RINGS OF QUOTIENTS OF
RINGS OF DERIVATIONS

Israel Kleiner

(received December 19, 1967)

The concept of a rational extension of a Lie module is defined as
in the associative case [1, pp. 81 and 79]. It then follows from
[3, Theorem 2.3] that any Lie module possesses a maximal rational
extension (a rational completion), unique up to isomorphism. If now
L and K are Lie rings with LC K, we call K a (Lie) ring of
quotients of L if K, considered as a Lie module over L, is a
rational extension of the Lie module LL. Although we do not know if

for every Lie ring L its rational completion can be given a Lie ring
structure extending that of L (as is the case for associative rings),
this is so, in any case, for abelian Lie rings (Propositions 2 and 4).

Let R be an associative ring, Q(R) its complete (maximal) ring
of quotients. Tewari has shown [5, p.53] that every derivation of R
has a unique extension to a derivation of Q(R). This implies that the
Lie ring D(R) of all derivations of R can be faithfully embedded in
the Lie ring D(Q(R)) of all derivations of Q(R). Since Q(R) is a ring
of quotients of R, one may ask if D(Q(R)) is a (Lie) ring of quotients
of D(R). Though this is the case for certain rings (e.g. R = Z[x1, .. .,xn]),

it is probably too much to expect in general. However, we show
(Theorem 3) that under certain conditions (e.g. when R 1is an integral
domain), the subring of D(Q(R)) of all ''special' derivations is a (Lie)
ring of quotients of D(R). (A derivation d of Q(R) is said to be
special if d = q1d1 +... + qndn’ for some q € Q(R), di ¢ D(Q(R)),

where the restrictions of the di to R are derivations of R.) Another

result in this direction is Theorem 2, where we pick out, for each
integer n > 1, subrings Dn(R) and Dn(Q(R)) of D(R) and D(Q(R))

respectively (see p. 8 ), such that Dn(Q(R)) is a (Lie) ring of quotients

of Dn(R) (under conditions similar to those in Theorem 3).
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1. Let AL, BL be Lie L-modules1 with AL_Q_BL. BL is said to
be a rational extension of AL if given any partial L-homomorphism

: C i = 0. i
fBL-*BL such that A C ker f, then im f = 0. We write AL_<_BL

(or A< B if there is no ambiguity). (For the analogous definition
in the associative case see [1, pp. 81 and 79).]

The category of Lie Li-modules is isomorphic to the category of

2
associative W(L)-modules , where W(L) is the universal enveloping
ring of L [3, Theorem 2.3]. From this and the well known result
in the associative case [1, pp. 83, 157, 158 ] we now get

PROPOSITION 1. Every Lie L-module ML possesses a

maximal rational extension NL. Moreover, any rational extension of

ML is isomorphic to exactly one submodule of NL. Thus a maximal

rational extension of a Lie module is unique (up to isomorphism).

We shall call the maximal rational extension of ML its rational
completion.

Remark. The proof of the above proposition could have been
obtained directly, without invoking the corresponding result in the
associative case and the isomorphism of the categories.

If R is an associative ring, the rational completion of RR can

be given a ring structure faithfully extending that of R [1, p. 160].
We call this ring the complete or maximal ring of (right) quotients of
R, and denote it by Q(R). For Lie rings we have only a partial
result in this direction. First we prove

LEMMA 1. Let L be an abelian Lie ring (ab = 0 for all
a,b e L), ML a trivial Lie Li-module (xa = 0 for all xe M, a e L).

Then N_ is a trivial Lie L-module for any rational extension N_  of

L
M_.
L
1. For the definitions of the basic concepts of '"Lie module'', Lie
homomorphism', etc. see [2] or [3].
2. To distinguish between the Lie and associative cases, we call

a module MR over the associative ring R (in the usual sense)

an associative module.
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Proof. Let a be a fixed element of L and define a mapping
: - b tti f = . Th =
f:N; ~ N, by setting f(y) =ya (ye N) en f(y, ty,) = fy,) +£(y,)
(yi, v, € N), and f(yb) = (yb)a = (ya)b - y(ab) (by the condition for
a Lie module) = (ya)b (since L is abelian) =f(a)b (y ¢ N, be L).

Thus f is an L-homomorphism. Also f(x) =xa =0 for all xe¢ M,

hence M C ker f. Since MLi NL, it follows that im f = 0. That is,

ya =0 for all ye N. Since ae¢ L is arbitrary, the result follows.

PROPOSITION 2. If L is an abelian Lie ring, the rational
completion NL of LL may be given a Lie ring structure faithfully

extending that of L.

Proof. By the Lemma, the multiplication in NL is trivial., We
may thus extend the multiplication N X L = {0} to NX N - {0} .
Clearly N then becomes a Lie ring faithfully extending L.

We shall denote by Q(L) the rational completion of LL (even
if L 1is not abelian).

Conjecture. Proposition 2 is not true for arbitrary Lie rings.

That is, there exists a Lie ring L for which Q(L) cannot be given a
Lie ring structure faithfully extending that of L.

The concept of a ring of quotients, however, can always be
defined. Thus if L and K are Lie rings with L C K, then K is
said to be a (right) ring of quotients of L if KL is a rational

extension of LL. Thus, if L is abelian, Q(L) is a ring of quotients

of L, called the maximal or complete ring of (right) quotients of L.

As a follow-up to the above conjecture, one may ask if the
situation cannot be salvaged, in the following sense: does L always
possess a '"maximal" ring of quotients K, which may be smaller than
the rational completion of L, but which is such that any ring of
quotients of L is isomorphic to a unique subring of K?

Remark. Any right ring of quotients of L is also a left ring of
quotients of L and conversely. This follows from the observation that

for Lie modules ML and NL we have MLg NL if and only if

LM_<_ LN ( the right module ML may be considered as a left module

LM by defining ax = -xa, xe M, a ¢ L, and any L-homomorphism

f:ML - N_ is also an L-homomorphism: LM - LN’ and conversely,

L
since f(ax) = f(-xa) = -f(xa) = -f(x)a = af(x)).

We shall now show that to determine the maximal ring of quotients
Q(L) of an abelian Lie ring L, it suffices to determine the maximal
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rational extension of the additive group of L. To make this precise,
let A be an abelian group (written additively). If we define
multiplication in A by: xy = 0 for all x,y ¢ A, then A becomes an
abelian Lie ring. Denote this ring by L _(A). If B is another abelian
group and f:A-B a homomorphism, then f can also be regarded as

a Iie ring homomorphism: LO(A)—’ LO(B), since f(xy) = £(0) = 0 = £(x)i(y)

(x,y ¢ L (A)). Thus, we have a mapping F from the category A

0
of abelian groups to the category (}/i of abelian Lie rings (¥F(A) = LO(A),

¥(f) =), whichis easily scen to be a functor. Conversely, i{f 1. is
an abelian Lie ring, let (1., +) denote its additive group. If K is
another abelian Lie ring and g:L—>X a ILie ring homomorphism, then
g is also (by restriction) a group homomorphism: (L, +)—-> (X, +). The
mapping G: 0{ - A (G(l) = (L, +),G(g) = g) is also a functor.

Moreover, FG(L) = F(L, +) = LO(L, +) = L. and GF(A) = G(LO(A)) =

(LO(A), +) = A. Also clearly FG(g) = g, GF({) ={. We thus have the

following

PROPOSITION 3. The category of abelian Lie rings is isomorphic
to the category of abelian groups.

An abelian group may be considered as an (associative) module
over the ring Z of integers. Thus, if A and B are abelian groups,
it is meaningful to speak of B being a rational extension of A.
Similarly, if L and K are lie rings, we say that K 1is a rational

extension of L. if LL < KL. We now show that in this sense rational

extensions are preserved under the above isomorphism of the categories.

LEMMA 2. If A,B ¢ A with B a rational extension of A,
then F(B) is a rational extension of F(A). Conversely, if L,K ¢
with K a rational extension of L, then G(K) is a rational extension
of G(L).

Proof. We note first that A C B implies F(A)C F(B), and
L C K implies G(L) C G(K). Let now Azg B We wish to show

that LO(A)LO(A)S LO(B)LO(A).

7
Thus, let M be an LO(A)—submoduIe of
LO(B) with LO(A)_(;M, and let f:M-— LO(B) be an LO(A)-homomorphism
such that LO(A) C ker f. Then (LO(A), +)C (M, +) C (LO(B), +). That

is, AC (M, +)C B ((Ly(A),4) = (F(A), +) = GF(A) = A). Also

f:(M, +)>B is clearly a Z-homomorphism with f(A) = 0. Since

AZ_<_ BZ, hence f(M, +) = f{(M) = 0, and LO(A)_<_ LO(B). The proof

that L < K implies G(L) < G(K) is similar.

PROPOSITION 4. Q(F(A)) = F(Q(A)) and Q(G(L)) = G(Q(L))
(Aed , Leg ). Thatis, QL (A)) =L (Q(A)) and Q(L,+) =

(Q(L), +).
386
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Proof. Since Q(A) is a rational extension of A, F(Q(A)) is a
rational extension of F(A) (Lemma 2). Also if K is any rational
extension of F(A), then (also by Lemma 2) G(K) is a rational
extension of GF(A) = A. Since Q(A) is the maximal rational
extension of A, it follows that G(K) C Q(A), hence K = FG(K) C F(Q(A)).
Thus, F(Q(A)) is the maximal rational extension of F(A);

i.e. F(Q(A)) = Q(F(A)). Similarly one shows that Q{G(L)) = G(Q(L)).

Remarks. (i) To be precise, one should use isomorphism in
place of equality in the above; however, there is no loss in generality.
Also the equality (isomorphism) Q(F(A)) = F(Q(A)), is by the above proof,
that between F(A)-modules. But since Q(F(A)) and F(Q(A)) are abelian
Lie rings (Proposition 2 for Q(F(A))), and hence are trivial
F(A)-modules, the isomorphism can be extended to a ring isomorphism.

(ii) Since L = FG(L), hence Q(L) = Q(FG(L)) = F(QG(L)) =
F(Q(L, +)) (Q(L, +)). That is, to obtain the maximal ring of
quotients Q(I_S of an abelian Lie ring L, it suffices to find the maximal
rational extension of its additive group.

(iii) If R 1is an associative ring, we associate with it a Lie ring
C(R) whose additive group is that of R, with multiplication defined
by the additive commutator: [a,b] = ab - ba (a,b ¢ C(R)). This turns
C(R) into a Lie ring. If R is commutative, then clearly C(R) e
E R =2, then Q(C(Z)) = L (Q(C(Z), 4)) (by (1)) = L (Q(Z, ) ((C(Z), +)

(zZ,4) = LO(Q(ZZ)) (Q(Z, +) means Q(ZZ), by definition)

H

C(Q(Z)) (where Q(Z) is the rational completion of Z as a ring,
which is known to be the ring of rational numbers, while Q(ZZ), the

rational completion of the module ZZ, is the additive group of
rationals; thus LO(Q(ZZ)) = C(Q(Z)) ). Hence we have Q(C(Z)) = C(Q(Z)).

In general it is not true that Q(C(R)) = C(Q(R)) for an arbitrary
commutative ring R.

(iv) It may be noted that, in fact, every abelian Lie ring L is a
subring of a ring of the form C(R), where R is an associative and
commutative ring. Justlet R = W(L), the universal enveloping
ring of L. Then L is (isomorphic to) a subring of C(W(L)), and L
abelian implies W(L) commutative (see, for example, [3, p. 32]).

2. Let R be an associative ring. A mapping d:R -~ R is
called a derivation of R if

(i) d(x+y) d(x) + d(y)

(ii) d(xy) = d(x)y +=xd(y), for allx,ye R .

It is easily verified that the set D(R) of all derivations of R forms

a Lie ring, with the usual addition of mappings and the commutator
multiplication : [d4,d,] =d,d, - 2‘d1,

387

https://doi.org/10.4153/CMB-1968-044-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-044-5

If R is an integral domain, then the rational completion Q(R)
of R 1is just the field of quotients of R[1, p. 164]. That is

X . ces c 4. .
QR)={=:x,ye R, y#0}, with the usual addition and multiplication.
It is thenyeasily shown [6, p. 120] that any derivation d of R can
be extended uniquely to a derivation d of Q(R), namely:

) = ¥d0e) - xd(y)
2
y

The corresponding result for an arbitrary associative ring is due to
Tewari.

THEOREM 1. Let R be an associative ring, Q(R) its complete
ring of quotients. Then any derivation of R can be extended uniquely
to a derivation of Q(R).

For the proof see [5, p. 53].

We shall now discuss some examples. First we note that if R
is a ring with identity 1, and d ¢ D(R) then d(1) = 0. For
d(1) =d(1.1) = d(1)-1+1-d(1) = d(1) +d(1).

1. Let R = Z and suppose d e D(Z). Since d(1) =0 and d is
additive, hence d(z) =0 for all ze¢ Z. Thus d =0 (the zero
derivation), hence D(Z) = 0. Here Q(Z) is the field of rational

numbers. We also have D(Q(Z)) = 0. For, if qe Q(Z), q =';E

(x,ye Z, y#0), then x=qy, hence d(x) = d(qy) = d(q)y + qd(y) for
any d e D(Q(Z)). Since d(1) = 0, it follows that d(x) = 0 = d(y),
and as y # 0, d(q) = 0.

2. The same situation as above obtains for R = Zp(the ring of
integers modulo n). That is, D(Zn) =0 = D(Q(Zn)).

3. Let R = Z[xi, e ,xn], the commutative ring of polynomials in

the indeterminates xl,...,x over Z. For each i=1,2,...,n
n

define a mapping d, : Z[x ., xn] - Z[xi, .. .,xn] as follows: if

R
f(x ,...,x ) =%z x veex oox e Z[x,...,x]then
1 n 1 n

k1 ki-1 kn
d f(x,...,x ) =2z k. x el X, Lol X . (That is, the
i 1 n k n

di are the Ypartial derivatives' with respect to the xi.) A straight-
forward computation shows that the d, are derivations of Z[x ,...,x ].
i n

1
In fact, it is not difficult to show [6, p. 122] that every derivation of
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Z[x ,...,x ] is of the form f d, +... +f d , where
1 n 11 n n

f, e Z[xi,...,xn].

The rational completion of Z[xi, . xn] is the field of rational
functions Q(Z)(xi, N xn) in the x, over Q(Z) (the field of rational
numbers). The derivations d'l’ ey dn of Z[Xi’ cees xn] extend
uniquely to derivations d ERERE dn of Q(Z)(xi, e xn). Also in this
case every derivation of Q(Z)(x1, ey xn) is of the form

d +... d .
g9, +gndn, where g « Q(Z)(xi, ,xn)

4. I {x is a collection of indeterminates indexed by a set A,
ae A

and we let R = Z[{x } ], the ring of polynomials in the (infinite) set
of indeterminates xz, we can also here define, for each { ¢ A, the
"'partial derivatives" d[3 with respect to x‘3 by dﬁ(xa) = { é: ii Z; E

(extending to all of Z[{xa} ] in the obvious way - as in the above
example). The d‘3 are derivations of Z[{xa}] which, however, do
not ""span' D(Z[{xo(} ]) (contrary to the case in the previous example).
Thus, the derivation d:Z[{Xa} 11— Z[{Xa}] given by d(xB) =1 for all
B ¢ A (this mapping is a derivation when extended to all of Z[{xa} ]

in the obvious way) clearly cannot be written in the form
hd +...+h d , where h, e Z[{x }] and d are partial
1 o m o 1 o a.
1 m i
derivatives (as defined above). The same situation carries over to the
field of quotients (rational completion) Q(Z)({x }) of Z[{x }].
o o

Theorem 1 implies that the Lie ring D(R) of derivations of R
is (isomorphic to) a subring of the Lie ring D(Q(R)) of derivations of
Q(R). Since Q(R) is the maximal ring of quotients of R, one may ask
if D(Q(R)) is the maximal (Lie) ring of quotients (or, at least, a ring
of quotients) of D(R). Thatis, is D(Q(R)) = Q(D(R)), or, at least,
D(Q(R)) € Q(D(R))? The former is clearly the case in examples
1 and 2 above, and it can be shown that at least the latter is true of
example 3. We now proceed to discuss two results (Theorems 2 and 3),
both of which generalize this special result in the case of example 3.

Thus, let R be an associative ring, and let d ¢ D(R). Given
any r ¢ R, one can define a mapping rd:R-R by setting (rd)(x) = rd(x)
(x ¢ R).

LEMMA 3. If R is commutative then rd ¢ D(R) for any r ¢ R,
d ¢« D(R).
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Proof. For any x,y ¢ R clearly (rd)(xty) = (rd)(x) + (rd)(y).
Also (rd)(xy) = r{d(x)y +xd(y)) = rd(x)y + xrd(y) = (rd)(x)y + x(rd)(y).

A non-zero element of R is said to be regular if it is not a zero
divisor.

Remark. If d ¢ D(R) is such that d(R) contains a regular
element, then R is commutative if and only if rd ¢ D(R) for all r ¢ R.
This is easily verified.

We assume from now on that R is a commutative ring with
identity 1.

With example 3 above in mind, let d1, ve dn be n. derivations
of R such that [di’ dj] =0(i,j=1,2,...,n). Let Dn(R) =
{r1d1+. .. -l-rndn:ri ¢ R} . It follows from lemma 3 (and since D(R) is
closed under addition) that Dn(R) is a subset of D(R). Itis, in fact,

a subring of D(R), as can easily be verified (this is where one uses

[d.,d,]=0). Let now d ,...,E be the unique extensions of d ,...,d
i 1 n 1 n

respectively, to Q(R) (Theorem 1), and set Dn(Q(R)) =

{q’1d1+. .. +qndn:qi ¢ Q(R)} . Since R is commutative so is Q(R)

(1, p. 163), hence qidi ¢ D(Q(R)). Since [di' dj](x) = [di’d_j](x) for
all x ¢ R, it follows from Theorem 1 that also [cTi, a‘j] =0, and hence
one can show that Dn(Q(R)) is a subring of D(Q(R)). Clearly, th‘en,

Dn(R) is a subring of Dn(Q(R)) (of course, with Theorem 1 in mind,

and the consequent identification of r d1+ ce +rndn € Dn(R) with

1

r131+. . +rna € Dn(Q(R)), which we shall always make without
: n

explicit mention). We now show that, with certain assumptions,
Dn(Q(R)) is a (Lie) ring of quotients of Dn(R)'

First, we recall that a submodule NR of an R-module MR is

said to be dense if MR is a rational extension of NR. (An ideal 1

f R is dense if RR is a rational extension of LR .) If now E

Ox

R
is a dense submodule of Q(R)R then, for any qe Q(R), qE = 0 implies

q = 0. For, the mapping f:Q(R) =+ Q(R) given by f(q') = qq' is an
R-homomorphism such that f(E) = 0, hence f(Q(R)) = 0. That is,
qq' = 0 for all ¢q'e Q(R), hence q=0 (since R has an identity).
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THEOREM 2. Let R be an associative and commutative ring
with identity 1. Let di' ey dn be derivations of R such that

[d.,d.]=0 (i,j=1,...,n), and let d,...,d be their unique
i - 1 n

extensions to derivations of Q(R). Let D (R)={r d +...+r d :r, e R},
— n 11 nn 1

Dn(Q(R)) = {qid1 +... +qndn:qi ¢ Q(R)} . Suppose that the following

conditions hold:

(i) 2(=1+1) is a regular element of R.

n
(i) U Ei (Q(R)) contains a regular element.
i=1

n
(Alternatively: |J ai(Q(R)) contains a dense R-submodule of Q{(R).)
i=1

Then Dn(Q(R)) is a (Lie) ring of quotients of Dn(R).

Proof. We shall prove the theorem for n = 2, the proof in the
general case being similar. Thus, suppose that B is a DZ(R)—submodule

of DZ(Q(R)) containing DZ(R)’ and let f:B-*DZ(Q(R)) be a DZ(R)—homo—
morphism such that f(DZ(R)) = 0. We wish to show that f(B) = 0.

- b! - d J (- d J
Thus, let be B, f(b) =b'. Then b—q1d1 +q2d2, b q3d1 +q4d2,
for some q; « Q(R), and we want q3d1 + q4d2 = 0. For any qe Q(R),
let q_1R = {r e Riqr ¢ R} . Then q—iR is a dense ideal of R[4, p.40].

-1 -1 - -1 - -1 - -1 ~ -1
Set I=gq, RNq, Rﬂdi(qi) RN d,(q,) RN d,(q,) RN d,(q,) "R.

Since the intersection of a finite number of dense ideals of R is dense
[4, p.37], hence I is a dense ideal of R.

By a straightforward calculation we arrive at the following result
for multiplication in DZ(R), which we set down for reference: if
d = -
r1d1+r2d2, Sid1+52d2 € DZ(R) then [r1d1+r2d2, s1d1+s2 2] (r1d1(81)
s1d1(r1) + erZ(si) - SZdZ(ri))di + (r1d1(52) - s1d1(r2) + erZ(s ) -
szdz(rz))dz. A similar formula holds for multiplication in DZ(Q(R)),

Let now x be an arbitrary element of I. Then

- - 2= = - 2 2= - 2= 2- -
=(q. d - +q.d +(- d
[q,d,+q,d,, x d,10d,]=(q,d, (x7)-x d,(q,) +q,d,(x"Nd, +(-x"d, (q,))d,

- 2 - - 2. -
(q12xd1(x)—x d1(q1)"‘CIZZXdZ(X))d1 +(-x di(qZ))dZ

uf

=t d +t

199 TR0 sy
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By definition of I and since x e I, itfollows that t ,t_ ¢ R, hence

2
- - - - 2= -
d +t.d D_(R). thus h d +qg.d_, d. +0d D_(R),

tydy +1tyd, € Dy(R). We thus have [q,d) +q,d), x'd, +0d,] ¢ D,(R)

- - 2 - - - - -
hence f[q1d1 + q2d2’ x d1 + OdZ] = 0. But f[q1d1 + qzd o X d1 + Odz]

- - 2~ ~
[f(qid1 + quZ)’ x d1 + Od2]' Hence

- - 2— -
0 = [q3d1 +q4d2, x d1 +0d2]

(4,3, (%) - %3, (a;) + q,3,(N3, +(-x"F, (a,))d,

- 2 - - 2— -
3 (x) - + (e .
(2xq,3, (x) - x4, (a,) +2xq,d, (N3, +(-x"T,(a,)q,
This gives the relation
- - - 2 - - - -
d +q.d = .
(1) Zx(q3 1(x) 9 2(x))d1 x (di(q3)d1 +d1(q4)d2), for all xe I

- 2~ - -
If we now consider Od1 +x d2 € DZ(R) in place of xzd1 + OdZ’

- - - 2— - -

d + + D d + d
then also [q1 1 quZ’ Od'1 X dZ] € Z(R)’ hence [q3 , tagdy
051 +x252] = 0. This, in turn, yields a relation analogous to (1),

namely
- - - 2 - - - -
! =
1" 2x(q3d1(x) +q4d2(x))d2 x (dz(q3)d1 +d2(q4)d2), for all x ¢ I.

Let now q' be an arbitrary but fixed element of Q(R), and set
-1 - -1 - -1 -1 -1
J=INq" 'RNd 1(q') RN dz(q') R (qiq') RN (qzq') R. Then
J 1is also a dense ideal of R. Now, for any y e J, yq' ¢ R, hence

2 = -
y q'd1 + Od2 € DZ(R). A similar calculation to the above shows that

2 - -
[qid1 + qzdz, y q d1 + Odz] € DZ(R), hence

o
!

- _ 2 - - — 2 -
f[qid1 + quZ’ y q'd1 +Od2] = [q3 1 + q4d2, y C{'d1 + OdZ]

1

- - - 2 - - = ~
q'2y(q,d, (y) + q,d,(y)d, - q'y (d,(q;)d, +d,(q,)d,)

+ yPa,T, @) + 9,3, (),
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By relation (1), the first two terms disappear (since JC I, (1)
holds with x e I replaced by y e J). We therefore get

2 - - -
y (q3d1(q‘) +q4d2(q'))d1(q) = 0, for all qe Q(R). If we let

t = (q3a1(q') + q432(q'))g1(q) (keeping q fixed for the moment), then
th =0 for all ye J. If z is any other element of J, then also

2 2
zzt =0 and (y+z)2t = 0. Thatis, y t+2yzt+z t=0, hence 2yzt=0.

By condition (i) of the theorem we now get yzt = 0. (It should be noted
that since z 1is a regular element of R, itis also a regular element

of Q(R), as can easily be shown,) Since this holds for every y,z ¢ J,
hence JJt = J(Jt) = 0, so that Jt =0, and finally t=0. We thus have

(2) (q3a1(q') +q4az(q’))51(q) = 0, for all qe Q(R).

By the same arguments as in the preceding paragraph, but now
using 051 + yzq’a2 in place of yzq'a1 + 052 (with relation (1')

replacing (1)), we obtain
(2" (q,d,(a) +q,d,(a"))d, (@) = 0, forall qe QR).

From condition (ii) of the theorem (or its alternative) and relations
(2) and (2') it now follows that q3d1(q') + q4d2(q') = 0. Since q' e Q(R)

is arbitrary, hence q351 + q452 = 0. This completes the proof of the

theorem.

Conjecture. Dn(Q(R)) is, in fact, the maximal (Lie) ring of
quotients of Dn(R).

Remarks. (i) The above theorem also holds for the case of an
infinite number of derivations. Thus, let {d } A (A some index
o’ we

set) be a collection of derivations of R such that [d ’dﬁ] =0 for
o
all o,Be¢A, with unique extensions d ¢« D(Q(R)). Let
o

D,(R)={Z r d :r_eR, F ranging over all finite subsets of A},
A ser BB TP

D (QR)={Z qd_:q
A sor P BB
is a (Lie) ring of quotients of DA(R) provided that

e Q(R), F as in DA(R)} . Then DA(Q(R))

(i) 2 is a regular element of R

(ii) U a3 (Q(R)) contains a regular element, for some finite
Be I B
subset F of A.
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The proof is similar to the finite case. We also note that

D (R)=UD_{R}, D (Q(R)) =y D_(Q(R)), where the union, in each
AT TR TR A F

case, raﬁges over all {inite subsets F of A, Thus, this is, ina
sense, a limiting case of the above theorem. We shall discuss another
type of "limiting case' of Theorem 2 subsequently.

(ii) Conditions (i) and (ii) of Theorem 2 hold, of course, if R
has no zero divisors. The condition [d,, dj] = 0 is not used in the
i

proof; it only ensures that Dn(R) is a Lie ring (a subring of D(R)).

(ii1) Applying Theorem 2 to example 3 above, where
R = Z{xi, ..., x |, we pick the di’ ey dr1 to be the partial derivatives
n

as defirned therein. Then, as shown, Dn(R) = D(R), Dn(Q(R)) = D(Q(R)).
Thus we get that D(Q(Z)(x1, . ,xn)) is a (Lie) ring of quotients of
D{Z[xi, . .,xn]}. (Conditions (i) and (ii) of the theorem hold by the
above remark, while [di’ dj] = 0 is easily verified.) Remark (i)

above can be applied to example 4, where we pick {d to be the

Bl pea
partial derivatives of Z[{x } ] with respect to xB, and obtain that
o
DA(Q(Z)({X })) is a (Lie) ring of quotients of DA_(Z[{XQ} ]). We recall,
[03
however, that here DA(Z[{XQ} N # D(Z[{xa} D (also DA(Q(Z)({XQ} )) #

D(Q(Z)({x } ) ).

(iv) Let d e D(R) be any non-zero derivation, and pick
., ¥ eR such that d(rj) =0(=1,...,n). (Such r‘j always
n
exist; e.g. let r =1, r_=2{=1#1),...,r =n.) Put d, =r.d
1 2 n 1 1
(i=1,...,n). Then, for any x ¢ R, [di, dj](x) [rid, rjd](x) =

r.d(r d(x) - r.d(r.d(x) = r.d(r)d(x) + r.r.d°(x) - r.d(r.)d(x) -
i3 J 1 1) 1] J 1

2
rjrid (x) = 0, That is, [di, dj] = 0. Thus for any commutative ring
R with identity we can always find subrings Dn(R) and Dn(Q(R)) of
D(R) and D(Q(R)) respectively.

(v) If we pick different sets of derivations d1, ceey dn and
d',...,d'" of R suchthat [d,d.]=0, [d!/,d!]=0, itcanbe
i n i) i
shown that the Lie rings Dn(R) and Dl‘q(R) are, in general, not
isomorphic (but the corresponding rings of quotients Dn(Q(R)) and

Dx’x(Q(R)) may be isomorphic).
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The subring of D(R) generated by (that i3, the smallest subring
of D(R) containing) all the Dn(R) (for every choice of d1, e dn and

every n - in fact, it suffices to take n = 1) is clearly D(R) itself.
The subring of D(Q(R)) generated by all the Dn(Q(R)) {this is, in

general, a proper subring of D(Q(R)), as we shall see later) will

now be shown to be a ring of quotients of D(R) (under certain conditions).
We continue to assume that R is a commutative ring w1th identify.

A derivation d ¢ D(Q(R)) will be called special if d = q1d +qkdk

for some q, ¢ Q(R), d ie D(R) (where di denotes, as usual, the

unique derivation of Q(R) extending di)' Let DO(Q(R)) denote the

set of all special derivations of Q(R). Itis easy to verify that DO(Q(R))

is a subring of D(Q(R)) (this is, in fact, the subring of D(Q(R))
generated by all the Dn(Q(R)) ). Since R has an identity, D(R) is a

subring of DO(Q(R)).

THEOREM 3. Let R be an associative and commutative ring
with identity satisfying the following conditions:

(i) 2 is a regular element of R

(ii) U d*(Q(R)) contains a regular element. (Alternatively:
a* e D(R)
U = ,
% - .
d% <D(R) d*(Q(R)) contains a dense R-submodule of Q(R).)

Then DO(Q(R)) is a (Lie) ring of quotients of D(R).

Proof. Let B be a D(R)-submodule of DO(Q(R)) containing
D(R), and suppose f:B—»DO(Q(R)) is a D(R)-homomorphism with

f(D(R)) = 0. We wish to show that f(B) = 0. Let de B, f(d) =d', and
suppose that d% is an arbitrary but fixed element of D(R). Then
m

k — -
=2 d d, d*| = 'd', for 3 ,q' e , d.,d' D .
d q,d,) [d, ax] = qj ; or some q, qJ ¢ Q(R) ; Je (R)

i=1 j=1
k m 1
Set 1= ((\ q R) N N q3 R). Thus I is a dense ideal of R, and
=1 j=1

xq;, xqj ¢ R for any x e I, hence xd, x[d,d*] ¢ D(R). One then easily

2 2

verifies that [d,x d*] e D(R). Hence 0 = f[d, x d*] [f{d), x"d*] =
2

[d',xzd*] = 2xd'(x)d* + x [d', d*], or

(1) 2xd'(x)d* = -xz[d‘,d*], for all xe I.
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Let now q' be an arbitrary but fixed element of Q(R).
Set J=1 nq'-iRn d(q')~ 1Rﬂ ((k\ (q'qi)_iR)_ Then J is a dense
ideal of R, and yq', yd(q') e R,1 :rq'dE D(R), for any ye J. An
easy verification then shows that [d, yzq'd*] ¢ D(R), hence
0 = [d', yoqid*] = y2d'(q')d* + 2yq'd'(y)d* + yzq'[d', dx]. By relation (1),
the last two terms disappear, hence we have }rzd'(q')d>i< = 0. That is,

yzd'(q')a*(q) =0, for all qe Q(R) (if d is the zero derivation on R,

d is, by Theorem 1, the zero derivation on Q(R) ). By the same
argument as in Theorem 2 it now follows (using condition (i) of the
theorem) that d'(q')a-*(q) = 0. Then, by condition (ii) (or its alternative),
we have d'(q') = 0. Since q'e Q(R) is arbitrary, d' =0 and the proof
is complete.

Conjecture. DO(Q(R)) is, in fact, the maximal (Lie) ring of
quotients of D(R).

Remark, This theorem, too, may be applied to the example
R = Z[Xi’ e, xn] to show that D(Q(Z)(xi, Ces xn)) is a (Lie) ring of
quotients of D(Z[Xi’ cee Xn])' In this case D(R) = Dn(R),
D(Q(R)) = DO(Q(R)) = Dn(Q(R)) (with the choice of di’ ...,d_ as the

n
partial derivatives). We now show that in general Dn(R D(R),

) C
=
Dn(Q(R)) ;DO(Q(R))é D(Q(R)) (for every choice of d1, ceey dn such

hat [d.,d.| = 0).
that [d;,d ] = 0)

First, we show that DO(Q(R)) # D(Q(R)). Thus let R = Z[{x,}],
i
the ring of polynomials in the countably infinite number of indeterminates

LR NE R Then Q(R) = Q(Z)({x.}), the field of quotients of
i

Z[{Xi} ]. Define a mapping d:Q(Z)({xi} - Q(Z)({xi} ) by setting
d(xj) = i (j=1,2,...), and extending to Z[{xi} ], then to Q(Z)({xi} )

in the obvious way (so as to make d a derivation). Thus
d e D(Q(Z)({xi} )), and we show that d is not special. For, suppose

d = q1§1 +...0 + qmam for some q € Q(Z)({xi} ), dk € D(Z[{xi} 1))

1
k=1,..., . Th d(x.) =— =q,d J+ ... g d (%, ) =1,2,...).
( m) en (X_]) - =aq, 1(XJ) a, n(XJ) G=12 )
Suppose that Q-2 9q,  are unctions of at most tl.e first t
interdeterminates x,,...,x,. Then 4
1 t x

t+1
But this is clearly impossible since d (Xt+1) e Z[{x.}] (k=1,...,m),
i

k
and Q-0 q, are not functions of x Thus d g DO(Q(Z)({Xi} )).

) + +q d (x

= aydyGeyy) e Fqd G

t+1°
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Next we consider the case Dn(R) # D(R). As above, also here

we let R = Z[{Xi} ]. Let di’ . .,dn be any derivations of Z[{Xi} ]

such that [d.,d.] =0. For each j=1,2,..., d,(x.),...,d (x.) are
i 17 nj
functions of at most the first k indeterminates xi, XZ’ . .,xk .
J

Define a mapping d:Z[{x 1 -2z {x ] by setting

(

J x,, if x. ;éx1 ,xk

YooG=12,..0.

d(x.) =
J 1 }ﬁ( +1 otherwise
J

(What should be noted is that d(x.) = X where s > j, and
J : JT
J

d (x.),...,d (x) are not functions of x , for each j=1,2,... )

17 n j sj
We now extend d to a derivation of Z[{xi} ], and claim that
d zZ . , if d=r d oo tr d,

4 Dn( [{Xi} ). For, if r.d + rd for some

r s T e Z[{xi} ], then r -»T_ are functions of at most the

e R
i i i ‘ees . , = R
first t indeterminates xi, xt Now d(xt+1) r1d1(xt+1)+

r dn(x ). Since d(x )=xs , where s > t+1, hence r ,...,r

b + - ’
t+1 e+ !

are not functions of x ; but nor are d,(x  ),...,d (x
t+1 1 n t#+

gives rise to a contradiction which proves that Dn(Z[{x,} ]) is a proper
1

t+1 t+1

- ). This

subring of D(Z[{xi} D.

Exactly the same considerations apply to Dn(Q(R)) # DO(Q(R)).

The R is the same as above, and we extend the derivation d of
Z[{xi} ], as defined above, to the derivation d of Q(Z)({xi} )

(Theorem 1). Then clearly d is special. To show that
d { Dn(Q(Z)({xi} ) ), suppose that d qid .. +qndn

(qi, ceer Q€ Q(Z)({xi} ) ), and assume that qp--->q, are functions
of at most the first t indeterminates Kps oo X The proof now is

as above (with qj replacing r ).
J

As a corollary to the previous conjecture (p.14) and the above
remark, we have the following

Conjecture. D(Q(R)) is, in general, not a ring of quotients of
D(R).

397

https://doi.org/10.4153/CMB-1968-044-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-044-5

REFERENCES

1. G.D. Findlay and J. Lambek, A generalized ring of quotients
I, II. Can. Math, Bull. 1 (1958) 77-85, 155-167.

2. . Jacobson, Lie algebras., Interscience, New York, 1962.

3. I. Kleiner, Free and injective Lie modules. Can. Math. Bull.
9 (1966) 29-42.

4. J, Lambek, Lectures on rings and modules. Blaisdell, New York,
1966,
5. K, Tewari, Complexes over a complete algebra of quotients.

Can. J. Math., 19 (1967) 40-57.

6. O. Zariski and P. Samuel, Commutative algebra, Vol. I.
Van Nestrand, Princeton, 1958.

York University
Toronto

398

https://doi.org/10.4153/CMB-1968-044-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-044-5

