this for the Ra = 106 data, which in figure 7(a) are
presented by the lower-filled symbols. For large Ra, the presence of the obstacles,
or plate roughness, always leads to an increase of the mean heat transport (see the
upper-filled data points in figure 7a for Ra= 108).

4.2. The influence of the obstacle height
To investigate the influence of the obstacle height h, we consider a set of different
widths a between the isothermal obstacles, more precisely a/H = 0.015, 0.03, 0.06,
0.104, 0.12, 0.152, 0.176 and 0.188, for different numbers of the ring-shaped obstacles.
For each of the chosen a, the DNS data are analysed with respect to their dependence
on the obstacle height h. The considered heights are h/H = 0.015, 0.03, 0.06, 0.12,
0.25, 0.4 and 0.49.

In figure 8, for three different obstacle heights, the instantaneous temperature
distributions and streamlines are presented for Ra = 107, number of ring-shaped
obstacles n = 4 and width of gaps between them a/H = 0.10. In the case of short
obstacles, h/H = 0.015, the roughness is embedded into the thermal boundary layer,
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the LSC is not affected and, therefore, one can expect an effective Nusselt number
similar to that in the case of the smooth plates (see figure 8a). For a significantly
larger obstacle height, h/H = 0.25 (figure 8b), the obstacles contribute to the global
heat transport, as the flow is present also between the isothermal obstacles in this
case.

With a further increase of the obstacle height, h/H = 0.4 (figure 8c), the LSC is
deformed in such a way that it often takes the form of a set of rolls in the gaps
between the neighbouring obstacles of the same temperature, and these rolls extend
from the very bottom to the very top of the convection cell. Note that such a change
of the global flow structure can also lead to an increase of the Nusselt number. As
was shown in a study of the effect of the RBC cell confinement on the heat transport
(Chong et al. 2018), for Pr> 1, there exists an optimal width-to-height aspect ratio of
the RBC cell that provides a maximal heat transport and this optimal aspect ratio is
about 0.1 for Pr= 1 and decreases with growing Ra and Pr. Therefore the tendency
of the global flow to take the form of a set of separate rolls between the neighbouring
obstacles can also increase the total heat transport, compared to the singe-roll LSC
that takes place in the classical RBC with smooth plates. In the case of extremely
tall obstacles and sufficiently large gaps between them, both horizontal and vertical
heated/cooled surfaces can contribute to the increase of the heat transport in the
system, where the increasing contribution from the vertical walls of the roughness
elements can grow almost linearly with their height.

The dependences of the normalised effective Nusselt number Nueff and Reynolds
number Reeff as functions of the obstacle height h are presented, respectively, in
figures 9(a) and 9(b), for Ra = 107, different numbers of ring-shaped obstacles and
various widths a of the gaps between the obstacles. One can see that the value of
Nueff /Nus generally increases almost linearly with increasing height of the obstacles.

When the distance between the neighbouring obstacles is very small, i.e. it is
smaller than the double thickness of the thermal boundary layer in the smooth-plate
case, as it is for a/H = 0.015 or a/H = 0.03, the height of the obstacles does not
matter: for any obstacle height the normalised effective Nusselt number is almost
indistinguishable from that in the smooth-plate case. The change of the effective
aspect ratio of the container has little influence. For a/H= 0.06 (side-filled diamonds
in figure 9a), the gap between the obstacles is already sufficiently large to allow
the flows to skim the hot fluid between the bottom obstacles and the cold fluid
between the top obstacles, and therefore an increase of the Nusselt number compared
to the smooth-plate case is observed. Very impressive is the collapse of the data in
figure 9(a) for Ra= 107, n= 2 and any of the gap widths a/H = 0.104, 0.12, 0.152,
0.176 and 0.188. This again supports the fact that as soon as the cavities between
the neighbouring obstacles are washed out, a further increase of the gap between the
obstacles does not lead to any change of the effective Nusselt number. The slope
of the growth of Nueff /Nus with growing h is steeper for a larger number of the
well-separated obstacles, as one can conclude from a comparison of the data points
for Ra = 107, n = 4 and a/H = 0.10 with the other results presented for a smaller
number of the obstacles (figures 9a and 9c).

For small and moderate h, the normalised effective Reynolds number, Reeff /Res,
grows with the increasing height of the obstacles (see figure 9b). When the obstacles
are extremely tall, as in the case of h/H = 0.4, the global flow structure is modified,
as discussed above with respect to figure 8(c), the LSC is confined, and this results
in a reduction of Reeff /Res.

In figure 10, the normalised effective Nusselt numbers are plotted against
the effective Rayleigh numbers Raeff (figure 10a) and the effective heights Heff
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FIGURE 9. Dependences of the effective (a,c) Nusselt number Nueff and (b,d) Reynolds
number Reeff on the height h of the ring-shaped obstacles, for Ra = 107 and n = 1 ring
with the gap a/H = 0.015, for Ra = 107 and n = 2 ring-shaped obstacles and the gap
varying from a/H= 0.015 to 0.188 and for Ra= 107 and n= 4 ring-shaped obstacles and
the gap between them a/H= 0.10 (see symbol meanings in table 2). The values of Nueff
and Reeff are normalised with respect to the Nusselt number Nus (a) and Reynolds number
Res (b) that correspond to Ra = Raeff in the smooth-plate case (see (4.2) and (4.3)). In
(c,d) the data are plotted versus the roughness height h, normalised with the thickness of
the thermal boundary layer in the smooth case for Ra= Raeff , i.e. with δθ =Heff /(2Nus).

(figure 10b). In figure 10(a), for any fixed Ra, the values of Raeff are larger for
larger fluid volume, which, in the case of a fixed distance between the ring-shaped
obstacles, is equivalent to shorter obstacles. Thus, for a sufficiently large gap, taller
obstacles generally mean larger effective Nusselt numbers (see figure 10a).

In figure 11, the normalised effective Nusselt numbers are plotted against the
relative additional area of the plates due to the presence of the obstacles, for the
same obstacle configurations as considered in figures 9 and 10. This additional area
occurs from the sidewalls of the obstacles and is proportional to the obstacle height.
In the case of a fixed gap between the roughness elements, the additional area is
proportional to the roughness element height and, therefore, this figure is similar to
figure 9(a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.797


Natural convection in cylindrical containers with ring-shaped obstacles 882 A3-19

10.0
(a) (b)

1.0

0.2

8

7

6

5

4

3

2

1
0
0.2105 106 107 0.3 0.4 0.5 0.6 0.7

Heff/HRaeff

0.8 0.9 1.0

Nu
ef

f/
Nu

s

FIGURE 10. Dependences of the normalised effective Nusselt number Nueff on the
effective (a) Rayleigh number Raeff and (b) height Heff , for the cases as in figure 9.
Symbols are according to table 2. The data are normalised with respect to the Nusselt
number Nus that corresponds to Ra= Raeff in the smooth-plate case (see (4.2)).
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FIGURE 11. Dependence of the normalised effective Nusselt number Nueff on the relative
additional surface area of the plates due to the presence of the obstacles (i.e. the relative
area of the sidewalls of the ring-shaped obstacles), for the cases as in figure 9. Symbols
are according to table 2. The data are normalised with respect to the Nusselt number Nus
that corresponds to Ra= Raeff in the smooth-plate case (see (4.2)).

4.3. The influence of the number of the ring-shaped obstacles

In figure 12, snapshots of the flows are presented for Ra= 108 and different numbers
n of the ring-shaped obstacles, which are separated by sufficiently large gaps of
width a/H > 0.10. The dependences of the normalised effective Nusselt number Nueff
and Reynolds number Reeff on the effective Rayleigh number Raeff for some fixed
combinations of a, h and n are presented in figure 13. One can see that a larger
number of obstacles generally leads to a larger mean heat transport. For relatively
thin gaps between the obstacles (i.e. when the ratio between the gap width and the
thickness of the thermal boundary layer is relatively small, which for any prescribed
value of a corresponds to smaller values of Raeff in figure 13), the fluid is trapped in
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(a) (b) (c)

FIGURE 12. Snapshots of the flow fields in the central vertical cross-sections, for Ra=108,
height of obstacles h/H = 0.12 and (a) n= 1 and a/H = 0.18, (b) n= 2 and a/H = 0.18
and (c) n= 4 and a/H = 0.10. The colour scale is as in figure 4.

the obstacle gaps, but only partly, and therefore in this Raeff region, not only is the
mean heat transport increased, but also the scaling exponent in the effective Nusselt
number versus the effective Rayleigh number scaling is increased. This is especially
well pronounced in the case of n=4 rings and a/H=0.1. When the relative gap width
(compared to the thickness of the thermal boundary layer) becomes sufficiently large
(large Raeff in figure 13a), the scaling exponent decreases back, slowly approaching
that in the smooth-plate case. The scaling of the effective Reynolds number with
the effective Rayleigh number is weakly influenced by the number of obstacles (see
figure 13b). The Reynolds number increase due to the roughness is stronger for a
larger number of obstacle rings and for larger Ra.

4.4. Contributions to the heat transport from different surfaces of the rough plates
Finally, we evaluate the contributions of the different surfaces of the plates to the
mean heat transport in the system. In figures 14 and 15, the dependences on the
relative additional surface area A3 of the plates due to the presence of the obstacles
are presented for the normalised components of the mean heat flow, namely from the
lower part of the bottom plate Q1 (lower-filled symbols), from the upper parts of the
ring-shaped obstacles Q2 (upper-filled symbols) and from the sidewalls of the obstacles
Q3 (filled symbols). Everywhere in figures 14 and 15, Ra= 107, Pr = 1 and number
of ring-shaped obstacles n = 2. The value A3 is proportional to the height h of the
obstacles.

For a very small gap between the obstacles (a/H = 0.015), the lower surface of
the heated plate and the sidewalls of the attached obstacles contribute almost nothing
to the heat transport, as the obstacles are embedded into the hot thermal boundary
layer. The heat is taken predominantly from the upper surfaces of the heated obstacles.
With a small increase of the gap (a/H= 0.03), the relative contribution of the obstacle
sidewalls starts to increase with growing covering area of the obstacles, at the expense
of the contribution of the upper surfaces of the heated obstacles.

For a/H = 0.06 and large A3 (large obstacle height), the heat flow from the upper
surfaces of the heated obstacles Q2 is dominated by the heat flow Q3 from the sides
of the obstacles, while there is still almost no heat flux from the lowest parts of the
heated plate Q1, i.e. from the ‘true’ bottom. With further increase of the gap (a/H >
0.104), the relative contribution from the sidewalls of the heated obstacles Q3 does
not change much, while the relative Q2 contribution decreases and the relative heat
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FIGURE 13. Dependences of the normalised effective (a,c) Nusselt number Nueff and
(b,d) Reynolds number Reeff on the effective Rayleigh number Raeff and for obstacle height
h/H = 0.12 and obstacle gap a/H = 0.18 and number of ring-shaped obstacles n = 1
(down-pointing triangles), a/H = 0.18 and n = 2 (squares) and a/H = 0.10 and n = 4
(up-pointing triangles); see table 2. For comparison are also shown: (a) the predictions of
the theory by Grossmann & Lohse (2000, 2001) with the coefficients from Stevens et al.
(2013) (black curve) and the slope Nueff ∼ Ra1/2

eff (grey stripe) and (a,b) the DNS data for
the classical RBC in a cylinder of aspect ratio 1, Pr= 1 and smooth plates (filled circles).
(c,d) The data are normalised with respect to the Nusselt number Nus (c) and Reynolds
number Res (d) that correspond to Ra=Raeff in the smooth-plate case (see (4.2) and (4.3)).

flow from the lowest parts of the heated plate Q1 gradually increases. For a/H= 0.12,
one obtains Q1 ≈ Q2. For even larger a, the heat flux from the lowest parts of the
heated plate Q1 becomes much larger than that from the upper surfaces of the heated
obstacles Q2. For the largest gaps a, the contribution to the heat transport from the
upper surfaces of the heated obstacles almost vanishes, Q2≈ 0, while the contribution
from the lowest parts of the heated plate is approximately equal to the mean heat flux
in the smooth-plate case at the same effective Rayleigh number, i.e. Q1 ≈ Qs (see
figure 15). For very large a, the contribution from the upper surfaces of the heated
obstacles vanishes, Q2≈ 0, because in this case the ring-shaped obstacles become very
thin and, therefore, their upper surfaces contribute less to the heat transport in the
system, so that the relative values of Q2 become negligible.
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FIGURE 14. Normalised components of the mean heat flow, from the lower part of the
bottom plate Q1 (symbols with lower part filled), from the upper parts of the ring-shaped
obstacles Q2 (symbols with upper part filled) and from the sidewalls of the obstacles Q3
(fully filled symbols), as functions on the relative additional surface area of the plates due
to the presence of the obstacles, for Ra= 107, Pr= 1 and number of ring-shaped obstacles
n= 2.
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FIGURE 15. Components of the mean heat flow, from the lower part of the bottom plate
Q1 (symbols with lower part filled), from the upper parts of the ring-shaped obstacles Q2
(symbols with upper part filled), and from the sidewalls of the obstacles Q3 (fully filled
symbols), normalised with the mean heat flow from the heated plate in the smooth case,
Qs ∼ AsNus, as functions on the relative additional surface area of the plates due to the
presence of the obstacles, for Ra= 107, Pr= 1 and number of ring-shaped obstacles n= 2.
Here Nus is calculated for Ra= Raeff in the smooth-plate case (see equation (4.2)).
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5. Conclusions
In the presented three-dimensional direct numerical study, the effect of isothermal

obstacles, or regular roughness, has been investigated for natural thermal convection
in cylindrical containers. The obstacles, which are attached to cooled top and heated
bottom plates and which have the same temperature as the corresponding plate, have
the form of concentric rings and thus are always located across the direction of the
LSC that develops in the convection cell. The obtained results are presented with
respect to the quantities that are based on the effective height of the cell, which is
determined by the actual volume of the fluid and not by the cylinder volume.

The obtained results show that in most cases the regular plate roughness leads to an
increase of the Nusselt number. Only for small Ra and relatively small gaps between
the obstacles is a reduction of the Nusselt number possible, compared to the smooth-
plate case. The Nusselt number reduction due to the roughness becomes irrelevant for
high Ra.

Our DNS confirmed that the effect of the roughness emerges when the obstacle
height is larger than the thickness of the thermal boundary layer (Roche et al. 2001).
In this case, the width of the gaps between the obstacles and obstacle height become
important: for large gaps and tall obstacles, the mean heat flow can increase by
several times, compared to the smooth-plate case. When the cavities between the
obstacles are only partly washed out by the convective flow, the scaling exponent
in the Nusselt number versus the Rayleigh number scaling relation can be increased
up to approximately 1/2, but with further increase of the Rayleigh number, the
exponent slowly reduces and tends to that in the smooth-plate case. A larger number
of ring-shaped obstacles of sufficiently large heights and gaps between them usually
means stronger heat transport in the system, since the additional heat flux in that
case is proportional to the additional covering area of the heated/cooled surfaces.

An interesting finding is also that the destruction or a complete reorganisation of a
single-large-roll LSC, which is usually observed in classical RBC with smooth plates,
can also lead to an increase of the global heat transport. Thus, with extremely tall
obstacles, for sufficiently large gaps between them, the LSC is transformed into a set
of smaller rolls, each of which is located in a gap between two neighbouring obstacles
of the same temperature and extends from the very bottom to the very top of the cell,
as is shown in figure 8(c). This situation is similar to the phenomenon of the Nusselt
number increase in classical RBC, affected by the cell confinement.

It seems that for any prescribed Rayleigh number, there should exist an optimal
configuration of the ring-shaped obstacles that provides the maximal Nusselt number.
Deeper investigation of this problem and also the dependence of the optimal
configuration on the Prandtl number needs to be addressed in future studies. From
our present study, however, for Pr = 1 and a cylindrical container of aspect ratio
one, we can conclude the following. An increase of the Nusselt number due to the
roughness can be obtained if both the gap a between the roughness elements and
the roughness height h are larger than the thicknesses of the thermal boundary layer
δθ in the smooth-plate case, for the same effective Rayleigh number Ra = Raeff .
An increase of the gap in the interval δθ 6 a 6 acr for a certain critical value of
acr ≈ 4δθ leads to a significant increase of the effective Nusselt number Nueff (see
figure 6c). Further increase of the gap, i.e. for a> acr, does not much influence the
value of Nueff . Furthermore, if the gap between the roughness elements is sufficiently
large, a> δθ , and h> δθ , then the mean heat flux increases almost linearly with the
roughness element height (figure 9c), or with the additional area of the heated/cooled
surfaces (figure 11). Thus, the largest heat transport in the system is anticipated for
thin and extremely tall roughness elements, where the gap between them is a= acr.
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