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THE BEHAVIOUR OF LEGENDRE AND ULTRASPHERICAL
POLYNOMIALSIN Ly-SPACES

N. J KALTON AND L. TZAFRIRI

ABSTRACT. We consider the analogue of the A(p)—problem for subsets of the
Legendre polynomials or more general ultraspherical polynomials. We obtain the “best
possible” result that if 2 < p < 4 then arandom subset of N Legendre polynomials
of size N4/P-1 spans an Hilbertian subspace. We also answer a question of Konig
concerning the structure of the space of polynomials of degree n in various weighted
Lp-spaces.

1. Introduction. Let (P,) denotethe Legendre polynomialson[—1, 1] andlet ¢, =
CnPn be the corresponding polynomials normalized in Lo[—1,1]. Then (¢n)3, is an
orthonormal basis of Lo[—1, 1]. If we consider the same polynomialsin Lp[—1, 1] where
p > 2then (¢n), isabasisif and only if sup||¢n||p < oo if and only if p < 4[8], [9].

Inthisnoteour main result concernsthe analogue of the A(p)-problemfor the Legendre
polynomials. In [2] Bourgain (answering a question of Rudin [12]) showed that for the
trigonometric system (€™),<z in Lp(T) where p > 2 thereis aconstant C so that for any
N thereisasubset A of {1.2..... N} with |A| > N?/P and such that for any (¢n)nea,

|3 @€, < c(S laP)

neA neA
Actually Bourgain’s result is much stronger than this. He shows that if (gn)2; is a
uniformly bounded orthonormal system in some Lo(u) where p is afinite measure, then
there isaconstant C so that if F isfinite subset of N then there is afurther subset A of F
with |A| > |F|?/P so that we have an estimate

(1) |3 énn], < C(3 16a) "%,
neA neA

In fact this estimate holds for a random subset of F. For an alternative approach to
Bourgain’sresults, see Talagrand [15].

It is natural to ask for a corresponding result for the Legendre polynomials. Since
(pn)2; is not bounded in Lo,[—1, 1] one cannot apply Bourgain's result. However,
Bourgain [2] states without proof the corresponding result for orthonormal systems
which are bounded in some L, for r > 2. Suppose that (gn) is an orthonormal system
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which is uniformly bounded in L,(x) for some 2 < r < oo. Then he remarks that if
2 < p < rthereisaconstant C so that for any subset F of N thereis a further subset A
of F with |A| > |F|~7/G~D so that we have the estimate (1.1). Again this result holds
for random subsets. It follows from thisresult that if 2 < p <4ande >0{1,2,....N}
contains a subset A of size N*/P~1¢ sp that we have the estimate
(1.2) |5 énenl, < C( I6al?) ™.
neA neA

As shown below in Proposition 3.1, there is an easy upper estimate |A| < CN*/P~1 for
subsets obeying (1.2). The sharp estimate N*/P~1 cannot be obtained from Bourgain’s
results since (¢n)r2, isunboundedin L4[—1. 1].

In this note we show that, nevertheless, if F isafinite subset of N thenthereisasubset
of A of F with |A| > |F|*/P~1 sothat (1.2) holds, and again this holdsfor random subsets.

In fact we show the corresponding result for more general ultraspherical polynomials.
Suppose0 < A < oo. Let (¢§)r2, bethe orthonormal basis of Lo([—1, 1]. (1 — XZ)A*%)
obtained from {1.x,%%,...} by the Gram-Schmidt process. Then ($") is a basis in
Lp([—1.2].(1 — ¥%)*~2) if 2 < p < r = 2+ A~%. We show in Theorem 3.6 that there
isaconstant C so that if F is afinite subset of N, there is a further subset A of F with
IA| > [F|?G~Y so that we have the estimate

I3 enef?], < (3 len) ™"
neA neA

Here of course norms are computed with respect to the measure (1 — x2)*~2 dx. Again
this result is best possible as with the L egendre polynomials (the case A = %) and holds
for random subsets. Notice that if we set A = 0 we obtain the (normalized) Tchebicheff
polynomials which after a change of variable reduce to the trigometric system on the
circle. Thus Bourgain's /A(p)—theorem correspondsto the limiting case A = 0.

As will be seen we obtain our main result by using Bourgain's theorem and an
interpolation technique.

In Section 4 we answer a question of H. Konig by showing that the space P, of
polynomialsis uniformly isomorphic to £7 in every space Lp([—l, 1], (1 — XZ))‘_%) for
A>2landl<p<oo.

2. Preliminaries. In this section, we collect together some preliminaries. A good
general reference for most of the material we need is the book of Szego [14].

For —1 < X\ < oo with A # 0 wedefine the ultraspherical polynomials P{" asin [14]
by the generating function relation

(1— 2w +wD) > = 3 PO,
n=0

For A = 0 we define PQ(x) = 2T,(x) where T, are the Tchebicheff polynomials defined
by Tn(cos6) = cosnd for 0 < < 7. Thenwe havethat if A # 0[14, p. 81 (4.7.16)],
F(n+2\)

I 11 IPOM(L — 2% dx = 2P () e
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It follows that we have

(n+\)r(n+1)\Y2
“raray )

We now recall Theorem 8.21.11 of [14, p. 197].

o =274 oy

PROPOSITION 2.1. Suppose0 < A < 1. Thenfor 0 < 6 < 7 we have

F(n+2)\)

0 _
P (cost) = 2 msrmr+ 1)

cos((n +A)0 — )\7r/2)(25ir19)_A

AN(L— N (n+2))
“TO)N+ A+ Dr(n+x+1)

(2sing)* 1.

REMARK. Notewe haveused that F(\)[ (1 — \) = 7/ sin(A).
The next Proposition is a combination of results on p. 80 (4.7.14) and p. 168 (7.32.1)
of [14].

PropPosITION 2.2. 1f 0 < A < oo then we have

O = py = (NH2A—1
_max [P = PR (1) | n :

Here we write

(u\ _ M(u+1)
\v/ Tu-v+Drv+1)

For our purposes it will be useful to simplify the Gamma function replacing it by
asymptotic estimates. For this purpose we note that

Fn+o) _

o) n’ + O(n°~1).

PrROPOSITION 2.3. Suppose 0 < A < oo. Then there exists a positive constant
C = C()\) such that

|¢9>(cos9)—(2/ﬂ)1/2 cos((N+X)8— Ar/2)(sin)~| < C(sinf)*(min((nsin6)~*, 1).

ProOOF. Using the remark preceding the Proposition, we can deduce from Proposi-
tion 2.1 that

(2.1) |P(cos)—2" 1 (A) " cos((n+A)—Ar/2)(sin6) | < Cn*(sing)

where C = C()), for 0 < A < 1. This estimate also holds when A = 1 trivially (with
C=0).

We now prove the same estimate provided nsing > 1 for all A > 0 by using the
recurrence relation

22 20— 1A —x3)PY(X) = (n+2x — 2P D(x) — (n+ )xPY D (x)

n+l
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for which we refer to [14, p. 83 (4.7.27)].
Indeed assume the estimate (2.1) is known for A — 1. Then with x = cos#,

PO D) —xPYTY() — 27 W 2r (A — 1)t cos((n+ A — 1)0 — A /2)(sinf)* |
<cn*3sing) .

We a'so have
|PO-D(x)| < Cn*~*(sind) ™ < Cn*2(sing)* >

provided nsind > 1. Now using the recurrence relation (2) we obtain an estimate of the
form (2.1) provided nsing > 1.
Next we observethat for al A > 0 we have by Proposition 2.2,

PR| < PRI < Cn®
where C dependsonly on A. Henceif nsing < 1 we have an estimate
(2.3) ‘PS{\)(COSH) — 207 (V) cos((n+ A)f — A /2)(sinf) | < Cn*H(sing) .
Combining (2.2) and (2.3) gives us an estimate

PO (cos6) — 2T (A) ™ cos((n+ )0 — Arr/2)(sinf) |

2.4
24 < Cmin(n*~2(sing) . " H(sin6) )

Recalling the relationship between ¢{" and P{) we obtain the result. .

PROPOSITION 2.4. Suppose —1/2 < A,u < oo. Then the orthonormal system
(e isabasisof Ly ([—1.1], (1 — x?)*~2) if and only if

n(} 2/\+1)
4 4 )

In particular, if A > 0andr > 2 then (o), isabasis of L, ([—1, 1]. (1 — x?)*~ %)
ifandonlyifr < 2+\71,

2u+1_2/\+1
2r 4

PrROOF. Thistheorem is a special case of avery general result of Badkov [1, Theo-
rem5.1]. The second partismuch older: seePollard [9], [10] and [11], Newman-Rudin [8]
and Muckenhaupt [7].

We will also need some results on Gauss-Jacobi mechanical quadrature. To this end
let (r8) = cosfQ))L_,; be the zeros of the polynomial §" ordered so that 0 < 6%) <
02, < - < 6%) < . (We remark that the zeros are necessarily distinct and are all
located in (—1, 1); see Szegd [14, p. 44].)

https://doi.org/10.4153/CJM-1998-060-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-060-0

1240 N.J. KALTON AND L. TZAFRIRI

PROPOSITION 2.5. SJppose—% < A < 00. Thenthere exists a constant C depending
only on X so that

km C
A
=
Furthermore, there exists ¢ > 0 so that
ck
9(/\) >
| nk | =

ifk<n/2

ProOF. The following result is contained in Theorem 8.9.1 of Szegd [14, p. 238].
The second part follows easily from the first and the fact that lim,_., nHEfl) exists and
is the first positive zero of the Bessel function JM% (t) (see Szego [14, Theorem 8.1.2,

pp. 192-193)). "
We will denote by P, the space of polynomials of degree at most n — 1 so that
dmP, =n.

PROPOSITION 2.6. Suppose that —3 < A < oo. Then there exist positive constants
(O‘E]i))lgkgngo suchthat if f € P, then

1 _1 n
[ 109 =" =3 af ).
Furthermorethereis a constant C depending only on A such that
af) < Csinfy)®nt.

PROCF. This is known as Gauss-Jacobi mechanical quadrature. See Szego [14,
pp. 47-50]. The estimate on the size of (a{})) may be found on p. 354. However this
estimate is perhaps most easily seen by combining the Tchebicheff-Markov-Stieltjes
separation theorem (Szego, p. 50) with the estimate on the zeros (Proposition 2.5). More
precisely there exist (Yo suchthat 1 =yo > 7 >y1 >7%) > -+ > 7) >y = -1
so that - P .y

ay _./yH( —X9) X.

The estimate follows from Proposition 2.5. ]

3. The A(p) problem. We first note that by Proposition 2.4, in order that ()22,
beabasisin Ly([—1.1], (1—x2)*‘%), it is necessary and sufficientthat 2 < p < 2+~
Let usdenotethis critical index by r =r(\) =2+ AL,

Let A beasubset of N, and2 < p < r. Wewill say that A isa/A(p, \)-set if thereisa
constant C so that for any finite-sequence (¢, : n € A) we have

* Lo\
(LS sbmPa—erto]  <c(s ep)

neA
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This means that the operator T: ((A) — Ly([—1.1].(1 — xz)**%) defined by T¢ =
Ynea Enp$) is bounded, and indeed since there is an automatic lower bound, an iso-
morphic embedding. We denote the least constant C or equivalently ||T|| by Ay, (A).
Note that if A = 0 then p{")(cos#) = cosnd and this definition reduces to the standard
definition of a/A(p)-set introduced by Rudin [12].

PropPOSITION 3.1. For each A > 0 thereis a constant C = C()\) depending on A\ so
that if Aisa A(p, A)-set then

IANLN]| < CApA(A)PNZ/P-D),
PrROOF. Observefirst that

) — > cn
“max [ (9] = (1) = en

for someconstant ¢ > 0 depending only on A by Proposition 2.2 and theremark thereafter.
It follows from Bernstein’s inequality that if 0 < 8 < (2n)~* then p{M(cos#) > cn* /2,
In particular let J = AN[N/2.N]. Thenfor 0 < § < (2N)~! we have

>~ () (cosb) > cN*|J|

ned

where ¢ > 0 dependsonly on ). Since dx = (sin#)**dé we therefore have
cNMJIN—@D/P < CA(A)|J]Y/2

where0 < ¢, C < oo are again constants depending only on \. We thus have an estimate
|9] < CAAYPN®*A/P=2) = CA(A)2NP(/P~D This clearly implies the result. n

Our next Proposition usesthe approximation of Proposition 2.3 to transfer the problem
to aweighted problem on the circle T which we here identify with [—, 7].

PrROPOSITION 3.2. Suppose A > 0and2 < p < r(\). ThenAisa/A(p, A)—set if and
only if the operator S £,(A) — Ly(T, | sin6|*@P) is bounded where Se, = €", where
(en) isthe canonical basis of £,(A). Furthermorethereisa constant C = C(p, A) so that
CHSl < Apa(®) = ClIS].

PROOF. Let us start by proving a similar estimate to Proposition 3.1 for the system
{€"™}. Suppose Sis bounded. If N € N then we note that for 1 < k < N we have
coskd > 1/2if |6 < m/3N. Henceif |9 < m/3N we have i) coskd > 3|J| where
J=ANI[1,N]. It follows that

|J|N(>\(p*2)*1)/p <9 |\]|1/2
where C dependsonly on A. Thisyields an estimate

9] < Cf|s|PNAC/PY
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where C dependsonly on .

Now consider the map So:l2(A) — Lp([0, 7], |sing|?') defined by Se, =
cos((n + A)f — Ar/2)(sinf) . We will observe that  is bounded if and only if S
is bounded and indeed ||S|| < 2||S] < C||S|| where C depends only on p. In fact if
(&n)nen arefinitely non-zero and real then

ISogllP < [ €n€™]" | sing '@ df < ||s¢|P
neA

which leads easily to thefirst estimate | S|| < 2||S]|. For the converse direction, we note
that w(f) = | sing]*=P isan A,-weight in the sense of Muckenhaupt (see [3], [4] or [7]),
i.e., thereis aconstant C so that for every interval | on the circle we have

1/p , /v
—p/p
( [ we) de) ( [w®) de) <l
where |I| denote the length of I. It follows that the Hilbert-transform is bounded on the

space Ly(T,w) so that there is a constant C = C(p, A) such that if ({n)nea is finitely
non-zero and real then

1/p
(/ > énsin((n+ )8 — Ar/2)P|sing| d0>
Y7 heA

1/p
SC//W’Zincos((n+)\)9—M/Z)‘p|sin9|“2‘p)d6> )
\ T neA

This quickly implies an estimate of the form ||S¢|| < C||Sé])-
Now consider the map T: £2(A) — Lp([0, 7], | sin|*) defined by Te, = p{V(cosb).
Then for some constant C = C(\) we have (using Proposition 2.3),

|[¥n(0)] < C(sing) min((nsing)~*, 1)

where
Un(0) = ¢p(cosh) — cos((n+ A6 — Ar/2)(sinf) .

Now suppose A satisfies an estimate |A N [1, N]| < KN2(/P~D for some constant K.

We will let Jy = AN [2<1,2¢) and B, = {0 : 27 < sing < 217K}, Then on E, we
have an estimate |(0)] < C2'Kif n < 2 and |yn(F)| < Cn~12*Vkjf n > 2k Here C
depends a constant depending only on p and A.

Let (€n)nen be any finitely non-zero sequence and set Uy = (Sney, |€n]?)Y 2. Note that
oned |€n] < |Jk|l/2Uk-

It followsthat if 1 <1 < kwe have

/p
(/I;k’z £n1/1n’p(5in9)2/\ de) S C2>\k2_(1+2>\)k/p|J||l/2U|

neg
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whileif k+1 <1 < oo

1/p
(/Ek‘ > £n¢n‘p(5in0)2/\ d0> < C ek =W 2K/p| 3 1/2y,

neJ

Note that A — (1+2))/p = A(L —r/p). We aso have |J| < K22(/P~D Hence we
obtain an estimate

Ixe > €ntn| < CKl/Z(Zk: 2A0/p=D0-K)y, 4 i 20C/p-D-11-0y),
neA 1=1 I=k+1

Lets =min(A(r/p—1), 1— A(r/p— 1)). Thentheright-hand side may estimated by

CKY2(3- 271Ky = cKY/2 32 270l
1=1 jez

whereu; = 0forj <0. Sincep > 2we have

I3 gt < (Shve 3 o)
neA k=1 neA
Hence by Minkowski’'s inequality in £, we have

el oo
neA iz

1=1

We concludethat | S¢ — T¢|| < CKY/2. Now if T is bounded then K < C||T||2 while
if Sisbounded then K < C||S||2. Thisyields the estimates promised. "

Asremarked above, using Proposition 3.2 we can transfer the problem of identifying
A(p, \)-sets to asimilar problem concerning the standard characters {€™} in aweighted
L,—space. We will now solve a corresponding problem in the case when p = 2 and then
use the solution to obtain our main result in the case p > 2. To this end we will first
prove a result concerning weighted norm inequalities for an operator on the sequence
space (,(Z) which isthe discrete analogue of a Riesz potential.

Suppose 0 < a < 1/2. For m,n € Z we define K(m.n) = [m—n[*~* whenm # n
and K(m,n) = 1if m= n. Let cyp(Z) be the space of finitely non-zero sequences. Then
we can defineamap K: cyo(Z) — £2(Z) by KE(M) = ez KM, n)E(N).

Now suppose Vv € (,,(Z). We define L(V) to be the norm in £,(Z) of the operator
¢ — vK¢ which wetaketo be oo if this operator isunbounded. ThusL(v) = sup{||vK¢]| :
€l < 1}

The following result can be derived from similar results in potential theory (for
example, [13]). For more genera results we refer to [5]. However we will give a self-
contained exposition.
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THEOREM 3.3. Let 0 < M(v) < oo be the least constant so that for every finite
interval | C Z we have

> Vavamin(L [m—nf"™t) < M? v,

m,nel nel

Then for a constant C depending only on o we have C"*M(v) < L(v) < CM(V).

PrROOF. First suppose L(v) < oo. Then by taking adjoints the map ¢ — K(v¢) is
bounded on ¢»(Z) with norm L(v). In particular we have for any interval I, [|K(v2y))|| <
L(v)|lvxi||- Let uswrite (¢, 7) = Snez Ennn Where thisis well-defined. Thus

(K2(vx1). VPx1) < L(v)? Zl Vi
ne
Now observe that K2(m, n) = 2, K(m, )K(I, n) > cmin(L, |m — n[?**~1) wherec > 0
depends only on .. Expanding out we obtain that M(v) < CL(V) for some C = C(«).

We now turn to the opposite direction. By homogeneity it is only necessary to bound
L(v) when M(v) = 1. We therefore assume M(v) = 1. Notice that it follows from the
definition of M(v) that for any interval |, we have |1|2*71 S e VAV2 < Sner V2 and so
Sner V2 < 1]

Now let u = Kv2. This can be computed formally, with the possibility of some
entries being infinite, but the cal culations below will show that the entries of u arefinite;
alternatively the estimate above leads quickly to the same conclusion. Supposem € Z
and definesetslo = {m} andthen I, = {n: 21 < |m—n| < 2¢} for k > 1. Note that if
k > 11, isthe union of two intervals of length 251, Let Jy = lo U - - - U ..

For any k we have

u=KWV?x3.,) + I_XK:ZK(VZXI.)-

Let uswrite uy = K(v?x3,,,) and U, = u — uy.
Now if | > k+2andj € I, we have

K(vPx1,)(j) < C2D S \2,

nel

Hence

() <C 3 2D S 2

|=k+2 nel,

Squaring and summing, and estimating >"c;, V2, we have

Z U2(j)2 < C2k Z 2a—1)(i+) 9i(1—2) Z Vr21

j€lk i>I>k+2 nel

Summing out over i > | we have

Sw(jP<CX Y 27V

jelk 1>k+2 nel,

https://doi.org/10.4153/CJM-1998-060-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-060-0

ULTRASPHERICAL POLYNOMIALSIN Lp-SPACES

On the other hand
SWG) =3 Y > K DK, VPV
IEM Jelk 1€k 1€

<CY Y min( i — PR

1€ €01

<Cyw
NEJ1
where C dependsonly on «. In particular u(j) < oo for all j.
Hence .
YuiP sc( 2 B+ 2" Y v)).
jelk nedi 1=k+2 nel,

This can be written as

S u(j)? < C3 min(L 2<7) V2.
=0

j€lk I= nel,

1245

Let us use this to estimate Ku?(m); we have (letting C be a constant which depends

only on « but may vary from lineto line),

Ku?(m) < CY 20Dk 32
k=0

nely

< CY 2= DkS  min(1, 2671 S V2
k=0 1=0

nel

< €Y YY" 20 M min(L, 2

I=0nel; k=0

< C2 VYV
1=0

nel,

< CKV2(m).

We thus have Ku? < CK\2.

Now put w = v + Kv2. Then Kw? < 2(Kv? + Ku?) < CKv2 < Cw. We will show this

implies an estimate on L(v).
Indeed if ¢ € coo(2) is positive then

(WKE. WKE) = (w2, (KE)?).

Now

(K&m) = S KM KM j)Ea)E() < CY KA. j)(Km.i) +K(m j)) @)
i 1)

Thisimplies (K¢)? < CK(¢K¢). Hence

IWKE]I2 < COWP. K(£KE)) = C(KW, €Ke)
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and henceas Kw? < Cw
IWKE[1? < Clw, EKE) = C(¢, WKE) < C¢]| [wK¢]|

which leadsto ||[wK¢|| < CJ|€]| or L(v) < L(w) < C where C dependsonly on . "

THEOREM 3.4. Suppose0 < a < 1/2. Let A bea subset of Z. Let k(A) = kq(A) be
the least constant (possibly infinite) such that for any finitely nonzero sequence (&n)nea
we have

[ 12 1z 1/2
/ 1> @™ sing 2 de ) <w(3 I6af?)7"
\ T neA neA
Let M = M(A) = M(xa), be defined as the least constant M so that for any finite interval
| we have, setting F = AN,
> min(L, [m—n[**"t) < M?|F|.
m,neF

Then x(A) < oo if and only if M(A) < oo and there is constant C depending only on «
suchthat C"IM(A) < k(A) < CM(A). "

PROOF. First suppose M(A) < oo. Note that ¢(6) = |6|*°i isan Lo—function whose
Fourier transform satisfies the property that lim,_.., In|*=*y(n) exists and is positive.
Now suppose (£n) € Coo(A) and let g = Ynen £n€™. Supposef € Lo[—m. 7]. Then

(10]7°9.f) = (1 8.5).

Hence for a suitable C = C(«) we have, using Plancherel’s theorem, with K as in

Theorem 3.3,
(16179.f) < C(K[gl. | f[) = C{[al. xaKI])-
We deduce
(16I7g.1) < CMA)|gl2]| ]2
Thus

[ 19O 612 do < (3 [al)-

neA
By translation we also have

[ 9@ — 167> do < CM(Y [enl?).
neA
Since |§]72* + (7 — |0])~2* > | sinf]~2* we obtainimmediately x(A) < CM(A) where C
dependsonly on «.
Conversely suppose x(A) < oo. Note first that there is positive-definite and non-
negativetrigonometric polynomial h so that h+) %Iisﬁesﬁ(n) +1L(n) > cmin(, |n|*~1)
where c > 0. Now clearly for (&,) € coo(A),

[ 190 + 12 do < Ca( 3 [4nP?)

neA

1/2
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Thus again by Plancherel’stheorem, if £ > 0,
IKelZ < Crlig]l3.

A similar inequality then appliesfor general &.
It follows quickly by taking adjointsthat L(yx) < Ck and hence M(A) < Ck(A). =

THEOREM 3.5. SupposeF isa finite subset of Z and |F| = N. Let (1;);r beasequence
of independent 0 — 1-valued random variables (or selectors) with E(i;) = o = N™2*
forj e F. Let A = {j € F : ; = 1} be the corresponding random subset of F. Then
E(M(A)?) < C where C dependsonly on a.

PROOF. It iseasy to seethat if this statement is proved for theset F = {1,2....,N}
then it istrue for every interval F and then for every finite subset of Z. It is also easy to
seethat it sufficesto prove theresult for N = 2" for somen.

Note next that

M?(A) < sup > min(k — n[**1 1).
1<k<Nnea

Hence

n
M?(A) <CY> max 2= Dlan[(j — 12+ 1,j2¢]].
k=0 1<j<2nk

where C dependsonly on a.
Fix an integer s. We estimate, for fixed k,

2k j2 1/s
- k ink S
E(lgr}]gazzs*k AN {(J D2 +1j2 ]D = E(jzzl(h(j—zl;zkum) )
on—k j2k l/s
< (E(_Z( > n.)S))
=1 1=(j—1)2k+1

1/s

2k
< 2n—K/s(E 0 s
(EGn))
Let us therefore estimate, setting m = 2X,

EXn) = ¥

i1 I<min(sm) jo+-aj=s J1! -+ D!

> (T)lsal

sl |

IN

IA

i |S(rm)l
=1

s max. (IP(mo)').

IN

By maximizing the function x°e~® we see that if me > e~! we can estimate this by

E(> )" < S Hm)
2
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On the other hand if mo < 1

m
E(>_ )" < s(s|logmo|~1)/!'8m™| < s jog mo]~=.
j=1

Supposek < n. Put s=n— k. We have

E( max

1<j<on—k

AN[(j— D2+ 1, jZk”) < C(n— k2o

whenever 25 > e~ where C = C(a). If 20 < e71,

ok K n—k
E(llflaz)n(km (-v2+1j2) <c Mog@29]’
Hence
n—k
E(M(A)?) < —— a—Dky n— k+1)22%g.
( ( ) ) ZK(Z:erl | Iog(02k)| 2k(72>:€1( )

We can estimate this further by
E(M(A)z) S C( Z 2(2a71)k + n0_172(x + 22(xno_)
Ko<e™n
where C = C(«).
We now recall that o = N—2% = 272" \\e then obtain an estimate
E(M(A)?) < C(a). n

THEOREM 3.6. Suppose0 < A < coandthat2 < p <r=2+ X1 LetF C N be
afinite set with |F| = N. Let (1;);er be a sequence of independent 0 — 1-valued random
variables (or selectors) with E(iyj) = o = N/P~1/2/@/2=/0 for j ¢ F. Let A= {j € F :
n; = 1} be the corresponding random subset of F (so that E(|A[) = N@/P=1/0/(2/2=1/1)),
Then E(Ap,(A)P) < C where C dependsonly on p and ).

PROOF. Suppose (£n)nea are any (complex) scalars and let f = Ypen £n€™. Let
a=(1/2—1/p)/(L—2/r), and let = § — a. Then by Holder's inequality, since

1-n1_2 21
L=(1-2)L+?

(/_7;(| f|| sin6]@/P-Dyp dG) 1/p
< (./jW | ]9 d@) (1-2/n/q (/jT(|f| |sin 9|rA(1/p,1/2))2 dQ)l/r

Notethat rA(1/p—1/2)=(1/p—1/2)/(1—2/r) = . Hence

a 1
(/a1 1sneperpds) " < Aqo(a)y =2 so(@" (3 ).

neA
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Thus we deduce
Noa(A) < Ngo(A) 2/ k(A"

It follows further from Holder’s inequality that
1/p _
(B ®)”) " < E(nqoa)®) 7 (sa(a)2) "

AsE(|A[) = N%9, we have by the A(p) theorem of Bourgain [2] that E(/\qio(/.\)q)l/ 1<
C = C(q)- By Theorem 3.5 above we obtain:
1/p
(E(h®)’) " =c
where C = C(A, p). .

4. The structure of the space of polynomials. We recall that (7§ = cosg$)n,
are the zeros of the polynomial ¢ ordered sothat 0 < %) < 6) < -+ < Q) < .

THEOREM 4.1. Supposel < p < oo, —% < A, < oo and that the ultraspherical
polynomials (¢{")z, forma basis of Lp([—1. 1]. (1 — xz)*“%) or, equivalently that

n (1 2\ + 1)

4 4 '
Let i = rr(]ﬁ). Then thereis a constant C = C(\, u, p) independent of n so that if f € P,
then

2u+1 22+1
(4.1) nrl 2

2p 4

n 1/p . 1/p
2 (%k;l(l—rﬁk)wf(rnk)w’) < ([} lrera—er—t o]
/1 n 1/p
<C \ﬁ k;l(l_Tr%k)u“(Tnk)lp) :

In particular d(Py. £§) < C2.

ProOF. We will start by supposing that 1 is not of theform %(mp —1)forme Nand
that —% < Aisarbitrary (i.e., we do not assume (4.1)). In this casewe canfindm € N so
that —3 < p— 3mp < 3(p — 1). Thenw(f) = (sin6)? ™ isan Ay-weight. Thisimplies
(cf. [4]) that there is a constant C = C(u, p) so that for any trigonometric polynomial
h(g) = =N h(k)e¥ of degree N, and any 1 < | < N we have

1/p
(/ :‘i SRR — i kg A9E " w() d0> <cC ([ Ih(8)Pw(6) do) e

k>I

Summingover| =1,2,...,N weaobtain

(1715% ikhgoePuyas) " Ih@)Pw@) o)
(L2, Ttoe Pw() 9) <oN([" Ine)Pwe)ds) .
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ie.,

4.2) ( [ @) Pwe) de) VP en ( [ Ih@)Pwe) de) v

Now suppose f € P, and let h(d) = (sind)™f(cosf) so that h is a trigonometric
polynomial of degreeat mostm+n — 1 < C(u. p)n. Let I, betheinterval [0 — 6| < T
for1 <k <n.Then

1/p
[ n@)ds < ( w(o) /P da) ( [, InePw®) de)
1/p
(sme )2 ( / IhPw(6) de)
Here we use the properties of () and (fn) from Proposition 2.5. On the other hand,
. 1n®) —hewd] do < / W(®)] o
1/p
<C 1+1/ (Slnenk)m_zu/p (/ |h/|de9)
Putting these together we conclude that
1 1
= P(si 2p—mmp p P = /|p
S NP 6™ < O ([ [nPw(E)cb + [ 1 Pwe)
On summing we obtain
L P — By < [ InPwdo + 1 [ InPwdo
niz "k ks = -7 nP J—m
since >"p_, x1, isuniformly bounded by Proposition 2.5. Now appealing to (4.2) we have
10 T
=S [P —73)" <C° [ hPwdb.
N1 -7

Recalling the definition of w and h thisimplies

n 1/p + . 1/p
43) <%kzl|f(fnk)|9(1—7§k)ﬂ) §C(/_11|f(x)|p(l—x2)“‘?dx)

Notethat we only have (4.3) when . isnot of theform %(mp— 1). Wenow prove (4.3)
for 11 in the exceptional case. We observethat if v = ;i + 1 — 2 theny > —1 and (4.1)
holds for A = v. In fact there exists 0 < § < 5 so that (¢{) is a basis of both
Lp([—1.1]. (1 —x®)"~) and of Lp([—1, 1], (1 —x®)"*?). Let

SIOE z A [ 1000 ) e
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be the partial sum operator associated with this basis. Let us consider the map Tp:
Lp([—1. 1], (1 —x®)"*F) — R" defined by

Ta( Pk = (S7F)(7)-

Then thereis a constant C independent of n so that

n 1/p . 1/
(%kzlﬁn(f)klp(l—ﬁk)“ﬁ) SC(/_f”(x)lp(l_XZ)uié—E) P

It follows by interpolation that we obtain

k=1

; Y + N\ /P
(é 2 [Ta(f)P(1 = ﬁk)’[> =C (/71l |fOOP(L — xz)"'fi)

and on restricting to P, we have (4.3) for al p.
We now assume A satisfies (4.1) and complete the proof by duality. Let o be defined
by 5t % = ). Then (4.1) also holdsif we replacep, u by p/, 0.
Supposef € Py. Thenthereexistsh € Ly([—1.1]. (1 — XZ)U‘%) so that
+1 / 1
/_l I[P (L —x3)2dx=1
and
+1 1 +1 1 1/p
/_ T —x) o= ( /_ OO —x3y dx)
Letg=SVf. Then
+1 N
[ g0 =t dx <

where C = C(p, A, ) is independent of n. Now using Gauss-Jacobi quadrature (see
Proposition 2.6) we have

; éaﬁi’f(fnk)g(w) = [, f09n6o@ — 2y ax.

We recdll that
0<a) <C(l—73)ynt

where C is again independent of n. It follows that

([ 1rapa— eyt o]

n YP /9 e
SC(%E”(TnkNp(l—Tﬁk)”) (%kzzyg(ﬁkﬂp,(l—ﬂ%k)g) -

Now applying (4.3) we can estimate the last term by a constant independent of n.

1/p

Thuswe have
+1 N 1/p 1. 1/p
(/ [f(¥)[P(1 — X2 dx) <C <52|f(rnk)|p(1—7§k)“> .
1 k=1
This completes the proof. ]
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