
Forum of Mathematics, Sigma (2025), Vol. 13:e3 1–31
doi:10.1017/fms.2024.141

RESEARCH ARTICLE

Free torus actions and twisted suspensions
Fernando Galaz-García 1 and Philipp Reiser 2

1Department of Mathematical Sciences, Durham University, Upper Mountjoy Campus, Stockton Rd, Durham DH1 3LE,
United Kingdom; E-mail: fernando.galaz-garcia@durham.ac.uk.
2Department of Mathematics, University of Fribourg, Chem. du Musée 23, 1700 Fribourg, Switzerland
E-mail: philipp.reiser@unifr.ch (corresponding author).

Received: 26 June 2023; Revised: 12 September 2024; Accepted: 1 November 2024

2020 Mathematics Subject Classification: Primary – 57S15; Secondary – 55R15, 53C20, 57R65, 57R22, 55R25

Abstract
We express the total space of a principal circle bundle over a connected sum of two manifolds in terms of the total
spaces of circle bundles over each summand, provided certain conditions hold. We then apply this result to provide
sufficient conditions for the existence of free circle and torus actions on connected sums of products of spheres
and obtain a topological classification of closed, simply connected manifolds with a free cohomogeneity-four torus
action. As a corollary, we obtain infinitely many manifolds with Riemannian metrics of positive Ricci curvature
and isometric torus actions.
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1. Introduction and main results

Manifolds equipped with torus actions are a central object of study in geometry and topology (see,
e.g., [12, 13, 19, 28, 36, 40, 43, 53] and the references therein, to name but a few general references in
the literature). Despite being extensively studied, basic questions on these spaces remain open, such as
which smooth manifolds admit a smooth, effective torus action. This article addresses this question in
the case of free actions.

If a closed (i.e., compact and without boundary) smooth manifold M admits a free smooth torus
action, then it is well known that the Euler characteristic 𝜒(𝑀) and all Stiefel–Whitney and Pontryagin
numbers (provided M is orientable) of M vanish (see Lemmas 2.1 and 2.7 below). Other topological
obstructions can be obtained in certain special cases using spectral sequences (see, e.g., [39]) or
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2 F. Galaz-García and P. Reiser

assumptions on the rational homotopy groups of M (see, e.g., [14]), and topological classifications of
manifolds with free circle actions in low dimensions were obtained in [11, 17, 24]; see also [6, 20, 27,
31] for classification and obstruction results for almost-free and semi-free torus actions. In this article,
we provide sufficient conditions for the existence of smooth, free circle and torus actions on closed,
simply connected manifolds (see Theorems A–C, Corollary D and Theorem E below).

The main application we consider are connected sums of products of spheres. In particular, we show
that closed, simply connected smooth n-manifolds with a smooth, free action of 𝑇𝑛−4 are diffeomorphic
to connected sums of products of spheres or nontrivial sphere bundles over 𝑆2 (see Theorem F). These
manifolds are known to carry Riemannian metrics of positive Ricci curvature (see remarks before
Corollary H). By exhibiting these manifolds as total spaces of principal torus bundles, we may show
that they admit, in fact, Riemannian metrics of positive Ricci curvature which are invariant under the
given free torus action (see Corollary H; cf. [7]). Manifolds with such metrics play a role in the study of
moduli spaces of Riemannian metrics with positive Ricci curvature (see, for example, [9, 18, 29, 49, 51]).

An important tool we will use are the twisted suspensions Σ𝑒𝑀 and Σ̃𝑒𝑀 of a smooth n-dimensional
manifold M determined by a class 𝑒 ∈ 𝐻2(𝑀;Z). These twisted suspensions, which we will define in
Section 5, are obtained by surgery along a fiber of the principal circle bundle over M with Euler class e
and generalize the suspensions Duan introduced in [10]. These are based on the spinning operation for
knots, which is due to Artin [1].

Our first main result characterizes certain principal circle bundles in terms of twisted suspensions.
Recall that, for n-manifolds 𝑀1 and 𝑀2, we have an isomorphism 𝐻2(𝑀1#𝑀2;Z) � 𝐻2 (𝑀1;Z) ⊕
𝐻2 (𝑀2;Z) if 𝑛 ≥ 4. A nontrivial integral cohomology class is primitive if it is not a multiple of another
class. We will denote diffeomorphism between smooth manifolds by the symbol ‘�’ and assume that
all manifolds and actions are smooth.

Theorem A. Let 𝐵1, 𝐵2 be closed, oriented n-manifolds with 𝑛 ≥ 5, and let 𝑃 𝜋
−→ 𝐵1#𝐵2 be a principal

𝑆1-bundle. For 𝑖 = 1, 2, denote by 𝑒𝑖 ∈ 𝐻2(𝐵𝑖) the restriction of the Euler class of P to 𝐵𝑖 and by
𝑃𝑖

𝜋𝑖
−−→ 𝐵𝑖 the principal 𝑆1-bundle with Euler class 𝑒𝑖 . If the fiber inclusion in 𝑃1 is null-homotopic, or,

equivalently, the pull-back of 𝑒1 to the universal cover 𝐵1 of 𝐵1 is primitive, then P is diffeomorphic to

𝑃 �

{
𝑃1#Σ𝑒2𝐵2, if 𝐵1 is nonspin,
𝑃1#Σ̃𝑒2𝐵2, if 𝐵1 is spin.

Theorem A generalizes [10, Theorem B], where the same conclusion is obtained for 𝐵1 simply
connected and 𝑒2 = 0.

To apply Theorem A, we determine the twisted suspensions of certain manifolds in the following
theorem. We denote by 𝑆2 ×̃ 𝑆𝑛−2 the total space of the unique nontrivial linear 𝑆𝑛−2-bundle over 𝑆2.
Recall that the divisibility d of an element y in a free abelian group G is the largest 𝑑 ∈ N such that there
exists an element 𝑥 ∈ 𝐺 with 𝑦 = 𝑑𝑥. Note that the primitive elements of G are precisely the elements
of divisibility 1.

Theorem B. We have the following:

1. Let B be a closed, oriented n-manifold with 𝑛 ≥ 5, and let 𝑃
𝜋
−→ 𝐵 be a principal 𝑆1-bundle with

Euler class 𝑒 ∈ 𝐻2(𝐵). If the fiber inclusion in P is null-homotopic, or, equivalently, the pull-back
of e to the universal cover 𝐵 is primitive, then

Σ𝑒𝐵 �

{
𝑃#(𝑆2 × 𝑆𝑛−1), if 𝐵 is nonspin,
𝑃#(𝑆2 ×̃ 𝑆𝑛−1), if 𝐵 is spin,
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and

Σ̃𝑒𝐵 �

{
𝑃#(𝑆2 ×̃ 𝑆𝑛−1), if 𝐵 is nonspin,
𝑃#(𝑆2 × 𝑆𝑛−1), if 𝐵 is spin.

2. Let 𝐵 = 𝑆𝑘 × 𝑆𝑛−𝑘 with 2 ≤ 𝑘 ≤ 𝑛 − 2. Then

Σ0𝐵 � Σ̃0𝐵 � (𝑆𝑘 × 𝑆𝑛−𝑘+1)#(𝑆𝑘+1 × 𝑆𝑛−𝑘 ).

3. Let 𝐵 = 𝑆2 × 𝑆𝑛−2 or 𝑆2 ×̃ 𝑆𝑛−2, let 𝑒 ∈ 𝐻2(𝐵) and let d be the divisibilty of e. Then

Σ𝑒𝐵 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑆2 × 𝑆𝑛−1)#(𝑆3 × 𝑆𝑛−2), if 𝐵 = 𝑆2 × 𝑆𝑛−2 and 𝑑 is even, or

𝐵 = 𝑆2 ×̃ 𝑆𝑛−2 and 𝑑 is odd,
(𝑆2 ×̃ 𝑆𝑛−1)#(𝑆3 × 𝑆𝑛−2), else,

and

Σ̃𝑒𝐵 �

{
(𝑆2 × 𝑆𝑛−1)#(𝑆3 × 𝑆𝑛−1), 𝐵 = 𝑆2 × 𝑆𝑛−2,

(𝑆2 ×̃ 𝑆𝑛−1)#(𝑆3 × 𝑆𝑛−2), 𝐵 = 𝑆2 ×̃ 𝑆𝑛−2.

We note that item (2) of Theorem B recovers [10, Proposition 3.2] and extends [48, Lemma 1.3].
We will say that a manifold 𝑀𝑛 is of the form (*) if

𝑀 � 𝐵1# . . . #𝐵𝑙 for 𝐵𝑖 = 𝑆𝑚𝑖 × 𝑆𝑛−𝑚𝑖 or 𝐵𝑖 = 𝑆2 ×̃ 𝑆𝑛−2 (*)

with 2 ≤ 𝑚𝑖 ≤ 𝑛 − 2 and 𝑛 ≥ 5, where we define 𝑀 = 𝑆𝑛 for 𝑙 = 0. Note that the diffeomorphism
type of a manifold of the form (*) is uniquely determined by its dimension n, the Betti numbers
𝑏2 (𝑀), . . . , 𝑏 � 𝑛2 �

(𝑀) (since 𝑏𝑖 (𝑀) = 𝑏𝑛−𝑖 (𝑀) by Poincaré duality) and whether M is spin or not, since
𝑆2 ×̃ 𝑆𝑛−2 is nonspin and

(𝑆2 ×̃ 𝑆𝑛−2)#(𝑆2 ×̃ 𝑆𝑛−2) � (𝑆2 ×̃ 𝑆𝑛−2)#(𝑆2 × 𝑆𝑛−2)

by Corollary 4.2 below.
Using Theorems A and B and the existence of certain self-diffeomorphisms on connected sums of

manifolds of the form (*) with a given simply connected manifold, we can determine the total space of
a principal 𝑆1-bundle over manifolds of the form (*), provided the Euler class is primitive.

Theorem C. Let 𝑃 𝜋
−→ 𝐵𝑛 be a principal 𝑆1-bundle with primitive Euler class e, and assume that B is

of the form (*). Then P is also of the form (*) with

𝑏𝑖 (𝑃) =

{
𝑏2(𝐵) − 1, 𝑖 = 2, 𝑛 − 2,
𝑏𝑖−1(𝐵) + 𝑏𝑖 (𝐵), 2 < 𝑖 < 𝑛 − 2.

Moreover, P is spin if and only if either B has no (𝑆2 ×̃ 𝑆𝑛−2)-summand, or the restriction of e to each
(𝑆2 ×̃ 𝑆𝑛−2)-summand in B has odd divisibility and the restriction of e to each (𝑆2 × 𝑆𝑛−2)-summand in
B has even divisibility.

We now give several applications of Theorems A–C. For a topological space X whose first 𝑖 ≥ 0
Betti numbers are finite, denote by 𝜒𝑖 (𝑋) the i-th Euler characteristic, defined by

𝜒𝑖 (𝑋) =
𝑖∑
𝑗=0

(−1) 𝑗𝑏 𝑗 (𝑋).
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Iterating this definition, we define 𝜒 (0)
𝑖 (𝑋) = (−1)𝑖𝑏𝑖 (𝑋) and, for 𝑚 ∈ N,

𝜒 (𝑚)
𝑖 (𝑋) =

𝑖∑
𝑗=0

𝜒 (𝑚−1)
𝑗 (𝑋).

We then have 𝜒𝑖 (𝑋) = 𝜒 (1)
𝑖 (𝑋) and 𝜒(𝑋) = 𝜒𝑛 (𝑋) if 𝑏𝑖 (𝑋) = 0 for all 𝑖 > 𝑛.

Corollary D. Let 𝑀𝑛 be a closed, simply connected manifold, and let 0 ≤ 𝑘 ≤ 𝑛. Then M admits a
free action of the torus 𝑇 𝑘 with quotient of the form (*) if and only if M is of the form (*) and, for all
1 ≤ 𝑚 ≤ 𝑘 , we have

1. (−1)𝑖𝜒 (𝑚)
𝑖 (𝑀) ≥ 0 for all 𝑖 = 2, . . . , � 𝑛−𝑚2 �,

2. 𝜒 (𝑚)
𝑛−𝑚

2
(𝑀) is even if 𝑛 − 𝑚 is even, and

3. 𝜒 (𝑚)
𝑛 (𝑀) = 0.

By restricting to the case of 𝑆1-actions, we can give further sufficient conditions for the existence of
a free action.

Theorem E.

1. Let 𝑀𝑛 be of the form (*), and suppose that n is odd. Then there exists 𝑚0 ∈ N0 such that the manifolds

𝑀#𝑚 (𝑆2 × 𝑆𝑛−2) and 𝑀#𝑚 (𝑆2 ×̃ 𝑆𝑛−2)

both admit a free circle action for all 𝑚 ≥ 𝑚0.
2. Let 𝑀𝑛 be of the form (*) with 5 ≤ 𝑛 ≤ 10, and suppose that 𝜒(𝑀) = 0 if n is even and 𝜒4(𝑀) ≥ 0

if 𝑛 = 9. Then M admits a free circle action.

The simplest examples not covered by Theorem E with vanishing Euler characteristic are the man-
ifolds #𝑚(𝑆3 × 𝑆6) with 𝑚 ≥ 2. By Proposition 6.6 below, these manifolds do not admit a free circle
action when m is odd. To the best of our knowledge, it is open whether these manifolds admit a free
circle action when m is even.

We can also use Theorem C to determine the total space of a principal torus bundle over any closed,
simply connected 4-manifold (see Theorem 6.7 below). This yields a complete topological classification
of the total spaces of such principal bundles, and extends a result of Duan and Liang [11] for principal
circle bundles and of Duan [10] for principal 𝑇 𝑘 -bundles over 4-manifolds 𝑀4 with 𝑏2 (𝑀) = 𝑘 .

We apply this result to free torus actions of large cohomogeneity. Note that the dimension of a torus
acting freely on a closed, simply connected n-manifold with 𝑛 ≥ 4 must be at most 𝑛−4 (see Remark 6.8
below). In the case of maximal dimension, we have the following classification. For that, we first define
𝑎𝑘𝑖 (𝑟) for 𝑟, 𝑘 ∈ N0 and 2 ≤ 𝑖 ≤ 𝑘 + 2 by

𝑎𝑘𝑖 (𝑟) = (𝑖 − 2)
(

𝑘

𝑖 − 1

)
+ 𝑟

(
𝑘

𝑖 − 2

)
+ (2 + 𝑘 − 𝑖)

(
𝑘

𝑖 − 3

)
.

Theorem F. A closed, simply connected n-manifold M admits a free action of the torus 𝑇𝑛−4 if and only
if M is of the form (*) with 𝑏𝑖 (𝑀) = 𝑎𝑛−4,𝑖 (𝑏2 (𝑀)) for all 2 ≤ 𝑖 ≤ 𝑛 − 2.

An interesting special case of Theorem F is where the quotient space 𝐵4 = 𝑀/𝑇𝑛−4 itself admits
an effective action of a 2-torus (see, for example, [7, 15]). It is then possible to lift the action to
M, so that, together with the free 𝑇𝑛−4-action, we obtain a torus action of cohomogeneity two on M
(see [21, 47] and cf. [7]). Closed, simply connected manifolds with a cohomogeneity-two torus action
have been classified (both topologically and equivariantly) by Orlik and Raymond [37] in dimension 4
and by Oh [34, 35] in dimensions 5 and 6. The orbit space structure and equivariant classification of
closed, simply connected n-manifolds with a cohomogeneity-two torus action may be found in [25]. In
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dimensions 7 and above, however, no topological classification is known. By the above lifting argument,
in combination with the four-dimensional classification, Theorem F provides a topological classification
in any dimension, provided there exists a free cohomogeneity-four subaction. If we instead use Oh’s
six-dimensional classification, we can strengthen this as follows.

Corollary G. A closed, simply connected n-manifold M, 𝑛 ≥ 6, admits a smooth effective action of
𝑇𝑛−2 with a free subaction of a torus of dimension (𝑛 − 6) if and only if M is of the form (*) with
𝑏𝑖 (𝑀) = 𝑎𝑘𝑖 (𝑏2 (𝑀)) for all 2 ≤ 𝑖 ≤ 𝑛 − 2.

We note that not all cohomogeneity-two torus actions on a closed, simply connected n-manifold M
have a free subaction as in Corollary G (see Remark 6.9 below). However, it is open whether the manifolds
in Corollary G already provide all diffeomorphism types of closed, simply connected manifolds with a
cohomogeneity-two torus action. In dimensions 5 and 6, this is known to be true if one considers free
cohomogeneity-four subactions (see [7, 34, 35]).

Using the core metric construction introduced in [4], one obtains that every manifold of the form (*)
admits a metric of positive Ricci curvature, by [5] and [41]. However, these metrics need not be invariant
under the actions established in Corollaries D and G and Theorems E and F. The existence of an invariant
metric of positive Ricci curvature can now be obtained in combination with the lifting results of [16].

Corollary H. Let M be a manifold of the form (*) satisfying the assumptions of Corollary D or G,
or Theorem E or F, thus admitting a free action of a torus. Then M admits a metric of positive Ricci
curvature that is invariant under the free torus action.

The existence of invariant metrics of positive Ricci curvature on the manifolds in Theorem F has
already been shown in [7] without identifying the total spaces if the dimension of the total space is at
least 7.

This article is organized as follows. In Section 2, we recall basic facts on principal torus bundles
and results from differential topology. In Section 3, we study isotopy classes of normally framed circles
which will be crucial for the proofs of Theorems A and B, and in Section 4 we consider the effect
of surgery on a normally framed circle and establish the existence of certain self-diffeomorphisms on
manifolds of the form (*). In Section 5, we introduce the twisted suspensions and prove Theorems A and
B. Finally, in Section 6, we apply Theorems A and B to prove Theorems C, E, and F, and Corollaries
D, G and H.

2. Preliminaries

We will identify R𝑘 with a subspace of R𝑙 if 𝑘 ≤ 𝑙 via the map

(𝑣1, . . . , 𝑣𝑘 ) ↦→ (𝑣1, . . . , 𝑣𝑘 , 0, . . . , 0).

Similarly, we consider SO(𝑘) as a subgroup of SO(𝑙) by applying 𝜙 ∈ SO(𝑘) to the first k entries
of 𝑣 ∈ R𝑙 . We will use homology and cohomology with integer coefficients, unless explicitly stated
otherwise. We will denote the fundamental class of a closed, oriented manifold M by [𝑀]. The closed
m-disk will be denoted by 𝐷𝑚. The symbol ‘�’ will denote isomorphism between algebraic structures
and diffeomorphism between manifolds. Given a vector space V and a manifold M, we denote by 𝑉𝑀
the trivial bundle 𝑀 ×𝑉 → 𝑀 .

2.1. Auxiliary facts on principal torus bundles

We denote by 𝑇 𝑘 the torus of dimension k, that is, 𝑇 𝑘 = 𝑆1 ×
𝑘
· · · × 𝑆1 and 𝑆1 ⊆ C is the unit circle. We

first recall the connection between principal torus bundles and free torus actions.

Lemma 2.1. A manifold M admits a free action of a Lie group G if and only if it is the total space of a
principal G-bundle. In this case, if 𝐺 = 𝑇 𝑘 , the Euler characteristic 𝜒(𝑀) vanishes.
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Proof. For the first statement see, for example, [3, Corollary VI.2.5]. If M admits an effective𝑇 𝑘 -action,
then the Euler characteristic of M equals the Euler characteristic of the fixed point set of the action (see
[26] and cf. [28, Chapter II, Theorem 5.5]). In particular, if the action is free, then 𝜒(𝑀) vanishes. �

Now, let 𝑃
𝜋
−→ 𝑋 be a principal 𝑇 𝑘 -bundle. Let E𝑆1

𝜋𝑆1
−−−→ B𝑆1 be the universal bundle for 𝑆1 (we

refer to [23, Sections 4.10–4.13] for the definition and basic properties of universal bundles). Then the
product bundle

E𝑆1 ×
𝑘
· · · × E𝑆1 → B𝑆1 ×

𝑘
· · · × B𝑆1

is the universal bundle for 𝑇 𝑘 , and we denote the corresponding bundle map by 𝜋𝑇 𝑘 . Hence, there exists
a map 𝑓𝜋 : 𝑋 → B𝑆1 ×

𝑘
· · · ×B𝑆1 such that 𝜋 is isomorphic to 𝑓 ∗𝜋𝜋𝑇𝑘 . Since 𝑓𝜋 is unique up to homotopy,

we obtain a unique element in

[𝑋, B𝑆1 ×
𝑘
· · · × B𝑆1] � [𝑋, B𝑆1] ×

𝑘
· · · × [𝑋, B𝑆1] . (2.1)

Since B𝑆1 is a 𝐾 (Z, 2)-space, the right-hand side of equation (2.1) can be identified with 𝐻2 (𝑋,Z) ×
𝑘
· · · × 𝐻2(𝑋,Z). Thus, the bundle 𝜋 is uniquely determined by a k-tuple

𝑒(𝜋) = (𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)) ∈ 𝐻2 (𝑋,Z) ×
𝑘
· · · × 𝐻2(𝑋,Z).

We call this k-tuple the Euler class of 𝜋 and note that it coincides with the usual definition of the Euler
class if 𝑘 = 1.

Lemma 2.2. Let 𝑃 𝜋
−→ 𝑋 be a principal 𝑇 𝑘 -bundle with Euler class (𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)). Then there is

a sequence of principal 𝑆1-bundles 𝑃𝑖
𝜋𝑖
−−→ 𝑃𝑖−1, 𝑖 = 1, . . . , 𝑘 such that

1. 𝑃𝑘 = 𝑃, 𝑃0 = 𝑋 and 𝜋1 ◦ · · · ◦ 𝜋𝑘 = 𝜋;
2. 𝑒(𝜋𝑖) = 𝜋∗𝑖−1 . . . 𝜋

∗
1𝑒𝑖 (𝜋).

Proof. We set 𝑃𝑖 = 𝑃/𝑇 𝑘−𝑖 , where we view 𝑇 𝑗 , for 𝑗 < 𝑘 , as a subgroup of 𝑇 𝑘 via

𝑇 𝑗 � ({1} × 𝑘− 𝑗
· · · × {1}) × 𝑇 𝑗 ⊆ 𝑇 𝑘 .

Then the projection 𝑃𝑖
𝜋𝑖
−−→ 𝑃𝑖−1 is a principal 𝑆1-bundle, where the action is induced by the action of

the i-th 𝑆1-factor of 𝑇 𝑘 on P. This proves claim (1).
For the second claim, we show that the projection 𝑃𝑖 → 𝑋 , when viewed as a principal 𝑇 𝑖-bundle,

has Euler class (𝑒1 (𝜋), . . . , 𝑒𝑖 (𝜋)). By construction of 𝑃𝑖 , the bundle 𝑃𝑖 → 𝑋 is the pull-back along 𝑓𝜋
of the principal 𝑇 𝑖-bundle

E𝑆1 ×
𝑖
· · · × E𝑆1 × B𝑆1 ×

𝑘−𝑖
· · · × B𝑆1 → B𝑆1 ×

𝑘
· · · × B𝑆1,

where the bundle map is given by 𝜋𝑇 𝑖 on the first i factors and by the identity on the last (𝑘−𝑖) factors. We
obtain the same bundle when we pull back the universal bundle 𝜋𝑇 𝑖 : E𝑆1×

𝑖
· · ·×E𝑆1 → B𝑆1×

𝑖
· · ·×B𝑆1

along pr𝑖 ◦ 𝑓𝜋 , where pr𝑖 denotes the projection B𝑆1 ×
𝑘
· · · × B𝑆1 → B𝑆1 ×

𝑖
· · · × B𝑆1 onto the first i

factors. Thus, the Euler class of 𝑃𝑖 → 𝑋 is given by (𝑒1 (𝜋), . . . , 𝑒𝑖 (𝜋)). �

Lemma 2.3. Let 𝑃
𝜋
−→ 𝑋 be a principal 𝑇 𝑘 -bundle with Euler class 𝑒(𝜋) = (𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)) such

that X is simply connected. Then

𝜋1 (𝑃) � Z
𝑘
/

im(𝑒(𝜋))
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and

𝐻2 (𝑃) � 𝐻2 (𝑋)
/
〈𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)〉 ,

where in the first case we view 𝑒(𝜋) as a homomorphism 𝐻2 (𝑋) → Z
𝑘 and in the second case the

isomorphism is induced by 𝜋. In particular, P is simply connected if and only if the Euler class 𝑒(𝜋)
generates a direct summand in 𝐻2(𝑋), that is, (𝑒1 (𝜋), . . . , 𝑒𝑘 (𝜋)) can be extended to a basis of 𝐻2(𝑋).

Proof. The long exact sequence of homotopy groups for the bundles 𝜋 and 𝜋𝑇 𝑘 together with the induced
maps of 𝑓𝜋 gives the following commutative diagram with exact rows (see, e.g., [46, 17.4 and 17.5]):

𝜋2 (𝑃) 𝜋2 (𝑋) 𝜋1 (𝑇
𝑘 ) 𝜋1 (𝑃) 𝜋1 (𝑋) 𝜋0 (𝑇

𝑘 )

𝜋2 (
�

𝑘 E𝑆1) 𝜋2 (
�

𝑘 B𝑆1) 𝜋1 (𝑇
𝑘 ) 𝜋1 (

�
𝑘 E𝑆1) 𝜋1 (

�
𝑘 B𝑆1) 𝜋0 (𝑇

𝑘 )

𝜋∗

𝑓𝜋 ∗
id𝜋1 (𝑇 𝑘 )

𝜋∗

𝑓𝜋 ∗
id𝜋0 (𝑇 𝑘 )

𝜋∗ 𝜋∗

.

Since E𝑆1 is contractible, all its homotopy groups vanish, so the map 𝜋2 (
�

𝑘 B𝑆1) → 𝜋1 (𝑇
𝑘 ) is an

isomorphism and 𝜋1 (
�

𝑘 B𝑆1) is trivial. In particular, the group 𝜋2 (
�

𝑘 B𝑆1) is isomorphic to Z𝑘 . Since
X is simply connected, it follows that the group 𝜋1 (𝑃) is isomorphic to the quotient of 𝜋2 (

�
𝑘 B𝑆1) by

the image of 𝑓𝜋∗. By the Hurewicz theorem, we can identify the image of 𝑓𝜋∗ in 𝜋2 (
�

𝑘 B𝑆1) with the
image of the induced map of 𝑓𝜋 in homology, which by construction is precisely the image of the Euler
class (𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)).

For the cohomology, we first consider the case 𝑘 = 1, that is, 𝜋 is a principal 𝑆1-bundle, and apply
the Gysin sequence (see, e.g., [32, Theorem 12.2]):

𝐻0(𝑋) 𝐻2 (𝑋) 𝐻2 (𝑃) 𝐻1(𝑋).
·⌣𝑒1 (𝜋) 𝜋∗

Since X is simply connected, we have 𝐻1 (𝑋) = 0, so 𝜋∗ : 𝐻2(𝑋) → 𝐻2(𝑃) is surjective with kernel
given by the image of the map · ⌣ 𝑒1(𝜋) : 𝐻0 (𝑋) → 𝐻2(𝑋), which is precisely the subgroup generated
by 𝑒1(𝜋).

For general k, we apply Lemma 2.2 to divide 𝜋 into a sequence of principal 𝑆1-bundles. Repeated
application of the above argument for principal 𝑆1-bundles now gives the claim. �

In case of a nonsimply connected base, we have the following result.

Lemma 2.4. Let 𝑃 𝜋
−→ 𝑋 be a principal 𝑆1-bundle with Euler class 𝑒(𝜋). Then the inclusion of a fiber

in P is null-homotopic if and only if the pull-back of 𝑒(𝜋) to the universal cover 𝑋 is primitive.

Proof. Let 𝑃
𝜋
−→ 𝑋 denote the pull-back of 𝜋 along the covering projection 𝑋 → 𝑋 . The long exact

sequence of homotopy groups for the bundles 𝜋 and �̃� gives the following commutative diagram with
exact rows:

𝜋2 (𝑋) 𝜋1 (𝑆
1) 𝜋1 (𝑃) 𝜋1 (𝑋)

𝜋2 (𝑋) 𝜋1 (𝑆
1) 𝜋1 (𝑃) 𝜋1 (𝑋).

=

𝜋

𝜋

Since the map 𝜋2 (𝑋) → 𝜋2 (𝑋) is an isomorphism, it follows that the map 𝜋1 (𝑆
1) → 𝜋1 (𝑃) is trivial if

and only if the map 𝜋2 (𝑋) → 𝜋1 (𝑆
1) is surjective. Since 𝑋 is simply connected, this is the case if and

only if 𝜋1 (𝑃) is trivial. Since the Euler class of �̃� is the pull-back of 𝑒(𝜋) along the projection 𝑋 → 𝑋 ,
the claim follows from Lemma 2.3. �
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Recall that a stable characteristic class is an element 𝑐 ∈ 𝐻𝑖 (BO; 𝑅) for a ring R. For a vector
bundle 𝐸

𝜋
−→ 𝑋 of rank k, we then set 𝑐(𝜋) = 𝑓 ∗𝜋 𝜄

∗
𝑘𝑐, where 𝜄𝑘 : BO(𝑘) → BO is the map induced by

the inclusion O(𝑘) ↩→ O and 𝑓𝜋 : 𝑋 → BO(𝑘) is the classifying map of 𝜋. For a manifold M, we set
𝑐(𝑀) = 𝑐(𝑇𝑀). We then have

𝑐(𝜋 ⊕ R𝑋 ) = 𝑐(𝜋)

for every vector bundle 𝐸
𝜋
−→ 𝑋 . The Stiefel–Whitney classes 𝑤𝑖 ∈ 𝐻𝑖 (BO;Z/2) and the Pontryagin

classes 𝑝𝑖 ∈ 𝐻4𝑖 (BO;Z) are examples of stable characteristic classes.

Lemma 2.5. Let 𝑃 𝜋
−→ 𝑀 be a principal G-bundle for a Lie group G, and let 𝑐 ∈ 𝐻𝑖 (BO; 𝑅) be a stable

characteristic class. Then

𝑐(𝑃) = 𝜋∗𝑐(𝑀).

Proof. The tangent bundle of P is given by

𝑇𝑃 � 𝜋∗𝑇𝑀 ⊕ 𝑇𝜋𝑃,

where 𝑇𝜋𝑃 = ker(𝜋∗) is the bundle of vertical vectors. This can be seen by choosing a connection on
the bundle P so that the horizontal bundle is isomorphic to 𝜋∗𝑇𝑀 . The bundle 𝑇𝜋𝑃 is now isomorphic
to the trivial bundle 𝔤

𝑃
via the isomorphism

𝑃 × 𝔤 → 𝑇𝜋𝑃, (𝑝, 𝑋) ↦→
𝑑

𝑑𝑡

���
𝑡=0

(𝑝 · exp(𝑡𝑋)).

It follows that

𝑐(𝑃) = 𝑐(𝜋∗𝑇𝑀 ⊕ 𝔤
𝑃
) = 𝜋∗𝑐(𝑀).

�

Corollary 2.6. Let 𝑃 𝜋
−→ 𝑀 be a principal 𝑇 𝑘 -bundle with Euler class (𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)) and assume

that M is orientable. Then P is spin if and only if

𝑤2 (𝑀) ∈ 〈𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)〉 mod 2.

Proof. Since M is orientable, it follows from Lemma 2.5 that

𝑤1 (𝑃) = 𝜋∗𝑤1 (𝑀) = 0.

Hence, P is orientable. For the second Stiefel–Whitney class 𝑤2 (𝑃), we have 𝑤2 (𝑃) = 𝜋∗𝑤2 (𝑀) by
Lemma 2.5 and by Lemma 2.2 and the Gysin sequence in Z/2-coefficients (cf. [42, Section 2.2]) that
the kernel of 𝜋∗ : 𝐻2(𝑀;Z/2) → 𝐻2(𝑃;Z/2) is given by

〈𝑒1(𝜋), . . . , 𝑒𝑘 (𝜋)〉 mod 2.

�

Lemma 2.5 also provides a topological obstruction for the existence of free torus actions.

Corollary 2.7. Let M be a closed n-manifold that admits a free 𝑇 𝑘 -action. Then any product of stable
characteristic classes of M of total degree at least 𝑛 − 𝑘 + 1 vanishes. In particular, all Stiefel–Whitney
numbers of M and (if M is orientable) all Pontryagin numbers of M vanish.
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Proof. By Lemma 2.1, M is the total space of a principal 𝑇 𝑘 -bundle 𝑀
𝜋
−→ 𝐵. By Lemma 2.5, since B

has dimension 𝑛 − 𝑘 , any cup product of stable characteristic classes with total degree at least 𝑛 − 𝑘 + 1
vanishes. �

2.2. Auxiliary results on smooth manifolds and vector bundles

Recall that the normal bundle𝜈𝑁 of an embedded submanifold 𝑁 ⊆ 𝑀 is the bundle

𝜈𝑁 = 𝑇𝑀 |𝑁 /𝑇𝑁 .

By choosing a Riemannian metric on M, we can identify 𝜈𝑁 with the orthogonal complement of 𝑇𝑁
within 𝑇𝑀 |𝑁 .

We will use the following relative version of the classical Whitney embedding theorem.

Theorem 2.8 (Relative weak Whitney embedding theorem, see [52, Theorem 5]). Let 𝑓 : 𝑁 → 𝑀 be
a continuous map, and let 𝐴 ⊆ 𝑁 be a closed subset such that 𝑓 |𝐴 : 𝐴 → 𝑀 is a smooth embedding.
If dim(𝑀) > 2 dim(𝑁), then there is an embedding 𝑔 : 𝑁 ↩→ 𝑀 which is homotopic to f such that
𝑔 |𝐴 = 𝑓 |𝐴.

The preceding theorem implies the following result, which is also due to Whitney [52].

Theorem 2.9 [52, Theorem 6]. Let 𝑓0, 𝑓1 : 𝑁 → 𝑀 be smooth maps that are homotopic. If dim(𝑀) >
2 dim(𝑁) + 1, then 𝑓0 and 𝑓1 are isotopic.

The following results are well known. We include proofs for completeness.

Proposition 2.10.

1. A vector bundle 𝐸
𝜋
−→ 𝑆1 is trivial if and only if the first Stiefel–Whitney class 𝑤1 (𝜋) vanishes, that

is, if and only if the bundle 𝜋 is orientable.
2. Let 𝐸 𝜋

−→ 𝑆 be an orientable vector bundle of rank 𝑘 ≥ 3 over a closed surface S. Then 𝜋 is trivial if
and only if the second Stiefel–Whitney class 𝑤2(𝜋) vanishes.

Proof.

1. Assume that 𝑤1 (𝜋) = 0. Then the bundle 𝜋 is orientable, hence its classifying map 𝑓𝜋 : 𝑆1 → BO(𝑘)
lifts to a map

𝑓𝜋 : 𝑆1 → BSO(𝑘).

Since BSO(𝑘) is simply connected, this map is null-homotopic, so 𝜋 is trivial.
2. Assume that 𝑤2 (𝜋) = 0. Then the bundle 𝜋 admits a spin structure, hence its classifying map

𝑓𝜋 : 𝑆 → BSO(𝑘) lifts to a map

𝑓𝜋 : 𝑆 → BSpin(𝑘).

Since 𝑘 ≥ 3, the group Spin(𝑘) is simply connected (see, e.g., [30, Theorem I.2.10]). Hence, the
space BSpin(𝑘) is 2-connected. By obstruction theory, it follows that the map 𝑓𝜋 , and hence 𝑓𝜋 , is
null-homotopic (see, e.g., [8, Corollary 7.13]), so the bundle 𝜋 is trivial.

�

Lemma 2.11. The complex projective space C𝑃𝑛 is spin if and only if n is odd. Further, for every 𝑛 ∈ N

with 𝑛 ≥ 2 there exists a unique nontrivial linear sphere bundle over 𝑆2, whose total space, denoted by
𝑆2 ×̃ 𝑆𝑛, is nonspin.
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Proof. For the first statement, we have 𝑤2 (C𝑃
𝑛) = 𝑐1 (C𝑃

𝑛) mod 2 = 𝑛 + 1 mod 2; see, e.g., [32,
Theorem 14.10]. For the second statement, since 𝜋1 (SO(𝑛 + 1)) � Z/2, there exists a unique nontrivial
vector bundle 𝐸

𝜉
−→ 𝑆2 of rank (𝑛 + 1). Hence, there exists a unique nontrivial linear 𝑆𝑛-bundle

𝑆(𝐸)
𝜋
−→ 𝑆2. By Proposition 2.10, 𝑤2 (𝜉) ≠ 0. By choosing a horizontal distribution for the bundle 𝜉,

which is isomorphic to 𝜋∗𝑇𝑆2, we have (cf. Lemma 2.5)

𝑇𝑆(𝐸) ⊕ R𝑆 (𝐸) � 𝜋∗𝑇𝑆2 ⊕ 𝜋∗𝐸.

Hence,

𝑤2 (𝑆(𝐸)) = 𝑤2 (𝑆(𝐸) ⊕ R𝑆 (𝐸) ) = 𝜋∗𝑤2 (𝑆
2) + 𝜋∗𝑤2 (𝜋) = 𝜋∗𝑤2 (𝐸).

By the Gysin sequence, the map 𝐻2(𝑆2)
𝜋∗

−−→ 𝐻2(𝑆(𝐸)) is injective, hence 𝑤2(𝑆(𝐸)) is nontrivial. �

Finally, we recall the following theorem, which is known as the disc theorem of Palais [38,
Theorem 5.5].

Theorem 2.12. Let 𝑓1, 𝑓2 : 𝐷𝑚 → 𝑀 be embeddings. If 𝑚 = dim(𝑀) and M is orientable, assume in
addition that both 𝑓1 and 𝑓2 are orientation preserving. Then 𝑓1 and 𝑓2 are isotopic.

3. Normally framed circles

In this section, M will denote an oriented manifold of dimension 𝑛 ≥ 5. Some of the results in this section
were already obtained by Goldstein and Lininger [17] and Duan [10] when M is simply connected.

Definition 3.1. Let 𝑓 : 𝑆1 ↩→ 𝑀 be an embedding. A normal framing of f is an orientation-preserving
embedding 𝜑 : 𝑆1 × 𝐷𝑛−1 ↩→ 𝑀 such that 𝜑(·, 0) = 𝑓 . We introduce two equivalence relations:

1. Two normal framings 𝜑0 and 𝜑1 of f are isotopic if they are isotopic as embeddings, that is, if there
exists a smooth homotopy 𝜑𝑡 , 𝑡 ∈ [0, 1], in M between 𝜑0 and 𝜑1 such that 𝜑𝑡 is an embedding for all
𝑡 ∈ [0, 1]. The set of isotopy classes of framings of embeddings 𝑆1 ↩→ 𝑀 is denoted by [𝑆1, 𝑀] 𝑓 𝑟 .

2. Two normal framings 𝜑0 and 𝜑1 of f are equivalent if they are isotopic through normal framings of f.

Note that normal framings exist for any embedding 𝑓 : 𝑆1 ↩→ 𝑀: The orientation on M, together
with the standard orientation on 𝑆1, induces an orientation on 𝜈 𝑓 (𝑆1) according to the splitting

𝑇𝑀 | 𝑓 (𝑆1) � 𝑇 𝑓 (𝑆1) ⊕ 𝜈 𝑓 (𝑆1) .

By Proposition 2.10, it follows that 𝜈 𝑓 (𝑆1) is trivial and hence, by choosing a Riemannian metric on M,
we obtain an embedding 𝑆1 × 𝐷𝑛−1 ↩→ 𝑀 via the exponential map.

It is clear from the definition that equivalent normal framings are isotopic. As we will see below, the
converse holds in some cases but not in general.

Lemma 3.2. Let 𝑓 : 𝑆1 ↩→ 𝑀 be an embedding, and let 𝜑0, 𝜑1 be normal framings of f. Then there
exists a normal framing 𝜑′

1 of f that is equivalent to 𝜑1 and a smooth map 𝛼 : 𝑆1 → SO(𝑛− 1) such that

𝜑0(𝜆, 𝛼𝜆𝑣) = 𝜑′
1(𝜆, 𝑣)

for all (𝜆, 𝑣) ∈ 𝑆1 × 𝐷𝑛−1. In particular, there exist exactly two equivalence classes of normal
framings of f.

Proof. The first statement follows directly from the uniqueness of tubular neighborhoods (see, e.g., [28,
Corollary III.3.2]) and the second statement then follows from the fact that 𝜋1 (SO(𝑛 − 1)) � Z/2, as
𝑛 ≥ 5. �
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It follows from Lemma 3.2 that, for an embedding 𝑓 : 𝑆1 ↩→ 𝑀 , there are at most two isotopy classes
of normal framings. To analyze when we have equality, we introduce the following notion.

Let 𝑓 : 𝑆1 ↩→ 𝑀 be an embedding, and let 𝐹 : 𝑇2 ↩→ 𝑀 be an embedding with 𝐹 (·, 1) = 𝑓 . We
view F as a self-isotopy 𝐹𝑡 of f via 𝐹𝑡 = 𝐹 (·, 𝑒2𝜋𝑖𝑡 ). Given a normal framing 𝜑 of f, we extend 𝜑 along
the isotopy 𝐹𝑡 to an isotopy 𝜑𝑡 . We then define 𝐹∗ [𝜑] as the equivalence class of normal framings of f
represented by 𝜑1.

Lemma 3.3. The class 𝐹∗ [𝜑] is well-defined, that is, it does not depend on the choice of extension 𝜑𝑡 .

Proof. Let 𝜑𝑡 and 𝜓𝑡 be extensions of 𝜑 along F. Then the maps [0, 1] × 𝑆1 × 𝐷𝑛−1 → [0, 1] × 𝑀 ,

(𝑡, 𝜆, 𝑣) ↦→ (𝑡, 𝜑𝑡 (𝜆, 𝑣)), (𝑡, 𝜆, 𝑣) ↦→ (𝑡, 𝜓𝑡 (𝜆, 𝑣))

are neat tubular neighborhoods of the neat submanifold 𝑁 = {(𝑡, 𝐹𝑡 (𝜆)) | (𝑡, 𝜆) ∈ [0, 1] × 𝑆1} of
[0, 1] ×𝑀 in the sense of [28, Chapter III.4]. By the uniqueness of neat tubular neighborhoods (see, e.g.,
[28, Theorem III.4.2 and subsequent remark]), after applying an isotopy of neat tubular neighborhoods
that fixes N pointwise (which corresponds to isotopies of 𝜓0 and 𝜓1 on the boundary components that
fix 𝑓 (𝑆1) pointwise), we can assume that

𝜓𝑡 (𝜆, ·) = 𝜑𝑡 (𝜆, 𝛼(𝑡 ,𝜆) (·))

for a smooth map 𝛼 : [0, 1] × 𝑆1 → SO(𝑛 − 1) with 𝛼(0, ·) homotopic to the constant map ≡ id. This
shows that 𝜓1 is equivalent to 𝜑1, where the isotopy is given by 𝜑1 (𝜆, 𝛼(𝑡 ,𝜆) (·)). �

Lemma 3.4. Let 𝑓 : 𝑆1 ↩→ 𝑀 be an embedding, and let 𝐹 : 𝑇2 ↩→ 𝑀 be an embedding with 𝐹 (·, 1) = 𝑓 .
Then, for any normal framing 𝜑 of f, we have [𝜑] = 𝐹∗ [𝜑] if and only if

𝑤2 (𝑀) ⌢ 𝐹∗ [𝑇
2]Z/2 = 0.

Proof. Let 𝜉 = 𝐹∗ [𝑇
2]Z/2 ∈ 𝐻2(𝑀;Z/2). By Proposition 2.10, the normal bundle 𝜈𝐹 is trivial if and

only if 𝑤2 (𝜈𝐹 ) = 0. We have

𝐹∗𝑤2 (𝜈𝐹 ) = 𝐹∗𝑤2 (𝜈𝐹 ⊕ 𝑇𝐹 (𝑇2)) = 𝐹∗𝑤2 (𝑇𝑀 |𝐹 (𝑇 2) ) = 𝑤2 (𝐹
∗𝑇𝑀) = 𝐹∗𝑤2 (𝑀),

which vanishes if and only if

0 = 𝐹∗𝑤2 (𝑀) ⌢ [𝑇2]Z/2 = 𝑤2 (𝑀) ⌢ 𝐹∗ [𝑇
2]Z/2 = 𝑤2 (𝑀) ⌢ 𝜉.

Hence, 𝑤2 (𝑀) ⌢ 𝜉 = 0 if and only if 𝜈𝐹 is trivial.
Now, suppose that 𝜈𝐹 is trivial, that is, there exists an embedding �̄� : 𝑇2 × 𝐷𝑛−2 ↩→ 𝑀 such that

�̄� (·, 0) = 𝐹. The map 𝜑𝑡 : 𝑆1 × 𝐷𝑛−1 → 𝑀 ,

𝜑𝑡 (𝜆, 𝑣) = �̄� ((𝜆, 𝑒2𝜋𝑖 (𝑡+ 𝑣𝑛−1
4 ) ), (𝑣1, . . . , 𝑣𝑛−2))

for 𝜆 ∈ 𝑆1, 𝑣 = (𝑣1, . . . , 𝑣𝑛−1) ∈ 𝐷𝑛−1 is an isotopy along 𝐹𝑡 with 𝜑0 = 𝜑1, showing that F induces the
identity on equivalence classes of normal framings of f.

Finally, suppose that F induces the identity on equivalence classes of normal framings. Let 𝜑 be a
normal framing, and let 𝜑𝑡 be an extension along 𝐹𝑡 . Then 𝜑 = 𝜑0 is equivalent to 𝜑1. By modifying
𝜑𝑡 for 𝑡 ∈ [1 − 𝜀, 1] for 𝜀 > 0 small according to the isotopy between 𝜑 and 𝜑1, we can assume that
𝜑 = 𝜑0 = 𝜑1. Then we define the embedding 𝑇2 × 𝐷𝑛−1 ↩→ 𝑆1 × 𝑀 ,

(𝜆, 𝑒2𝜋𝑖𝑡 , 𝑣) ↦→ (𝑒2𝜋𝑖𝑡 , 𝜑𝑡 (𝜆, 𝑣)),
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showing that the embedding
◦

𝐹 : 𝑇2 ↩→ 𝑆1 × 𝑀 , (𝜆, 𝑒2𝜋𝑖𝑡 ) ↦→ (𝑒2𝜋𝑖𝑡 , 𝐹𝑡 (𝜆)) has trivial normal bundle.
On the other hand, the normal bundle of

◦

𝐹 (𝑇2) is isomorphic to the sum of the normal bundle 𝜈𝐹 of F
in M with the trivial bundle R𝑇 2 (corresponding to paths of the form 𝑠 ↦→ (𝑒2𝜋𝑖 (𝑡+𝑠) , 𝐹𝑡 (𝜆))). Thus, the
bundle 𝜈𝐹 ⊕ R𝑇 2 is trivial. Since 𝑛 ≥ 5, it follows from Proposition 2.10, together with the stability of
the Stiefel–Whitney classes, that 𝜈𝐹 is trivial. �

For the existence of embeddings 𝐹 : 𝑇2 ↩→ 𝑀 that reverse the framing according to Lemma 3.4 we
have the following result.

Lemma 3.5. Let 𝑓 : 𝑆1 ↩→ 𝑀 be an embedding. If there exists a continuous map ℎ : 𝑆2 → 𝑀 such
that 𝑤2 (𝑀) ⌢ ℎ∗ [𝑆

2]Z/2 ≠ 0, then there exists an embedding 𝐹 : 𝑇2 ↩→ 𝑀 with 𝐹 (·, 1) = 𝑓 and
𝑤2 (𝑀) ⌢ 𝐹∗ [𝑇

2]Z/2 ≠ 0. If f is null-homotopic, then also the converse holds.

Proof. First, suppose that such a map h exists. By Theorem 2.8, we can assume that h is an embedding.
Again, by Theorem 2.8, the map 𝑇2 → 𝑀, (𝜆1, 𝜆2) ↦→ 𝑓 (𝜆1), which induces the trivial map on 𝐻2, is
homotopic to an embedding 𝐹0 that extends f. Now, the connected sum embedding 𝑇2#𝑆2 � 𝑇2 ↩→ 𝑀
of 𝐹0 and h satisfies the required properties.

Conversely, suppose that f is null-homotopic and that 𝐹 : 𝑇2 ↩→ 𝑀 is an embedding with 𝐹 (·, 1) = 𝑓
and 𝑤2 (𝑀) ⌢ 𝐹∗ [𝑇

2]Z/2 ≠ 0. Since f is null-homotopic, there exists an embedding 𝑓 : 𝐷2 ↩→ 𝑀 with
𝑓 |𝑆1 = 𝑓 . We now define a map 𝐹 : (𝐷2 × 𝑆1) \ (𝐷3)◦ → 𝑀 from the punctured solid torus to M by
first defining it on 𝑇2 ∪ (𝐷2 × {1}) (and assume that the deleted 𝐷3 is disjoint from this part) by setting

𝐹 (𝑥) = 𝐹 (𝑥) for 𝑥 ∈ 𝑇2 and 𝐹 (𝑦, 1) = 𝑓 (𝑦) for 𝑦 ∈ 𝐷2.

Since 𝑇2 ∪ (𝐷2 × {1}) is a deformation retract of (𝐷2 × 𝑆1) \ (𝐷3)◦, we can extend this map to all of
(𝐷2 × 𝑆1) \ (𝐷3)◦ and we have 𝐹 |𝑇 2 = 𝐹 by construction. We define ℎ : 𝑆2 → 𝑀 as the restriction
of 𝐹 to the other boundary component. Since 𝑇2 and 𝑆2 define the same homology classes inside
(𝐷2 × 𝑆1) \ (𝐷3)◦, it follows that they induce the same homology class 𝐹∗ [𝑇

2] = ℎ∗ [𝑆
2]. �

Note that the assumptions of Lemma 3.5 are satisfied, for example, if M is nonspin and simply
connected.

We will now consider the map

𝜇 : [𝑆1, 𝑀] 𝑓 𝑟 → [𝑆1, 𝑀]

given by forgetting the framing. We denote by 𝑀 the universal cover of M. Since the projection 𝑀
𝜋
−→ 𝑀

is a local diffeomorphism, we have that 𝑤𝑖 (𝑀) = 𝜋∗𝑤𝑖 (𝑀). Hence, 𝑀 is spin if and only if 𝑤2 (𝑀) lies
in the kernel of 𝜋∗ : 𝐻2 (𝑀;Z/2) → 𝐻2(𝑀;Z/2). We now have the following proposition (cf. [17] and
[10, Corollary 2.3] in the simply connected case).

Proposition 3.6. The map 𝜇 is surjective. Further, we have:

(i) If M is spin, then 𝜇 is two-to-one.
(ii) If 𝑀 is nonspin, then 𝜇 is bijective.

(iii) The trivial class in [𝑆1, 𝑀] has two preimages under 𝜇 if and only if 𝑀 is spin. Otherwise, it has
one preimage.

Proof. Since, by Theorem 2.8, any map 𝑆1 → 𝑀 is homotopic to an embedding, the map 𝜇 is surjective.
Further, since any two homotopic embeddings 𝑆1 ↩→ 𝑀 are isotopic by Theorem 2.9, the preimages of
a map 𝑓 : 𝑆1 → 𝑀 under 𝜇, which we can assume to be embeddings, can be represented by normal
framings of f. This shows that there are either one or two preimages of the class represented by f,
depending on whether the two nonequivalent normal framings of f are isotopic or not.

By Theorem 2.8, we can assume that every self-isotopy of f is an embedded torus. Hence, by
Lemma 3.4, the two nonequivalent normal framings of f are isotopic if and only if there is an embedded
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torus 𝐹 : 𝑇2 → 𝑀 with 𝐹 (·, 1) = 𝑓 and 𝑤2 (𝑀) ⌢ 𝐹∗ [𝑇
2]Z/2 ≠ 0. In particular, if M is spin, then there

is no such isotopy, which shows item (i). Further, by Lemma 3.5, a sufficient condition for the existence
of such an embedding is the existence of a continuous map ℎ : 𝑆2 → 𝑀 with 𝑤2 (𝑀) ⌢ ℎ∗ [𝑆

2]Z/2 ≠ 0,
and this condition is also necessary if f is null-homotopic. We now show that this condition is satisfied
on M if and only if it is satisfied on 𝑀 , showing items (ii) and (iii).

For any map ℎ : 𝑆2 → 𝑀 , we have

𝑤2 (𝑀) ⌢ (𝜋 ◦ ℎ)∗ [𝑆
2] = 𝑤2 (𝑀) ⌢ 𝜋∗ℎ∗ [𝑆

2] = 𝜋∗(𝜋
∗𝑤2 (𝑀) ⌢ ℎ∗ [𝑆

2]) = 𝜋∗(𝑤2 (𝑀) ⌢ ℎ∗ [𝑆
2]).

Since 𝜋 induces an isomorphism on 𝐻0, it follows that h satisfies the required property for 𝑀 if and
only if 𝜋 ◦ ℎ satisfies it for M. Since any map 𝑆2 → 𝑀 can be lifted to 𝑀 , the claim follows. �

By Proposition 3.6, a null-homotopic embedding 𝑆1 ↩→ 𝑀 can possibly have two nonisotopic normal
framings. In this case, we have a distinguished normal framing, which we now define.
Definition 3.7. Let 𝑓 : 𝑆1 ↩→ 𝑀 be an embedding. A normal framing 𝜑 : 𝑆1×𝐷𝑛−1 ↩→ 𝑀 of f is trivial,
if there is an embedding �̄� : 𝐷2 × 𝐷𝑛−2 with

�̄�|𝑆1×𝐷𝑛−2 = 𝜑|𝑆1×𝐷𝑛−2 .

We say that 𝜑 extends over the embedded 2-disc �̄�(·, 0).
It is a direct consequence of the disc theorem of Palais (Theorem 2.12) and the uniqueness of tubular

neighborhoods, that any two trivial normal framings are isotopic (cf. also [42, Lemma 3.7]). Hence,
there is precisely one isotopy class of trivial normal framings.
Lemma 3.8. Let 𝜑 be a normal framing of a null-homotopic embedding 𝑓 : 𝑆1 ↩→ 𝑀 . Then 𝜑 is trivial
if and only if its lift to 𝑀 is trivial.
Proof. Since we can lift extensions to the universal cover, it follows that any lift of a trivial normal
framing is trivial. Since, by Proposition 3.6, the numbers of isotopy classes of normal framings of null-
homotopic embeddings for M and 𝑀 coincide, it follows that a normal framing is trivial if and only if
its lift to the universal cover is trivial. �

Definition 3.9. Let 𝑃 𝜋
−→ 𝑀 be a principal 𝑆1-bundle, and let 𝑈 × 𝑆1 � 𝜋−1 (𝑈) ⊆ 𝑃 with 𝑈 ⊆ 𝑀 open

be a local trivialization. Let 𝐷𝑛 ↩→ 𝑈 be an orientation-preserving embedding. The corresponding
embedding 𝑆1 × 𝐷𝑛 � 𝐷𝑛 × 𝑆1 ↩→ 𝑃, denoted 𝜑𝜋 , is called the standard framing of 𝜋.

By Theorem 2.12 and since 𝜋 has connected structure group, the definition of standard framing is
well defined up to isotopy.

Proposition 3.10. Let 𝑃
𝜋
−→ 𝑀𝑛 be a principal 𝑆1-bundle such that the inclusion of a fiber is null-

homotopic (which, by Lemma 2.4, is equivalent to the pull-back of the Euler class to 𝑀 being primitive).
Then the standard framing 𝜑𝜋 is trivial if and only if 𝑀 is not spin.
Proof. By Lemma 2.4, since the inclusion of a fiber is null-homotopic, the pull-back of the Euler class
of 𝜋 to 𝑀 is primitive. This implies that the pull-back of P along the projection 𝑀 → 𝑀 is simply
connected by Lemma 2.3; in particular, it is the universal cover 𝑃, so we can write 𝑃

𝜋
−→ 𝑀 for the

pull-back bundle. Hence, by Lemma 3.8, 𝜑𝜋 is trivial if and only if 𝜑𝜋 is trivial, that is, we can assume
that M and P are simply connected. This case now follows from [17, Theorem 8]. �

4. Surgery along framed circles

As in the previous section, M denotes an oriented manifold of dimension 𝑛 ≥ 5. In this section, we
consider the manifold we obtain when performing surgery along a fixed normal framing to establish the
existence of certain self-diffeomorphisms of 𝑀#(𝑆2 × 𝑆𝑛−2) and 𝑀#(𝑆2 ×̃ 𝑆𝑛−2). The technique we use

https://doi.org/10.1017/fms.2024.141 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.141


14 F. Galaz-García and P. Reiser

is due to Wall [50], who considered the corresponding problem in dimension 4. As customary, we will
assume that all corners have been smoothed after performing surgery.

Lemma 4.1. Let 𝜑 be a normal framing of an embedding 𝑓 : 𝑆1 ↩→ 𝑀 into a manifold M, and suppose
that f is null-homotopic, that is, it bounds an embedded disc. Then the manifold obtained from M by
surgery along 𝜑 is diffeomorphic to the connected sum of M with a linear sphere bundle over 𝑆2 which
is trivial if and only if 𝜑 is trivial.

Proof. Since f is null-homotopic, it bounds an embedded disc by Theorem 2.8. Then the statement of
the lemma is well known. For completeness, we give the proof below.

We can write M as

𝑀 � 𝑀#𝑆𝑛 � 𝑀#(𝐷2 × 𝑆𝑛−2 ∪id𝑆1×𝑆𝑛−2 𝑆1 × 𝐷𝑛−1)

and the inclusion 𝜑0 of 𝑆1 × 𝐷𝑛−1 into the second factor is a trivial normal framing, the extension
�̄�0 : 𝐷2 × 𝐷𝑛−2 ↩→ (𝐷2 × 𝑆𝑛−2) ∪𝑆1×𝑆𝑛−2 (𝑆1 × 𝐷𝑛−1) is given by

𝐷2 × 𝐷𝑛−2 � (𝐷2 × 𝐷𝑛−2) ∪𝑆1×𝐷𝑛−2 (𝑆1 × 𝐷𝑛−1
+ ) ↩→ (𝐷2 × 𝑆𝑛−2) ∪𝑆1×𝑆𝑛−2 (𝑆1 × 𝐷𝑛−1),

where 𝐷𝑛−1
+ ⊆ 𝐷𝑛−1 denotes the upper half-ball. We use the obvious embedding on each factor and

embed 𝐷𝑛−2 ⊆ 𝑆𝑛−2 as the upper half-sphere.
Hence, if 𝜑 is trivial, then it is isotopic to 𝜑0 (as noted after Definition 3.7), so the manifold obtained

by surgery along 𝜑 is diffeomorphic to

𝑀#(𝐷2 × 𝑆𝑛−2 ∪id𝑆1×𝑆𝑛−2 𝐷2 × 𝑆𝑛−2) � 𝑀#(𝑆2 × 𝑆𝑛−2). (4.1)

If 𝜑 is nontrivial, then 𝜑◦ �̃� is trivial, where �̃� : 𝑆1×𝐷𝑛−1 → 𝑆1×𝐷𝑛−1 is defined by �̃�(𝜆, 𝑣) = (𝜆, 𝛼𝜆𝑣)
and 𝛼 is a smooth representative of the unique nontrivial class in 𝜋1 (SO(𝑛 − 1)). Hence, 𝜑 is isotopic
to 𝜑0 ◦ �̃�, so the manifold obtained by surgery along 𝜑 is diffeomorphic to

𝑀#(𝐷2 × 𝑆𝑛−2 ∪�̃� 𝐷2 × 𝑆𝑛−2) � 𝑀#(𝑆2 ×̃ 𝑆𝑛−2). (4.2)

�

The following result was already proven by Goldstein and Lininger in [17] in the simply connected
case.

Corollary 4.2. Let M be a closed oriented manifold of dimension 𝑛 ≥ 5 and suppose that 𝑤2 (𝑀) ≠ 0.
Then 𝑀#(𝑆2 × 𝑆𝑛−2) is diffeomorphic to 𝑀#(𝑆2 ×̃ 𝑆𝑛−2).

Proof. By Proposition 3.6, since 𝑤2(𝑀) ≠ 0, the two nonequivalent normal framings of an embedded
null-homotopic circle 𝑓 : 𝑆1 ↩→ 𝑀 are isotopic, so surgery along these framings results in diffeomorphic
manifolds.

Now, fix an embedded 2-disc bounded by f together with a normal framing that extends over this
2-disc. Then a normal framing representing the other equivalence class does not extend over this disc.
By Lemma 4.1, if we perform surgery along these normal framings, we therefore obtain the manifolds
𝑀#(𝑆2 × 𝑆𝑛−2) and 𝑀#(𝑆2 ×̃ 𝑆𝑛−2), respectively. �

Now, fix a null-homotopic embedding 𝑓 : 𝑆1 ↩→ 𝑀 , a normal framing 𝜑 : 𝑆1 × 𝐷𝑛−1 ↩→ 𝑀 of f, and
an embedding 𝐹 : 𝑇2 → 𝑀 with 𝐹 (·, 1) = 𝑓 . We extend 𝜑 along F, that is, we obtain an isotopy 𝜑𝑡 of 𝜑
with 𝜑𝑡 (·, 0) = 𝐹 (·, 𝑒2𝜋𝑖𝑡 ). We can assume that 𝜑1 = 𝜑 or 𝜑1 = 𝜑 ◦ �̃�, depending on whether 𝜑 and 𝜑1
are equivalent or not. By the isotopy extension theorem (see, e.g., [22, Theorem 8.1.4]) we can extend
𝜑𝑡 to a diffeotopy Φ𝑡 of M. In particular, Φ0 = id𝑀 and Φ1 is a diffeomorphism of M which fixes 𝑓 (𝑆1)
pointwise.
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We denote by 𝑀𝑡 the manifold obtained from M by surgery along the embedding 𝜑𝑡 . Then all
the manifolds 𝑀𝑡 are diffeomorphic, with a diffeomorphism between 𝑀0 and 𝑀𝑡 induced by Φ𝑡 . It
follows from Lemma 4.1 that 𝑀0 is diffeomorphic to the connected sum of M and a linear sphere
bundle over 𝑆2 and if we choose the normal framing to be trivial, then 𝑀0 � 𝑀#(𝑆2 × 𝑆𝑛−2). Hence,
𝑀1 � 𝑀#(𝑆2 × 𝑆𝑛−2) and if 𝜑1 and 𝜑0 are nonequivalent, we also have 𝑀1 � 𝑀#(𝑆2 ×̃ 𝑆𝑛−2).

We now consider the map induced by Φ1 on (co)homology. We denote the free part of 𝐻𝑖 (𝑀) by
𝐻𝑖

𝐹 (𝑀), which is the quotient of 𝐻𝑖 (𝑀) by its torsion subgroup. Let 𝑥𝑖 ∈ 𝐻2 (𝑀𝑖) correspond to a
generator of 𝐻2 (𝑆

2 × 𝑆𝑛−2) or 𝐻2(𝑆
2 ×̃ 𝑆𝑛−2) (depending on whether 𝜑0 and 𝜑1 are equivalent or not),

and let 𝑥∗𝑖 ∈ 𝐻2(𝑀𝑖) be its dual. We then have

𝐻2(𝑀𝑖) � 𝐻2(𝑀) ⊕ Z𝑥𝑖 and 𝐻2 (𝑀𝑖) � 𝐻2(𝑀) ⊕ Z𝑥∗𝑖 .

Note that 𝑥𝑖 is represented by the inclusion of the first factor for 𝑆2 × 𝑆𝑛−2 and by a section of the
base for 𝑆2 ×̃ 𝑆𝑛−2.

Proposition 4.3. For the induced map Φ1∗ : 𝐻2(𝑀0) → 𝐻2 (𝑀1), we have Φ1∗(𝑦) = 𝑦 for any 𝑦 ∈

𝐻2 (𝑀) and Φ1∗(𝑥0) = 𝑥1 + 𝜉, where 𝜉 = 𝐹∗ [𝑇
2]. Analogously, the induced map Φ∗

1 : 𝐻2
𝐹 (𝑀𝑖) →

𝐻2
𝐹 (𝑀𝑖) on the free part is given by Φ∗

1𝜑 = 𝜑 + (𝜑 ⌢ 𝜉)𝑥∗𝑖 .

For the proof of Proposition 4.3, we need the following result.

Lemma 4.4. Let M be a manifold and let 𝜄 : 𝑊 ↩→ 𝑀 be an embedding of a manifold W with nonempty
boundary N. Let 𝜙 : [0, 1] × 𝑀 → 𝑀 be a diffeotopy of M such that 𝜙0 = id𝑀 . We define the map
𝜄𝜙 : 𝑊 → 𝑀 as follows: Fix a diffeomorphism 𝑊 � 𝑊 ∪𝑁 ([0, 1] × 𝑁), and set 𝜄𝜙 |𝑊 = 𝜄|𝑊 and
𝜄𝜙 (𝑡, 𝑝) = 𝜙𝑡 (𝜄(𝑝)) for (𝑡, 𝑝) ∈ [0, 1] × 𝑁 . Then 𝜄𝜙 and 𝜙1 ◦ 𝜄 are homotopic rel N.

The preceding lemma asserts, in short, that the homotopy class of 𝜙1 ◦ 𝜄 rel N only differs from that
of 𝜄 in a collar neighborhood of N, where we modify it by Φ.

Proof. We give the homotopy explicitly as follows. Define

Ψ : [0, 1] × (𝑊 ∪𝑁 [0, 1] × 𝑁) → 𝑀

by Ψ𝑡 (𝑝) = Φ𝑡 (𝜄(𝑝)) for 𝑝 ∈ 𝑊 and Ψ𝑡 (𝑠, 𝑝) = Φ(1−𝑠)𝑡+𝑠 (𝜄(𝑝)) for (𝑠, 𝑝) ∈ [0, 1] × 𝑁 . Then
Ψ0 = 𝜄𝜙 , and Ψ1 equals Φ1 ◦ 𝜄 on W and Φ1 ◦ 𝜄 ◦ pr𝑁 on [0, 1] × 𝑁 , which, under the identification
𝑊 � 𝑊 ∪𝑁 ([0, 1] ×𝑁) is homotopic rel N to Φ1 ◦ 𝜄. Further, Ψ𝑡 |𝑁 = Φ1 ◦ 𝜄|𝑁 for all 𝑡 ∈ [0, 1], showing
that Ψ is a homotopy rel N. �

Proof of Proposition 4.3. The long exact sequence in homology for the pair (𝑀, 𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1))
yields the exact sequence

𝐻3(𝑀, 𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1)) → 𝐻2(𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1)) → 𝐻2(𝑀) → 𝐻2(𝑀, 𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1)).
(4.3)

By excision,

𝐻𝑖 (𝑀, 𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1)) � 𝐻𝑖 (𝑆
1 × 𝐷𝑛−1, 𝑆1 × 𝑆𝑛−2) = 0

for 𝑖 = 2, 3, as 𝑛 ≥ 5. Hence, the map 𝐻2(𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1)) → 𝐻2 (𝑀) is an isomorphism, that is,

𝐻2 (𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1)) � 𝐻2 (𝑀). (4.4)
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Now, consider the manifold 𝑀𝑖 for 𝑖 = 0, 1. The long exact sequence in homology for the pair
(𝑀𝑖 , 𝑀𝑖 \ (𝐷

2 × 𝑆𝑛−2)) yields the exact sequence

𝐻3(𝑀𝑖 , 𝑀𝑖 \ (𝐷
2 × 𝑆𝑛−2)) −→ 𝐻2 (𝑀𝑖 \ (𝐷

2 × 𝑆𝑛−2)) −→ 𝐻2(𝑀𝑖) (4.5)
−→𝐻2(𝑀𝑖 , 𝑀𝑖 \ (𝐷

2 × 𝑆𝑛−2)) −→ 𝐻1 (𝑀𝑖 \ (𝐷
2 × 𝑆𝑛−2)) −→ 𝐻1(𝑀𝑖).

As for the pair (𝑀, 𝑀 \ 𝑓 (𝑆1 × 𝐷𝑛−1)), by excision,

𝐻 𝑗 (𝑀𝑖 , 𝑀𝑖 \ (𝐷
2 × 𝑆𝑛−2)) � 𝐻 𝑗 (𝐷

2 × 𝑆𝑛−2, 𝑆1 × 𝑆𝑛−2)

and 𝐻 𝑗 (𝐷
2 × 𝑆𝑛−2, 𝑆1 × 𝑆𝑛−2) vanishes for 𝑗 = 3 and is isomorphic to Z if 𝑗 = 2. Further, since the

inclusion 𝑀𝑖 \ (𝐷
2 × 𝑆𝑛−2) ↩→ 𝑀𝑖 induces an isomorphism on fundamental groups, we may rewrite the

exact sequence (4.5) as

0 −→ 𝐻2 (𝑀𝑖 \ (𝐷
2 × 𝑆𝑛−2)) −→ 𝐻2(𝑀𝑖) −→ 𝐻2(𝐷

2 × 𝑆𝑛−2, 𝑆1 × 𝑆𝑛−2) −→ 0. (4.6)

By construction (cf. equations (4.2) and (4.2)), the element 𝑥𝑖 ∈ 𝐻2 (𝑀𝑖) maps to a generator of
𝐻2 (𝐷

2 × 𝑆𝑛−2, 𝑆1 × 𝑆𝑛−2) in equation (4.6) since a generator of the latter is represented by 𝐷2 × {𝑣}
for any 𝑣 ∈ 𝑆𝑛−2. We choose v (by possibly modifying the map 𝛼) so that 𝛼𝜆 (𝑣) = 𝑣 for all 𝜆 ∈ 𝑆1 and
we denote by S the embedded 2-disc in the first (𝐷2 × 𝑆𝑛−2)-factor in equation (4.2) or equation (4.2)
given by 𝐷2 × {𝑣}. Hence, when glued to 𝐷2 × {𝑣} in the second (𝐷2 × 𝑆𝑛−2)-factor in equation (4.2)
or equation (4.2), the disc S represents the class 𝑥𝑖 . Note that in 𝑀 \ 𝜑(𝑆1 × 𝐷𝑛−1), the surface S has
boundary 𝜑(𝑆1 × {𝑣}).

Since Φ0 = id𝑀 , the diffeomorphism Φ1 is isotopic to a map that fixes 𝑀 \ 𝜑(𝑆1 ×𝐷𝑛−1) pointwise.
Hence, Φ1 induces the identity in homology for all classes in 𝐻∗(𝑀). Now, by Lemma 4.4, the inclusion
of S, which we will denote by 𝜄𝑆 , followed by Φ1 is homotopic rel 𝜑(𝑆1 ×{𝑣}) to 𝜄𝑆 extended by the map
�̃� : [0, 1] × 𝑆1 → 𝑀 defined by �̃� (𝑡, 𝜆) = Φ𝑡 (𝜑(𝜆, 𝑣)), where we identify S with 𝑆 ∪𝑆1 ([0, 1] × 𝑆1). It
follows that the surface representing 𝑥0 is mapped to a surface which represents the class 𝑥1 + 𝜉. This
can be seen in a similar way as in the proof of Lemma 3.5: The map �̃� and the inclusions of S and
(𝐷2 × {𝑣}) all coincide on their boundaries, hence they define a map from 𝑇2 with 2 discs glued into
𝑆1 × {1}, and therefore define a map from the twice punctured solid torus into 𝑀1. The map restricted
to each boundary component represents 𝜉, 𝑥1 and Φ∗𝑥0, respectively. Hence, after a suitable choice of
orientations, we obtain Φ∗𝑥0 = 𝑥1 + 𝜉.

Finally, since 𝐻1(𝑀𝑖) � 𝐻1 (𝑀), the statement on the cohomology follows from the universal
coefficient theorem. �

In the following, x and 𝑥 denote, respectively, generators of 𝐻2 (𝑆
2×𝑆𝑛−2) and 𝐻2(𝑆

2 ×̃ 𝑆𝑛−2), and 𝑥∗

and 𝑥∗ denote the corresponding dual elements in 𝐻2(𝑆2×𝑆𝑛−2) and 𝐻2(𝑆2 ×̃ 𝑆𝑛−2), that is, 𝑥∗ ⌢ 𝑥 = 1
and 𝑥∗ ⌢ 𝑥 = 1. The following corollaries now directly follow from Lemma 3.5 and Proposition 4.3.

Corollary 4.5. Let M be a closed, oriented manifold of dimension 𝑛 ≥ 5. Then, for any continuous map
ℎ : 𝑆2 → 𝑀 with 𝑤2 (𝑀) ⌢ ℎ∗ [𝑆

2]Z/2 = 0, there is a diffeomorphism of 𝑀#(𝑆2 × 𝑆𝑛−2) which induces
the identity on 𝐻2 (𝑀) and maps x to 𝑥 + 𝜉, where 𝜉 = ℎ∗ [𝑆

2]. The induced map on cohomology fixes
𝑥∗ and maps 𝜑 ∈ 𝐻2

𝐹 (𝑀) to 𝜑 + 𝜑(𝜉)𝑥∗. An analogous statement holds if we replace 𝑆2 × 𝑆𝑛−2 with
𝑆2 ×̃ 𝑆𝑛−2, x with 𝑥 and 𝑥∗ with 𝑥∗.

Corollary 4.6. Let M be a closed, oriented manifold of dimension 𝑛 ≥ 5. Then, for any continuous map
ℎ : 𝑆2 → 𝑀 with 𝑤2 (𝑀) ⌢ ℎ∗ [𝑆

2]Z/2 ≠ 0, there is a diffeomorphism between 𝑀#(𝑆2 × 𝑆𝑛−2) and
𝑀#(𝑆2 ×̃ 𝑆𝑛−2) which induces the identity on 𝐻2(𝑀) and induces the map 𝑥 ↦→ 𝑥+𝜉, where 𝜉 = ℎ∗ [𝑆

2].
The induced map on cohomology maps 𝑥∗ to 𝑥∗ and maps 𝜑 ∈ 𝐻2

𝐹 (𝑀) to 𝜑 + 𝜑(𝜉)𝑥∗.

The following corollary is an analog of a result of Wall for 4-manifolds (see [50, Theorem 2]).
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Corollary 4.7. Let 𝑀1 and 𝑀2 be k-fold connected sums of copies of 𝑆2 × 𝑆𝑛−2 and 𝑆2 ×̃ 𝑆𝑛−2. Then
every isomorphism between 𝐻2 (𝑀1) and 𝐻2 (𝑀2) that preserves 𝑤2 is induced by a diffeomorphism. In
particular, every isomorphism of the second cohomology of #𝑘 (𝑆

2 × 𝑆𝑛−2) is induced by a diffeomor-
phism.

Proof. We first consider the case where 𝑀1 and 𝑀2 are both spin, that is, they are both diffeomorphic to
#𝑘 (𝑆

2×𝑆𝑛−2), which we will denote by 𝑁𝑘 . Denote a generator of 𝐻2 (𝑆2×𝑆𝑛−2) in the i-th summand of
𝑁𝑘 by 𝑥𝑖 . Then (𝑥1, . . . , 𝑥𝑘 ) is a basis of 𝐻2 (𝑁𝑘 ). The automorphism group of 𝐻2(𝑁𝑘 ) can be identified
with GL(𝑘,Z) and, by applying Corollary 4.5 to the i-th summand of 𝑁𝑘 with 𝜉 a multiple of the dual of
𝑥 𝑗 , 𝑖 ≠ 𝑗 , we obtain that all elementary matrices are induced by a diffeomorphism. Since the elementary
matrices together with the permutation matrices, which are obviously induced by diffeomorphisms,
generate GL(𝑘,Z), the claim follows.

If 𝑀1 and 𝑀2 are nonspin, by applying Corollary 4.2 (possibly multiple times), we can assume that
both 𝑀1 and 𝑀2 are diffeomorphic to a fixed connected sum of copies of 𝑆2 × 𝑆𝑛−2 and 𝑆2 ×̃ 𝑆𝑛−2,
where the latter appears at least once, and we denote this manifold by 𝑁 ′

𝑘 . As before, we denote by 𝑥𝑖 a
generator of the second cohomology of the i-th summand of 𝑁 ′

𝑘 , so (𝑥1, . . . , 𝑥𝑘 ) is a basis of 𝐻2(𝑀 ′
𝑘 ).

By Corollaries 4.5 and 4.6, we see as in the spin case that every automorphism of 𝐻2(𝑁 ′
𝑘 ) is induced by

a diffeomorphism if we allow the bundle structure of the summands to change. By restricting to those
automorphisms that fix 𝑤2 (𝑁

′
𝑘 ) we obtain all diffeomorphisms that do not change the bundle structures

of the summands, that is, all self-diffeomorphisms of 𝑁 ′
𝑘 . �

5. Twisted suspensions

Let 𝑀𝑛 be a connected n-manifold, and let 𝑒 ∈ 𝐻2(𝑀;Z). Generalizing Duan’s suspension constructions
in [10], for a class 𝑒 ∈ 𝐻2(𝑀;Z) we now define two (𝑛 + 1)-dimensional manifolds Σ𝑒𝑀 and Σ̃𝑒𝑀 ,
called suspensions of M twisted by e, as follows.

The class e defines a unique principal 𝑆1-bundle 𝑃
𝜋
−→ 𝑀 with Euler class 𝑒(𝜋) = 𝑒. Let 𝐷𝑛 ↩→ 𝑀 be

an embedding. If M is orientable, we require, after choosing an orientation on M, that this embedding be
orientation-preserving. Since 𝐷𝑛 is contractible, we can identify 𝜋−1 (𝐷𝑛) with 𝐷𝑛 × 𝑆1 and we obtain
an 𝑆1-equivariant embedding

𝜑𝜋 : 𝐷𝑛 × 𝑆1 ↩→ 𝑃.

The definition of 𝜑𝜋 is unique up to isotopy. This follows from the fact that the embedding 𝐷𝑛 ↩→ 𝑀 is
unique up to isotopy by Theorem 2.12 and that 𝑆1 is connected, so the identification of 𝜋−1 (𝐷𝑛) with
𝐷𝑛 × 𝑆1 is unique.

Definition 5.1. Assume 𝑛 ≥ 2 and let 𝛼 : 𝑆1 → SO(𝑛) be a smooth representative of a generator of
𝜋1 (SO(2)) � Z if 𝑛 = 2 and of the unique nontrivial class in 𝜋1 (SO(𝑛)) � Z/2 if 𝑛 > 2. The map 𝛼
induces the diffeomorphism �̃� : 𝑆𝑛−1 × 𝑆1 → 𝑆𝑛−1 × 𝑆1, (𝑥, 𝑦) ↦→ (𝛼𝑦𝑥, 𝑦). We define the suspensions
of M twisted by e as

Σ𝑒𝑀 = 𝑃 \ (𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦) ∪id𝑆𝑛−1×𝑆1 𝑆𝑛−1 × 𝐷2

and

Σ̃𝑒𝑀 = 𝑃 \ (𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦) ∪�̃� 𝑆𝑛−1 × 𝐷2.

When e is the trivial class we recover the suspension constructions in [10], where they are denoted
by Σ0𝑀 and Σ1𝑀 , respectively.

With the definition of twisted suspensions in hand, we now prove Theorem A.
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Proof of Theorem A. We will follow the same strategy as in [10, Theorem B]. We write 𝑃1 as

𝑃1 � 𝑃1#𝑆𝑛+1 � 𝑃1#(𝐷2 × 𝑆𝑛−1 ∪𝑆1×𝑆𝑛−1 𝑆1 × 𝐷𝑛).

Now the inclusion 𝜑 of 𝑆1 × 𝐷𝑛 into the second factor is a trivial normal framing as in the proof of
Lemma 4.1. By Proposition 3.10, the normal framings 𝜑𝜋1 and 𝜑 are isotopic if and only if 𝐵1 is not
spin, and if 𝐵1 is spin, then 𝜑𝜋1 is isotopic to 𝜑 ◦ �̃�, where we extend �̃� to 𝑆1 × 𝐷𝑛 in the obvious way.
It follows that

𝑃 � (𝑃1 \ 𝜑𝜋1 (𝑆
1 × 𝐷𝑛)◦) ∪𝑆1×𝑆𝑛−1 (𝑃2 \ 𝜑𝜋2 (𝑆

1 × 𝐷𝑛)◦)

� 𝑃1#(𝐷2 × 𝑆𝑛−1) ∪𝑆1×𝑆𝑛−1 (𝑃2 \ 𝜑𝜋2 (𝑆
1 × 𝐷𝑛)◦),

and we use either id𝑆1×𝑆𝑛−1 or �̃� as gluing map, depending on whether 𝜑𝜋 is trivial or not. In the first
case, we obtain 𝑃 � 𝑃1#Σ𝑒2 𝑀2 and in the second case, we obtain 𝑃 � 𝑃1#Σ̃𝑒2 𝑀2. �

The following result yields basic topological information on twisted suspensions of manifolds.

Lemma 5.2. Let M be a connected manifold of dimension 𝑛 ≥ 2, and let 𝑒 ∈ 𝐻2 (𝑀). Then topological
invariants of the twisted suspensions are given as follows:

1. Fundamental group:

𝜋1 (Σ𝑒𝑀) � 𝜋1 (Σ̃𝑒𝑀) �

{
𝜋1 (𝑀), 𝑛 ≥ 3,
𝜋1 (𝑀 \ 𝐷2), 𝑛 = 2.

2. The inclusions of 𝑃 \ (𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦) = 𝜋−1(𝑀 \ (𝐷𝑛)◦) into Σ𝑒𝑀 and Σ̃𝑒𝑀 induce isomorphisms

in (co)homology in all degrees i with 3 ≤ 𝑖 ≤ 𝑛 (with coefficients in any ring).
3. If M is simply connected and 𝑛 ≥ 5, then

𝐻2(Σ𝑒𝑀) � 𝐻2(Σ̃𝑒𝑀) � 𝐻2 (𝑀)

and similarly for 𝐻2 (with coefficients in any ring). Further, Σ𝑒𝑀 is spin if and only if 𝑤2 (𝑀) ≡ 𝑒
mod 2, and Σ̃𝑒𝑀 is spin if and only if M is spin.

Proof. As before, we denote by 𝑃
𝜋
−→ 𝑀 the principal 𝑆1-bundle over M with Euler class e. The spaces

Σ𝑒𝑀 and Σ̃𝑒𝑀 fit into the following pushout diagram:

𝑆𝑛−1 × 𝑆1 𝑆𝑛−1 × 𝐷2

𝑃 \ (𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦) Σ𝑒𝑀 (resp. Σ̃𝑒𝑀).

id𝑆𝑛−1×𝑆1 (resp. �̃�)

𝜑𝜋 |𝑆𝑛−1×𝑆1

Hence, by van Kampen’s theorem, both 𝜋1 (Σ𝑒𝑀) and 𝜋1 (Σ̃𝑒𝑀) are isomorphic to the quotient of
𝜋1 (𝑃 \ (𝜑𝜋 (𝐷

𝑛 × 𝑆1)◦)) by the subgroup generated by the class represented by a fiber. By the long
exact sequence of homotopy groups for the 𝑆1-bundle 𝑃 \ (𝜑𝜋 (𝐷

𝑛 × 𝑆1)◦)
𝜋
−→ 𝑀 \ 𝐷𝑛◦, this quotient

is isomorphic to 𝜋1 (𝑀 \ 𝐷𝑛◦), which is isomorphic to 𝜋1 (𝑀) if 𝑛 ≥ 3. This proves item (1) and item
(2) follows from the Mayer–Vietoris sequence for the same pushout diagram.

Now, assume that M is simply connected. We consider 𝑀 ′ = (𝑆2×𝑆𝑛−2)#𝑀 , and denote by 𝑃′ 𝜋′

−−→ 𝑀 ′

the principal 𝑆1-bundle with Euler class 𝑒′ = 𝑥∗ + 𝑒, where 𝑥∗ denotes a generator of 𝐻2(𝑆2 × 𝑆𝑛−2).
By Theorem A, it follows that

𝑃′ � (𝑆3 × 𝑆𝑛−2)#Σ̃𝑒𝑀.
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By the Gysin sequence, we have the following exact sequence:

𝐻0(𝑀 ′)
·⌣𝑒′

−−−−→ 𝐻2(𝑀 ′)
𝜋′∗
−−→ 𝐻2 (𝑃′) → 0.

Hence,

𝐻2(Σ̃𝑒𝑀) � 𝐻2 (𝑃′) � 𝐻2 (𝑀 ′)
/
〈𝑒′〉 � 𝐻2(𝑀).

By Lemma 2.5, 𝑤2 (𝑃
′) = 𝜋′ ∗ 𝑤2 (𝑀

′) = 𝜋′ ∗ 𝑤2 (𝑀), which only lies in 〈𝑒′ mod 2〉 when 𝑤2 (𝑀) is
trivial.

For Σ𝑒𝑀 , we proceed similarly by defining 𝑀 ′ = (𝑆2 ×̃ 𝑆𝑛−2)#𝑀 . In this case, since 𝑤2 (𝑆
2 ×̃ 𝑆𝑛−2)

is nontrivial, 𝑤2 (𝑀
′) lies in 〈𝑒′ mod 2〉 if and only if 𝑤2 (𝑀) ≡ 𝑒 mod 2. This proves item (3). �

Example 5.3. We can explicitly determine the diffeomorphism type of the twisted suspension in the
following cases:

1. We have, for 𝑛 ≥ 2,

Σ0𝑆
𝑛 = (𝐷𝑛 × 𝑆1) ∪id𝑆𝑛−1×𝑆1 (𝑆𝑛−1 × 𝐷2) � 𝜕 (𝐷𝑛 × 𝐷2) � 𝜕𝐷𝑛+2 = 𝑆𝑛+1.

This also holds for Σ̃0𝑆
𝑛, as the diffeomorphism �̃� extends over the right-hand side, that is, over

(𝐷𝑛 × 𝑆1).
2. For 𝑛 = 2 and 𝑒 ∈ 𝐻2(𝑆2) nontrivial, we also obtain that

Σ𝑒𝑆
2 � Σ̃𝑒𝑆

2 � 𝑆3,

since, by Lemma 5.2, both Σ𝑒𝑆
2 and Σ̃𝑒𝑆

2 are closed, simply connected 3-manifolds, which, by
Perelman’s proof of the Poincaré conjecture, can only be diffeomorphic to 𝑆3.

3. If 𝑒 ∈ 𝐻2 (C𝑃𝑛) denotes a generator, then we have

Σ𝑒C𝑃
𝑛 �

{
𝑆2 × 𝑆2𝑛−1, 𝑛 even,
𝑆2 ×̃ 𝑆2𝑛−1, 𝑛 odd,

Σ̃𝑒C𝑃
𝑛 �

{
𝑆2 ×̃ 𝑆2𝑛−1, 𝑛 even,
𝑆2 × 𝑆2𝑛−1, 𝑛 odd.

This will follow immediately from part (1) of Theorem B.

Now, let 𝐸
𝜉
−→ 𝑀𝑛 be a fiber bundle with fiber F. For 𝑒 ∈ 𝐻2 (𝑀), we construct a fiber bundle Σ𝑒𝜉

(resp. Σ̃𝑒𝜉) over Σ𝑒𝑀 (resp. Σ̃𝑒𝑀) with fiber F and the same structure group as 𝜉 as follows. Let 𝐷𝑛 ⊆ 𝑀
be an embedded disc and extend it to local trivializations 𝜑𝜉 : 𝐷𝑛 × 𝐹 ↩→ 𝐸 and 𝜑𝜋 : 𝐷𝑛 × 𝑆1 ↩→ 𝑃,
where 𝑃

𝜋
−→ 𝑀 denotes, as before, the principal 𝑆1-bundle over M with Euler class e. The pull-back

𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝐹)◦) is then a fiber bundle over 𝑃 \ 𝜑𝜋 (𝐷

𝑛 × 𝑆1)◦ with fiber F, the same structure
group as 𝜉, and boundary 𝑆𝑛−1 × 𝑆1 × 𝐹.

Definition 5.4. We define 𝐸 (Σ𝑒𝜉) and 𝐸 (Σ̃𝑒𝜉) by

𝐸 (Σ𝑒𝜉) = 𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝐹)◦) ∪id𝑆𝑛−1×𝑆1×𝐹

(𝑆𝑛−1 × 𝐷2 × 𝐹)

and

𝐸 (Σ̃𝑒𝜉) = 𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝐹)◦) ∪�̃�×id𝐹 (𝑆𝑛−1 × 𝐷2 × 𝐹).
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Since we glue fibers to fibers, where we consider the right-hand side as the trivial bundle 𝑆𝑛−1×𝐷2×𝐹 →

𝑆𝑛−1 × 𝐷2, we obtain the structure of two fiber bundles with fiber F, the same structure group as 𝜉,
and base

𝑃 \ 𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦ ∪id𝑆𝑛−1×𝑆1 𝑆𝑛−1 × 𝐷2 = Σ𝑒𝑀

and

𝑃 \ 𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦ ∪�̃� 𝑆𝑛−1 × 𝐷2 = Σ̃𝑒𝐵,

respectively. We denote the projection maps 𝐸 (Σ𝑒𝜉) → Σ𝑒𝑀 and 𝐸 (Σ̃𝑒𝜉) → Σ̃𝑒𝑀 by Σ𝑒𝜉 and Σ̃𝑒𝜉,
respectively.

Now, we restrict to the case of linear sphere bundles, that is, let 𝐸
𝜉
−→ 𝑀𝑛 be a linear 𝑆𝑚-bundle, and

let 𝑒 ∈ 𝐻2 (𝑀). It follows from the corresponding constructions that the bundle Σ𝑒𝜉 is trivial over the
right-hand side of the decomposition

Σ𝑒𝑀 = 𝑃 \ 𝜑𝜋 (𝐷
𝑛 × 𝑆1)◦ ∪id𝑆𝑛−1×𝑆1 𝑆𝑛−1 × 𝐷2,

that is, it is given by 𝑆𝑛−1 × 𝐷2 × 𝑆𝑚 (and the construction provides a canonical identification) and
similarly for the bundle Σ̃𝑒𝜉. By decomposing 𝑆𝑚 = 𝐷𝑚 ∪𝑆𝑚−1 𝐷𝑚 and identifying 𝐷2 × 𝐷𝑚 � 𝐷𝑚+2,
we obtain embeddings

𝜄𝜉 : 𝑆𝑛−1 × 𝐷𝑚+2 ↩→ 𝐸 (Σ𝑒𝜉)

and

�̃�𝜉 : 𝑆𝑛−1 × 𝐷𝑚+2 ↩→ 𝐸 (Σ̃𝑒𝜉).

Proposition 5.5. If 𝑛 ≥ 2, then the manifold Σ𝜉 ∗𝑒𝐸 (resp. Σ̃𝜉 ∗𝑒𝐸) is diffeomorphic to the manifold
obtained by surgery on 𝐸 (Σ𝑒𝜉) (resp. 𝐸 (Σ̃𝑒𝜉)) along the embedding 𝜄𝜉 (resp. �̃�𝜉 ).

Proof. Recall that we have a local trivialization

𝜑𝜉 : 𝐷𝑛 × 𝑆𝑚 ↩→ 𝐸.

Thus, after smoothing corners, the restriction of 𝜑𝜉 to 𝐷𝑛 × 𝑆𝑚+ � 𝐷𝑛 × 𝐷𝑚, where 𝑆𝑚+ denotes the
(closed) upper hemisphere of 𝑆𝑚, is an orientation-preserving embedding of 𝐷𝑚+𝑛 into E.

It follows that in the decomposition

𝜋∗(𝐸) � 𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝑆𝑚)) ∪id𝑆𝑛−1×𝑆𝑚×𝑆1 (𝐷𝑛 × 𝑆𝑚 × 𝑆1)

a local trivialization for 𝜋∗(𝐸) is given by the inclusion of 𝐷𝑛 × 𝑆𝑚+ × 𝑆1 into the right-hand side.
Hence, to construct the space Σ𝜉 ∗𝑐𝐸 (resp. Σ̃𝜉 ∗𝑐𝐸), we need to glue the product 𝑆𝑛+𝑚−1 × 𝐷2 to
𝜋∗(𝐸 \ 𝜑𝜉 (𝐷

𝑛 × 𝑆𝑚)) ∪id𝑆𝑛−1×𝑆𝑚− ×𝑆1 (𝐷𝑛 × 𝑆𝑚− × 𝑆1) along the boundary 𝑆𝑛+𝑚−1 × 𝑆1, which, in this
decomposition, is given by

(𝑆𝑛−1 × 𝑆𝑚+ × 𝑆1) ∪id𝑆𝑛−1×𝑆𝑚−1×𝑆1 (𝐷𝑛 × 𝑆𝑚−1 × 𝑆1).

If we now decompose

(𝑆𝑛+𝑚−1 × 𝐷2) � (𝑆𝑛−1 × 𝑆𝑚+ × 𝐷2) ∪id𝑆𝑛−1×𝑆𝑚−1×𝐷2 (𝐷𝑛 × 𝑆𝑚−1 × 𝐷2),
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we obtain that the space Σ𝜉 ∗𝑐𝐸 (resp. Σ̃𝜉 ∗𝑐𝐸) is the result of gluing according to the following diagram,
where the map 𝜙 will be constructed below:

𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝑆𝑚)) 𝐷𝑛 × 𝑆𝑚− × 𝑆1

𝑆𝑛−1 × 𝐷𝑚 × 𝐷2 𝐷𝑛 × 𝑆𝑚−1 × 𝐷2

id𝑆𝑛−1×𝑆𝑚− ×𝑆1

𝜙 |𝑆𝑛−1×𝑆𝑚+ ×𝑆1 𝜙 |𝐷𝑛×𝑆𝑚−1×𝑆1

id𝑆𝑛−1×𝑆𝑚−1×𝐷2

. (5.1)

Here, an arrow denotes gluing of the two spaces it connects along parts of their boundary via the map
indicated.

The map 𝜙 in diagram (5.1) is a self-diffeomorphism of

(𝑆𝑛−1 × 𝑆𝑚+ × 𝑆1) ∪id𝑆𝑛−1×𝑆𝑚−1×𝑆1 (𝐷𝑛 × 𝑆𝑚−1 × 𝑆1) � 𝑆𝑛+𝑚−1 × 𝑆1

defined as follows: For Σ𝜉 ∗𝑐𝐸 , set 𝜙 = id𝑆𝑛+𝑚−1×𝑆1 . For Σ̃𝜉 ∗𝑐𝐸 , let 𝛼 be a smooth representative of a
generator of 𝜋1 (SO(𝑛)) (which is isomorphic to Z/2 if 𝑛 > 2 and to Z if 𝑛 = 2), and set

𝜙(𝑥, 𝑦, 𝜆) = (𝑇𝜆𝑥, 𝑦, 𝜆).

We claim that 𝜙 is the gluing map in the construction of Σ𝜉 ∗𝑐𝐸 (resp. Σ̃𝜉 ∗𝑐𝐸). For Σ𝜉 ∗𝑐𝐸 , this is clear
by construction. For Σ̃𝜉 ∗𝑐𝐸 , note that in the decomposition

𝑆𝑛+𝑚−1 � (𝑆𝑛−1 × 𝑆𝑚+ ) ∪id𝑆𝑛−1×𝑆𝑚−1 (𝐷𝑛 × 𝑆𝑚−1)

the first factor corresponds to the embedding of a tubular neighborhood of 𝑆𝑛−1 ⊆ R𝑛 ⊆ R𝑛+𝑚 into
𝑆𝑛+𝑚−1 ⊆ R𝑛+𝑚−1. Since the inclusion SO(𝑛) ⊆ SO(𝑛+𝑚) induces a surjection on fundamental groups
(and in fact an isomorphism if 𝑛 > 2), it follows that the map 𝜙 represents the nontrivial class in
𝜋1 (SO(𝑛 + 𝑚)).

We now modify diagram (5.1) by noting that the map 𝜙|𝑆𝑛×𝑆𝑚−1×𝑆1 extends over 𝐷𝑛 × 𝑆𝑚− × 𝑆1 as the
identity on the second factor, and we denote the extension again by 𝜙. Hence, we obtain the following
gluing diagram:

𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝑆𝑚)) 𝐷𝑛 × 𝑆𝑚− × 𝑆1

𝑆𝑛−1 × 𝐷𝑚 × 𝐷2 𝐷𝑛 × 𝑆𝑚−1 × 𝐷2

𝜙 |𝑆𝑛−1×𝑆𝑚− ×𝑆1

𝜙 |𝑆𝑛−1×𝑆𝑚+ ×𝑆1 id𝐷𝑛×𝑆𝑚−1×𝑆1

id𝑆𝑛−1×𝑆𝑚−1×𝐷2

. (5.2)

We observe now that gluing according to the right vertical part of diagram (5.2) yields the space

(𝐷𝑛 × 𝑆𝑚− × 𝑆1) ∪id𝐷𝑛×𝑆𝑚−1×𝑆1 (𝐷𝑛 × 𝑆𝑚−1 × 𝐷2) � (𝐷𝑛 × 𝑆𝑚+1),

while gluing according to the left vertical part yields the space

𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝑆𝑚)) ∪𝜙 |𝑆𝑛−1×𝑆𝑚+ ×𝑆1 (𝑆𝑛−1 × 𝐷𝑚 × 𝐷2),
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which can be alternatively written as

𝜋∗(𝐸 \ 𝜑𝜉 (𝐷
𝑛 × 𝑆𝑚)) ∪𝜙 |𝑆𝑛−1×𝑆𝑚+ ×𝑆1 ((𝑆𝑛−1 × 𝑆𝑚 × 𝐷2) \ (𝑆𝑛−1 × 𝑆𝑚− × 𝐷2)).

This space is, by construction, the space 𝐸 (Σ𝑒𝜉) (resp. 𝐸 (Σ̃𝑒𝜉)) with the image of the embedding 𝜄𝜉
(resp. �̃�𝜉 ) removed. It follows that Σ𝜉 ∗𝑒𝐸 (resp. Σ̃𝜉 ∗𝑒𝐸) is obtained from 𝐸 (Σ𝑒𝜉) (resp. 𝐸 (Σ̃𝑒𝜉)) by
surgery along 𝜄𝜉 (resp. �̃�𝜉 ). �

Proposition 5.6. Let 𝐸
𝜉
−→ 𝑆𝑛 be a linear 𝑆𝑚-bundle with 𝑚, 𝑛 ≥ 2. Let 𝑇 : 𝑆𝑛−1 → SO(𝑚 + 1) be the

clutching function of 𝜉, and assume that the image of T is contained in SO(𝑚) ⊆ SO(𝑚 + 1).
1. If 𝑛 > 2, then the manifold Σ0𝐸 (resp. Σ̃0𝐸) is diffeomorphic to the connected sum of 𝐸 (Σ0𝜉) (resp.

𝐸 (Σ̃0𝜉)) and the linear 𝑆𝑚+1-bundle over 𝑆𝑛 with clutching function given by the composition of T
with the inclusion SO(𝑚 + 1) ⊆ SO(𝑚 + 2). In particular, if 𝜉 is trivial, that is, 𝐸 = 𝑆𝑛 × 𝑆𝑚, then
both Σ0𝐸 and Σ̃0𝐸 are diffeomorphic to

(𝑆𝑛+1 × 𝑆𝑚)#(𝑆𝑛 × 𝑆𝑚+1).

2. If 𝑛 = 2, where we have 𝐸 � 𝑆2 × 𝑆𝑚 or 𝐸 � 𝑆2 ×̃ 𝑆𝑚, let 𝑚 ≥ 3 and 𝑒 ∈ 𝐻2 (𝑆2). We denote by d
the divisibility of e. Then

Σ𝜉 ∗𝑒𝐸 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑆2 × 𝑆𝑚+1)#(𝑆3 × 𝑆𝑚), 𝐸 � 𝑆2 × 𝑆𝑚 and 𝑑 is even, or

𝐸 � 𝑆2 ×̃ 𝑆𝑚 and 𝑑 is odd,
(𝑆2 ×̃ 𝑆𝑚+1)#(𝑆3 × 𝑆𝑚), else,

and

Σ̃𝜉 ∗𝑒𝐸 �

{
(𝑆2 × 𝑆𝑚+1)#(𝑆3 × 𝑆𝑚), 𝐸 � 𝑆2 × 𝑆𝑚,

(𝑆2 ×̃ 𝑆𝑚+1)#(𝑆3 × 𝑆𝑚), else.

Proof. (1). By definition, we can decompose the spaces 𝐸 (Σ0𝜉) and 𝐸 (Σ̃0𝜉) as

𝐸 (Σ0𝜉) � (𝐷𝑛 × 𝑆1 × 𝑆𝑚) ∪𝜙1 (𝑆
𝑛−1 × 𝐷2 × 𝑆𝑚) (5.3)

and

𝐸 (Σ̃0𝜉) � (𝐷𝑛 × 𝑆1 × 𝑆𝑚) ∪𝜙2 (𝑆
𝑛−1 × 𝐷2 × 𝑆𝑚), (5.4)

where the diffeomorphisms 𝜙1, 𝜙2 : 𝑆𝑛−1 × 𝑆1 × 𝑆𝑚 → 𝑆𝑛−1 × 𝑆1 × 𝑆𝑚 are given by

𝜙1(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑇𝑥𝑧)

and

𝜙2(𝑥, 𝑦, 𝑧) = (𝛼𝑦𝑥, 𝑦, 𝑇𝑥𝑧).

We further decompose

𝑆𝑛−1 × 𝐷2 × 𝑆𝑚 � (𝑆𝑛−1 × 𝐷2 × 𝑆𝑚+ ) ∪id𝑆𝑛−1×𝐷2×𝑆𝑚−1 (𝑆𝑛−1 × 𝐷2 × 𝑆𝑚− ),

and the embeddings 𝜄𝜉 and �̃�𝜉 are given by the inclusion of the second factor.
Since the image of T is contained in SO(𝑚), we can assume that 𝑇𝑥 preserves 𝑆𝑚− and is given by a

linear map on 𝑆𝑚− when identifying 𝑆𝑚− � 𝐷𝑚. In particular, 𝑇𝑥 fixes the south pole 𝑧𝑆 ∈ 𝑆𝑚− . Further,
we can deform the map 𝛼 to be constant idR𝑛 on 𝑆1

−.
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By isotoping the embeddings 𝜄𝜉 and �̃�𝜉 to the left-hand side of equations (5.3) and (5.4), respectively,
we obtain in both cases the embedding

𝜄 : 𝑆𝑛−1 × 𝐷1 × 𝑆1
− × 𝑆𝑚− ↩→ 𝐷𝑛 × 𝑆1 × 𝑆𝑚, (𝑥, 𝑦1, 𝑦2, 𝑧) ↦→ ((𝑥,

1
2
𝑦1), 𝑦2, 𝑇

−1
𝑥 𝑧),

where we have identified 𝐷2 � 𝐷1 × 𝑆1
− and 𝐷𝑛 as the space obtained from 𝑆𝑛−1 ×𝐷1 = 𝑆𝑛−1 × [−1, 1]

by collapsing 𝑆𝑛−1 × {−1} to a point.
Now, define the map 𝑇 ′ : 𝑆𝑛−1 → SO(𝑚 + 2),

𝑇 ′
𝑥 (𝑦, 𝑧) = 𝑇𝑥𝑧

for 𝑥 ∈ 𝑆𝑛−1, 𝑦 ∈ R2 and 𝑧 ∈ R𝑚. Then, when viewing 𝜄 as a normal framing of an embedding of 𝑆𝑛−1,
modifying the framing by 𝑇 ′ yields a normal framing that extends over an embedded disc. It follows as
in Lemma 4.1 (see, e.g., [42, Lemma 3.8]) that the manifold obtained by surgery along the embedding
𝜄𝜉 , which by Proposition 5.5 is diffeomorphic to Σ0𝐸 , is diffeomorphic to

𝐸 (Σ0𝜉)#((𝐷𝑛 × 𝑆𝑚+1) ∪�̃� ′ (𝐷𝑛 × 𝑆𝑚+1),

where 𝑇 ′ : 𝑆𝑛−1 × 𝑆𝑚+1 → 𝑆𝑛−1 × 𝑆𝑚+1 is defined by 𝑇 ′(𝑥, 𝑦) = (𝑥, 𝑇 ′
𝑥𝑦), and similarly for 𝐸 (Σ̃0𝜉). The

right-hand side is the total space of the linear 𝑆𝑚+1-bundle over 𝑆𝑛 with clutching function 𝑇 ′.
(2). By Proposition 5.5, the manifold Σ𝜉 ∗𝑒𝐸 (resp. Σ̃𝜉 ∗𝑒𝐸) is obtained by surgery on an embedding of

𝑆1 × 𝐷𝑚+2 in 𝐸 (Σ𝑒𝜉) (resp. 𝐸 (Σ̃𝑒𝜉)). The spaces 𝐸 (Σ𝑒𝜉) and 𝐸 (Σ̃𝑒𝜉) are total spaces of linear sphere
bundles over Σ𝑒𝑆

2 and Σ̃𝑒𝑆
2, respectively, which, by Example 5.3, are diffeomorphic to 𝑆3. Since any

linear sphere bundle over 𝑆3 is trivial, both 𝐸 (Σ𝑒𝜉) and 𝐸 (Σ̃𝑒𝜉) are diffeomorphic to 𝑆3 × 𝑆𝑚.
Since 𝑆3 × 𝑆𝑚 is simply connected, it follows from Lemma 4.1 that Σ𝜉 ∗𝑒𝐸 (resp. Σ̃𝜉 ∗𝑒𝐸) is diffeo-

morphic to either (𝑆2 × 𝑆𝑚+1)#(𝑆3 × 𝑆𝑚) (which is spin) or (𝑆2 ×̃ 𝑆𝑚+1)#(𝑆3 × 𝑆𝑚) (which is nonspin).
By Lemma 5.2, we can characterize when Σ𝜉 ∗𝑒𝐸 (resp. Σ̃𝜉 ∗𝑒𝐸) in terms of the Euler class and Stiefel–
Whitney class of E, which yields the different cases as claimed. �

Proof of Theorem B. Item (1) follows from Proposition 3.10 and Lemma 4.1 and items (2) and (3)
follow from Proposition 5.6. �

6. Proof of Theorems C, E and F and Corollaries D, G and H

In this section, we prove Theorems C, E and F and Corollaries D, G and H. First, for the proof of
Theorem C, we show the following more general result.

Theorem 6.1. Let 𝐵𝑛 = 𝐵1#𝐵2, 𝑛 ≥ 5, and let 𝑃 𝜋
−→ 𝐵 be a principal 𝑆1-bundle with primitive Euler

class e. We assume that 𝐵1 is of the form (*) and that 𝐵2 is closed and simply connected. Denote by
𝑒𝑖 the restriction of e to 𝐵𝑖 and by 𝑑𝑖 the divisibility of 𝑒𝑖 . If 𝑏2 (𝐵1) = 1, we additionally assume that
𝑑1 ≡ ±1 mod 𝑑2. Then, we have

𝑃 �

{
�̂�1#Σ𝑒2𝐵2, if 𝐵1 is nonspin,
�̂�1#Σ̃𝑒2𝐵2, if 𝐵1 is spin,

where �̂�1 is of the form (*) with

𝑏𝑖 (�̂�1) =

{
𝑏2 (𝐵1) − 1, 𝑖 = 2, 𝑛 − 2,
𝑏𝑖−1(𝐵1) + 𝑏𝑖 (𝐵1), 2 < 𝑖 < 𝑛 − 2,

and �̂�1 is spin if and only if the restriction of 𝑒1 to each (𝑆2 ×̃ 𝑆𝑛−2)-summand in 𝐵1 has odd divisibility.

https://doi.org/10.1017/fms.2024.141 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.141


24 F. Galaz-García and P. Reiser

Theorem C now follows from Theorem 6.1 by setting 𝐵2 = 𝑆𝑛, in which case Σ0𝐵2 � Σ̃0𝐵2 � 𝑆𝑛+1.
Before we prove Theorem 6.1, we first note the following observation.

Lemma 6.2. A manifold M of the form (*) is uniquely determined (up to diffeomorphism) by its
dimension n, the Betti numbers 𝑏2 (𝑀), . . . , 𝑏 � 𝑛2 �

and whether M is spin or not. Conversely, any sequence
𝑏2, . . . , 𝑏 � 𝑛2 �

∈ N0 with 𝑏 𝑛
2

even if n is even can be realized as the Betti numbers of an n-dimensional
spin manifold of the form (*), and of an n-dimensional nonspin manifold of the form (*) provided 𝑏2 ≥ 1.
Proof. Since

(𝑆2 ×̃ 𝑆𝑛−2)#(𝑆2 × 𝑆𝑛−2) � (𝑆2 ×̃ 𝑆𝑛−2)#(𝑆2 ×̃ 𝑆𝑛−2)

by Corollary 4.2, the information whether M is spin or not is sufficient (together with the Betti numbers)
to determine its diffeomorphism type. All other claims are obvious. �

Proof of Theorem 6.1. Let 𝜉0 ∈ 𝐻2(𝐵2) be a class such that 𝑒2 ⌢ 𝜉0 = 𝑑2. We first assume that
𝑏2 (𝐵1) ≥ 2. Let 𝑘, 𝑙 ∈ Z so that 𝑘𝑑1 + 𝑙𝑑2 = 1 (which exist since e is primitive). Denote by 𝑥∗𝑖 a
generator of the second cohomology of the i-th summand in 𝐵1 that is a sphere bundle over 𝑆2. Then,
by Corollary 4.7, we can apply a self-diffeomorphism of 𝐵1 so that 𝑒1 is given by 𝑘𝑑1𝑥

∗
1 + 𝑑1𝑥

∗
2. Hence,

if we write 𝐵1#𝐵2 as 𝑀#𝑁 , where N is the summand of 𝐵1 with 𝐻2(𝑁) generated by 𝑥∗1 and M is the
connected sum of all remaining summands, we can apply Corollary 4.5 or 4.6 with 𝜉 = 𝑙𝜉0 (and note
that the class 𝑙𝜉0 can be represented by a map 𝑆2 → 𝐵2 by the Hurewicz theorem). Thus, we obtain a
self-diffeomorphism of 𝐵1#𝐵2 that maps e to 𝑥∗1+𝑑1𝑥

∗
2+𝑒2. Hence, the restriction of e to one (𝑆2×𝑆𝑛−2)

or (𝑆2 ×̃ 𝑆𝑛−2)-summand is primitive.
In case 𝑏2(𝐵1) = 1, we obtain the same conclusion by applying Corollary 4.5 or 4.6 to 𝜉 = 𝑙𝜉0,

where here 𝑙 ∈ Z is chosen so that 𝑑1 + 𝑙𝑑2 = ±1.
We now repeatedly apply Theorem A to obtain that P is the connected sum of (𝑆3 × 𝑆𝑛−2) (which

is the total space of the principal 𝑆1-bundle over (𝑆2 × 𝑆𝑛−2) or (𝑆2 ×̃ 𝑆𝑛−2) with Euler class 𝑥∗1) and
twisted suspensions of 𝐵2 along 𝑒2 and of the remaining products of spheres or (𝑆2 ×̃ 𝑆𝑛−2)-summands.
Thus, the claim now follows from Theorem B. �

Remark 6.3. The proof shows that Theorem 6.1 can be generalized to the case where 𝐵2 is not simply
connected if we assume that there exists a homology class 𝜉 ∈ 𝐻2(𝐵2) with 𝑒2 ⌢ 𝜉 = 𝑙𝑑2 that is
represented by a map 𝑆2 → 𝐵2. In this case, 𝑒2 might change within its equivalence class in 𝐻2

𝐹 (𝐵2).
This can be avoided if one assumes that 𝐻1 (𝐵2) is torsion-free so that 𝐻2

𝐹 (𝐵2) � 𝐻2(𝐵2).
Proof of Corollary D. We first consider the case 𝑘 = 1 and assume that M is of the form (*) and its
partial Euler characteristics satisfy the stated conditions. We define the manifold B such that B is of
the form (*), has dimension 𝑛 − 1, is nonspin and has Betti numbers 𝑏𝑖 (𝐵) = (−1)𝑖𝜒𝑖 (𝑀) for all
𝑖 = 2, . . . , � 𝑛−1

2 �. Note that, if 𝑛 − 1 is even, then 𝑏 𝑛−1
2
(𝐵) is even by assumption, so B is well defined

and unique by Lemma 6.2.
Now, let 𝑒 ∈ 𝐻2(𝐵) be a primitive element that satisfies 𝑒 ≡ 𝑤2 (𝐵) mod 2 if and only if M is spin.

We define P as the total space of the principal 𝑆1-bundle over B with Euler class e. By Theorem C, the
manifold P is of the form (*) and satisfies the following conditions:
◦ 𝑏2 (𝑃) = 𝑏2(𝐵) − 1 = 𝜒2(𝑀) − 1 = 𝑏2 (𝑀).
◦ For 2 < 𝑖 < � 𝑛−1

2 �, or 𝑖 = 𝑛−1
2 if 𝑛 − 1 is even, we have

𝑏𝑖 (𝑃) = 𝑏𝑖−1(𝐵) + 𝑏𝑖 (𝐵) = (−1)𝑖−1𝜒𝑖−1(𝑀) + (−1)𝑖𝜒𝑖 (𝑀) = 𝑏𝑖 (𝑀).

◦ If n is even, we have

𝑏 𝑛
2
(𝑃) = 2𝑏 𝑛−2

2
(𝐵) = 2(−1)

𝑛
2 −1𝜒 𝑛

2 −1(𝑀) = 𝑏 𝑛
2
(𝑀),

since 0 = 𝜒(𝑀) = 2𝜒 𝑛
2 −1(𝑀) + (−1) 𝑛

2 𝑏 𝑛
2
(𝑀).
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Since P is spin if and only if M is spin by Lemma 2.3, it follows that P is diffeomorphic to M by
Lemma 6.2. Hence, M admits a free 𝑆1-action with quotient of the form (*).

For general k, we iterate the above argument to obtain a sequence 𝑀 � 𝑃𝑘
𝜋𝑘
−−→ . . .

𝜋1
−−→ 𝑃0 of principal

𝑆1-bundles with Euler classes 𝑒(𝜋𝑖) ∈ 𝐻2 (𝑃𝑖−1), so that each 𝑃𝑖 is of the form (*). Let 𝑒𝑖 ∈ 𝐻2(𝑃0) so
that 𝑒(𝜋𝑖) = 𝜋∗𝑖−1 . . . 𝜋

∗
1𝑒𝑖 , which exists since each 𝑒(𝜋𝑖) is primitive and the induced map on 𝐻2 of each

𝜋𝑖 can be identified with the quotient map by 𝑒𝑖 , by Lemma 2.3. Define P as the principal 𝑇 𝑘 -bundle
with Euler class (𝑒1, . . . , 𝑒𝑘 ). Then, by Lemma 2.2, P is diffeomorphic to 𝑃𝑘 � 𝑀 , showing that M
admits a free 𝑇 𝑘 -action with quotient 𝑃0, which is of the form (*).

Conversely, assume that M admits a free 𝑆1-action with quotient of the form (*). Then M is the total
space of a principal 𝑆1-bundle with base B of the form (*) and it follows inductively from Theorem C
that 𝑏𝑖 (𝐵) = (−1)𝑖𝜒𝑖 (𝑀) for 𝑖 = 2, . . . , � 𝑛−1

2 �, which is nonnegative since 𝑏𝑖 (𝐵) ≥ 0. Further, by
Lemma 6.2, we have that (−1) 𝑛−1

2 𝜒 𝑛−1
2
(𝑀) is even when 𝑛−1 is even, and, since 𝑏 𝑛

2
(𝑀) = 2𝑏 𝑛

2 −1(𝐵) =

(−1) 𝑛
2 −1𝜒 𝑛

2 −1 (𝑀) if n is even, it also follows that 𝜒𝑛 (𝑀) = 0 if n is even. The statement for general k
now follows by induction. �

To prove Theorem E, we first prove the following lemmas.

Lemma 6.4. Let 𝐸
𝜉
−→ 𝑆2 be a complex vector bundle of rank 𝑟 +1, and let 𝑃(𝐸) → 𝑆2 be the associated

projective bundle, that is, 𝑃(𝐸) consists of all complex one-dimensional subspaces of fibers in E, so we
obtain a fiber bundle with fiber C𝑃𝑟 . Let 𝑃 → 𝑃(𝐸) denote the sphere bundle of the tautological line
bundle over 𝑃(𝐸). Then

𝑃 �

{
𝑆2 × 𝑆2𝑟+1, if 𝑐1 (𝜉) is even,
𝑆2 ×̃ 𝑆2𝑟+1, if 𝑐1 (𝜉) is odd.

Proof. By definition, the total space of the sphere bundle 𝑆(𝑇) → 𝑃(𝐸) of the tautological line bundle
𝑇 → 𝑃(𝐸) is given by

𝑆(𝑇) = {(𝑣, 𝜑) ∈ 𝐸 × 𝑃(𝐸) | 𝑣 ∈ 𝜑, ‖𝑣‖ = 1}.

By projection onto the first coordinate, we obtain an identification of 𝑆(𝑇) with the total space 𝑆(𝐸) of
the sphere bundle of 𝜉. Since 𝑤2 (𝜉) = 𝑐1(𝜉) mod 2, the claim follows. �

Lemma 6.5. There exists a linear 𝑆𝑟 -bundle 𝐸 → C𝑃𝑚, 𝑟 ≥ 2, with the following properties:

1. The total space E is spin if and only if m is even.
2. If 𝑃 → 𝐸 denotes the principal 𝑆1-bundle, whose Euler class is given by the pull-back of a generator

of 𝐻2(C𝑃𝑚), then 𝑃 � 𝑆2𝑚+1 × 𝑆𝑟 .

Proof. We define 𝐸
𝜋
−→ C𝑃𝑚 as the sum of the tautological line bundle with the trivial bundle R𝑟−1

C𝑃𝑚 .
Then 𝑤2 (𝜋) is nontrivial (see, e.g., [32, Theorem 14.4]). If 𝐸 → C𝑃𝑚 denotes the corresponding sphere
bundle, we have 𝑇𝐸 ⊕ R𝐸 � 𝜋∗𝑇C𝑃𝑚 ⊕ 𝜋∗𝐸 , cf. Lemma 2.11. Hence, 𝑤2 (𝐸) is trivial if and only if
𝑤2 (C𝑃

𝑚) is nontrivial, which is the case if and only if m is even.
By construction, the bundle 𝑃 → 𝐸 fits into the following pull-back diagram:

𝑃 𝑆2𝑚+1

𝐸 C𝑃𝑚

.

Here, 𝑆2𝑚+1 → C𝑃𝑚 denotes the Hopf fibration (i.e., the principal 𝑆1-bundle whose Euler class is a
generator of 𝐻2 (C𝑃𝑚)). It follows that 𝑃 → 𝑆2𝑚+1 is a linear 𝑆𝑟 -bundle. Since the structure group of
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this bundle is contained in SO(2) � 𝑆1 and since 𝑆1 has trivial higher homotopy groups, this bundle is
trivial, so 𝑃 � 𝑆2𝑚+1 × 𝑆𝑟 . �

Proof of Theorem E. Let 𝐸 (𝑚, 𝑟) denote the total space of the linear 𝑆𝑟 -bundle over C𝑃𝑚 from
Lemma 6.5. We then set

𝐸𝑟
𝑚 =

{
C𝑃𝑚 × 𝑆𝑟 , 𝑚 odd,
𝐸 (𝑚, 𝑟), 𝑚 even,

and 𝐸𝑟
𝑚 =

{
𝐸 (𝑚, 𝑟), 𝑚 even,
C𝑃𝑚 × 𝑆𝑟 , 𝑚 odd

so that 𝐸𝑟
𝑚 is spin and 𝐸𝑟

𝑚 is nonspin, and the principal 𝑆1-bundle over 𝐸𝑟
𝑚 or 𝐸𝑟

𝑚 whose Euler class is
the pull-back of a generator of 𝐻2 (C𝑃𝑚) has total space 𝑆2𝑚+1 × 𝑆𝑟 .

(1). We define

𝐵 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
#𝑙C𝑃

𝑛−1
2

)
#
(
#

𝑛−3
2

𝑖=1 #𝑏2𝑖+1 (𝑀 )𝐸
𝑛−2𝑖−1
𝑖

)
, 𝑛 ≡ 3 mod 4,(

#𝑙C𝑃
𝑛−1

2

)
#
(
#

𝑛−3
2

𝑖=1 #𝑏2𝑖+1 (𝑀 )𝐸
𝑛−2𝑖−1
𝑖

)
, 𝑛 ≡ 1 mod 4

for some 𝑙 ≥ 0. Let 𝑒 ∈ 𝐻2(𝐵) be a class that restricts to a generator of 𝐻2(C𝑃
𝑛−1

2 ) on each C𝑃 𝑛−1
2 -

summand and to the pull-back of a generator of 𝐻2(C𝑃𝑖) on each 𝐸
𝑗
𝑖 and 𝐸

𝑗
𝑖 -summand. Then, for the

principal 𝑆1-bundle 𝑃 → 𝐵 with Euler class e, we have by Theorems A and B and Lemma 6.5 (note
that the summands of B are either all spin or all nonspin)

𝑃 � #𝑎 (𝑆2 × 𝑆𝑛−2)#
𝑛−3

2
𝑖=1 #𝑏2𝑖+1(𝑀 )

(𝑆2𝑖+1 × 𝑆𝑛−2𝑖−1),

where 𝑎 = 𝑙 − 1 +
∑ 𝑛−5

2
𝑖=1 𝑏2𝑖+1(𝑀). Thus, since 𝑏2𝑖+1(𝑀) = 𝑏𝑛−2𝑖−1(𝑀), we have for 3 ≤ 𝑖 ≤ 𝑛−1

2 , that
𝑏𝑖 (𝑃) = 𝑏𝑖 (𝑀). Hence, if M is spin, it becomes diffeomorphic to P after connected sum with sufficiently
many copies of (𝑆2 × 𝑆𝑛−2) and by choosing l large enough.

For the nonspin case or the case where M is spin and we take connected sums with copies of
(𝑆2 ×̃ 𝑆𝑛−2), we replace one 𝐸

𝑗
𝑖 -summand in B by 𝐸

𝑗
𝑖 or vice versa, provided there is a nontrivial

summand of this form. Then P has a summand of the form (𝑆2 ×̃ 𝑆𝑛−2), hence the claim follows for l
large enough by Corollary 4.2. If there exists no such summand, we additionally introduce a summand
for B given by 𝐸2

𝑛−3
2

#𝐸2
𝑛−3

2
, which results in an additional summand for P given by #4 (𝑆

2 ×̃ 𝑆𝑛−2).
(2). We consider each dimension separately. First, note that the result in dimension 5 was shown in

[11, Corollary 2] by proving that any 5-manifold of the form (*) is the total space of a principal circle
bundle over a closed, simply connected 4-manifold. The six-dimensional case follows directly from
Corollary D (see also [7, Corollary B] and [10, Theorem C]).

For dimensions 7–10, we summarize in Table 1 how the base manifold B in each case is given. One
then easily verifies, using Theorems A and B, that the total space of the principal circle bundle over B
with suitable Euler class e is diffeomorphic to M. By 𝑃(𝐸) we denote the total space of a projective
bundle of a vector bundle with odd first Chern class of appropriate dimension (cf. Lemma 6.4). The
Euler class e will always be the pull-back of a generator of 𝐻2(C𝑃𝑖) on each summand of the form 𝐸

𝑗
𝑖 ,

the Euler class of the tautological line bundle over 𝑃(𝐸) and a generator of the second cohomology on
each summand of the form 𝑆2 × 𝑆𝑛−2 and 𝑆2 ×̃ 𝑆𝑛−2. �

We now show that the additional assumption in the nine-dimensional case in Theorem E cannot be
removed in general.

Proposition 6.6. The manifold #2𝑝+1(𝑆
3 × 𝑆6) does not admit a free circle action for any 𝑝 > 0.

Proof. Suppose there exists a principal 𝑆1-bundle 𝑃
𝜋
−→ 𝐵 with 𝑃 � #2𝑝+1(𝑆

3 × 𝑆6). Then B is a closed
8-manifold, and, by the long exact sequence of homotopy groups for the bundle 𝜋, the manifold B is
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Table 1. Manifolds M of the form (*) and quotient manifold B of a free circle action on M..

Manifold M, 𝑛 = dim(𝑀 ) Base manifold B

n 𝑤2 𝑏2 𝑏3 𝑏4 𝑏5 condition

7 0 p q q even #𝑝+1C𝑃
3# 𝑞

2
(𝑆3 × 𝑆3)

0 p q q odd (𝑆2 × 𝑆4)#𝑝C𝑃
3# 𝑞−1

2
(𝑆3 × 𝑆3)

1 p q 𝑞 ≥ 2 even, 𝑝 ≥ 1 (𝑆2 ×̃ 𝑆4)#(𝑆2 × 𝑆4)#𝑝−1C𝑃
3# 𝑞−2

2
(𝑆3 × 𝑆3)

1 p q q odd, 𝑝 ≥ 1 (𝑆2 ×̃ 𝑆4)#𝑝C𝑃
3# 𝑞−1

2
(𝑆3 × 𝑆3)

1 p 0 𝑝 > 1 𝐸2
2 #𝑝−1C𝑃

3

1 1 0 𝑃 (𝐸)

8 0 p q 2𝑟 𝑝 + 𝑟 + 1 = 𝑞 #𝑝+1 (𝑆
2 × 𝑆5)#𝑟 (𝑆3 × 𝑆4)

1 p q 2𝑟 𝑝 + 𝑟 + 1 = 𝑞 (𝑆2 ×̃ 𝑆5)#𝑝 (𝑆
2 ×̃ 𝑆5)#𝑟 (𝑆3 × 𝑆4)

9 0 p q r 𝑞 > 0, #𝑝+1−𝑎C𝑃
4#𝑎 (𝑆

2 ×̃ 𝑆6)#𝑏 (𝑆3 × 𝑆5)# 𝑟−𝑏
2
(𝑆4 × 𝑆4)

1 + 𝑝 + 𝑟 ≥ 𝑞 for 𝑎 + 𝑏 = 𝑞, 𝑎 ≤ 𝑝 + 1, 𝑏 ≤ 𝑟 , 𝑟 − 𝑏 even
0 q 0 r r even #𝑝+1C𝑃

4# 𝑟
2
(𝑆4 × 𝑆4)

0 p 0 r r odd 𝐸4
2 #𝑝C𝑃

4# 𝑟−1
2
(𝑆4 × 𝑆4)

1 p q r 𝑝 > 0, 𝑞 > 1, #𝑝+1−𝑎C𝑃
4#𝑎 (𝑆

2 × 𝑆6)#𝑏 (𝑆3 × 𝑆5)# 𝑟−𝑏
2
(𝑆4 × 𝑆4)

1 + 𝑝 + 𝑟 ≥ 𝑞 for 𝑎 + 𝑏 = 𝑞, 1 ≤ 𝑎 ≤ 𝑝 + 1, 𝑏 ≤ 𝑟 , 𝑟 − 𝑏 even
1 p 1 r 𝑝 > 0, r even #𝑝C𝑃

4#(𝑆2 × 𝑆6)# 𝑟
2
(𝑆4 × 𝑆4)

1 p 1 r 𝑝 > 0, r odd #𝑝−1C𝑃
4#(𝑆2 ×̃ 𝑆6)#𝐸4

2 # 𝑟−1
2
(𝑆4 × 𝑆4)

1 p 0 r 𝑝 > 0, 𝑟 ≥ 2 even 𝐸4
2 #𝐸4

2 #𝑝−1C𝑃
4# 𝑟−2

2
(𝑆4 × 𝑆4)

1 p 0 r 𝑝 > 0, r odd 𝐸4
2 #𝑝C𝑃

4# 𝑟−1
2
(𝑆4 × 𝑆4)

1 p 0 0 𝑝 > 1 𝐸2
3 #𝑝−1C𝑃

4

1 1 0 0 𝑃 (𝐸)

10 0 p q r 2𝑠 𝑝 + 𝑟 + 1 = 𝑞 + 𝑠, #𝑞 (𝑆2 × 𝑆7)#𝑟 (𝑆4 × 𝑆5)#𝑠−𝑟𝐸5
2

𝑠 ≥ 𝑟
0 p q r 2𝑠 𝑝 + 𝑟 + 1 = 𝑞 + 𝑠, #𝑝+1 (𝑆

2 × 𝑆7)#𝑟−𝑠 (𝑆3 × 𝑆6)#𝑠 (𝑆4 × 𝑆5)
𝑠 < 𝑟

1 p q r 2𝑠 𝑝 + 𝑟 + 1 = 𝑞 + 𝑠, (𝑆2 ×̃ 𝑆7)#𝑞−1 (𝑆
2 ×̃ 𝑆7)#𝑟 (𝑆4 × 𝑆5)#𝑠−𝑟𝐸5

2
𝑠 ≥ 𝑟 , 𝑝, 𝑞 > 0

1 p q r 2𝑠 𝑝 + 𝑟 + 1 = 𝑞 + 𝑠, (𝑆2 × 𝑆7)#𝑝 (𝑆
2 ×̃ 𝑆7)#𝑟−𝑠 (𝑆3 × 𝑆6)#𝑠 (𝑆4 × 𝑆5)

𝑠 < 𝑟 , 𝑝 > 0
1 p 0 r 2𝑠 𝑝 + 𝑟 + 1 = 𝑠, #𝑟 (𝑆4 × 𝑆5)#𝐸5

2 #𝑠−𝑟−1𝐸
5
2

𝑝 > 0

simply connected. Then, by the Gysin sequence, cup product with the Euler class · ⌣ 𝑒(𝜋) : 𝐻𝑖 (𝐵) →
𝐻𝑖+2(𝐵) is an isomorphism for 𝑖 = 0, 3, 6, injective for 𝑖 = 4 and surjective for 𝑖 = 2. In particular,
𝐻2 (𝐵) � 𝐻6(𝐵) � Z and 𝐻4(𝐵) is either trivial or isomorphic to Z, in particular torsion-free. By using
Poincaré duality and the universal coefficient theorem, it follows that B has torsion-free cohomology.

From the Gysin sequence, we can now extract the following exact sequence:

0 −→ 𝐻3(𝐵)
𝜋∗

−−→ 𝐻3 (𝑃) −→ 𝐻2(𝐵)
·⌣𝑒 (𝜋)
−−−−−−→ 𝐻4(𝐵) −→ 0.

It follows that, depending on whether 𝐻4(𝐵) is trivial or isomorphic to Z, 𝐻3(𝐵) is isomorphic to Z2𝑝

or Z2𝑝+1. We now show that only the latter can be the case.
For that, let 𝑥 ∈ 𝐻3(𝐵) and 𝑦 ∈ 𝐻5(𝐵) with 𝑥 ⌣ 𝑦 ≠ 0, which exist by Poincaré duality (here,

we use 𝑝 > 0). Since · ⌣ 𝑒(𝜋) : 𝐻3(𝐵) → 𝐻5 (𝐵) is an isomorphism, there exists 𝑦′ ∈ 𝐻3(𝐵) with
𝑦 = 𝑦′ ⌣ 𝑒(𝜋). In particular, 𝑥 ⌣ 𝑦′ ≠ 0. Since 𝜋∗𝑥 ⌣ 𝜋∗𝑦′ = 0 (as P has trivial cup products in
degree 3), by exactness of the Gysin sequence, there exists 𝑧 ∈ 𝐻4 (𝐵) with 𝑧 ⌣ 𝑒(𝜋) = 𝑥 ⌣ 𝑦′ ≠ 0. In
particular, 𝐻4 (𝐵) is nontrivial, so 𝐻4(𝐵) � Z and 𝐻3(𝐵) � Z2𝑝+1.

By Poincaré duality and since · ⌣ 𝑒(𝜋) : 𝐻6(𝐵) → 𝐻8(𝐵) is an isomorphism, the cup product
𝐻3 (𝐵) × 𝐻3 (𝐵) → 𝐻6(𝐵) � Z is a nondegenerate skew-symmetric bilinear form. In particular, 𝐻3 (𝐵)
has even rank, which is a contradiction. �
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Theorem F is a direct consequence of the following theorem. Recall that we define 𝑎𝑘𝑖 (𝑟) for 𝑟, 𝑘 ∈ N0
and 2 ≤ 𝑖 ≤ 𝑘 + 2 by

𝑎𝑘𝑖 (𝑟) = (𝑖 − 2)
(

𝑘

𝑖 − 1

)
+ 𝑟

(
𝑘

𝑖 − 2

)
+ (2 + 𝑘 − 𝑖)

(
𝑘

𝑖 − 3

)
.

Theorem 6.7. Let P be the total space of a principal 𝑇 𝑘 -bundle over a closed, simply connected
4-manifold B, and denote by 𝑒(𝜋) = (𝑒1 (𝜋), . . . , 𝑒𝑘 (𝜋)) ∈ 𝐻2(𝐵)𝑘 its Euler class. If P is simply
connected, or, equivalently, 𝑒(𝜋) can be extended to a basis of 𝐻2(𝐵), then P is of the form (*) with
𝑏𝑖 (𝑃) = 𝑎𝑘𝑖 (𝑏2 (𝐵) − 𝑘) and P is spin if and only if 𝑤2 (𝐵) is contained in the subspace of 𝐻2(𝐵,Z/2)
generated by 𝑒(𝜋) mod 2.

Proof. The claims on simply connectedness and the spin condition follow from Lemmas 2.3 and 2.5.
By Lemma 2.2, the bundle 𝜋 can be decomposed into a sequence of principal 𝑆1-bundles, which, by
Lemma 2.3, all have simply connected total space. We now proceed by induction.

The case 𝑘 = 1 is a consequence of the classification of closed, simply connected 5-manifolds by
Smale [45] and Barden [2] and was treated by Duan and Liang [11]. Now, assume that 𝐵𝑛 is a manifold
of the form (*) with 𝑏𝑖 (𝐵) = 𝑎𝑘𝑖 (𝑟) for some 𝑟 ∈ N, and let 𝑃 𝜋

−→ 𝐵 be a principal 𝑆1-bundle with P
simply connected. Then, by Theorem C, the manifold P is also of the form (*) and we have

𝑏2 (𝑃) = 𝑏2(𝐵) − 1 = 𝑟 − 1 = 𝑎𝑘+1,2 (𝑟 − 1)

and

𝑏𝑖 (𝑃) = 𝑏𝑖−1(𝐵) + 𝑏𝑖 (𝐵) = 𝑎𝑘,𝑖−1 (𝑟) + 𝑎𝑘,𝑖 (𝑟)

= (𝑖 − 3)
(

𝑘

𝑖 − 2

)
+ 𝑟

(
𝑘

𝑖 − 3

)
+ (3 + 𝑘 − 𝑖)

(
𝑘

𝑖 − 4

)
+ (𝑖 − 2)

(
𝑘

𝑖 − 1

)
+ 𝑟

(
𝑘

𝑖 − 2

)
+ (2 + 𝑘 − 𝑖)

(
𝑘

𝑖 − 3

)
= (𝑖 − 2)

(
𝑘 + 1
𝑖 − 1

)
−

(
𝑘

𝑖 − 2

)
+ 𝑟

(
𝑘 + 1
𝑖 − 2

)
+ (3 + 𝑘 − 𝑖)

(
𝑘 + 1
𝑖 − 3

)
−

(
𝑘

𝑖 − 3

)
= (𝑖 − 2)

(
𝑘 + 1
𝑖 − 1

)
+ (𝑟 − 1)

(
𝑘 + 1
𝑖 − 2

)
+ (3 + 𝑘 − 𝑖)

(
𝑘 + 1
𝑖 − 3

)
= 𝑎𝑘+1,𝑖 (𝑟 − 1).

for 2 < 𝑖 < 𝑛 − 2. �

Proof of Theorem F. If M is a closed, simply connected n-manifold with a free action of the torus 𝑇𝑛−4,
then, by taking the quotient 𝐵 = 𝑀/𝑇𝑛−4, we obtain a principal 𝑇𝑛−4-bundle over the simply connected
4-manifold B with total space M. Hence, we can apply Theorem 6.7.

Conversely, by Theorem 6.7 any n-manifold M of the form (*) with 𝑏𝑖 (𝑀) = 𝑎𝑛−4,𝑖 (𝑏2 (𝑀)) is the
total space of a principal 𝑇𝑛−4-bundle over

𝐵 = #𝑏2 (𝑀 )+𝑛−4C𝑃
2

(or any other closed, simply connected nonspin 4-manifold B with 𝑏2 (𝐵) = 𝑏2 (𝑀) + 𝑛 − 4) with Euler
class 𝑒 ∈ 𝐻2(𝐵)𝑛−4 that can be extended to a basis of 𝐻2 (𝐵) and so that 𝑤2 (𝐵) is contained in the
subspace generated by 𝑒 mod 2 if and only if M is spin. �

Remark 6.8. Note that a closed, simply connected n-manifold M with 𝑛 ≥ 4 cannot admit a free action
of a torus 𝑇 𝑘 with 𝑘 > 𝑛 − 4. To see this, assume that such an action exists. Then, by dividing out a
subtorus of dimension 𝑛 − 4, we obtain a free action of 𝑇𝑛−4−𝑘 on the simply connected 4-manifold
𝑀/𝑇𝑛−4. However, a simply connected 4-manifold has positive Euler characteristic, thus admitting no
free torus action by Lemma 2.1.
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Proof of Corollary G. First, suppose that such an action exists. By taking the quotient of M by the
free subaction of cohomogeneity 6, we obtain a closed, simply connected 6-manifold 𝑀/𝑇𝑛−6 with an
effective action of 𝑇4. By the classification of Oh [34], the manifold 𝑀/𝑇𝑛−6 is of the form (*) and the
Betti numbers satisfy the assumptions of Theorem F. Hence, there exists a free 𝑇2-action on 𝑀/𝑇𝑛−6.
By the lifting results of [21, 47], M therefore admits a free 𝑇𝑛−4-action, and the claim follows from
Theorem F.

Conversely, if M is of the form (*) with 𝑏𝑖 (𝑀) = 𝑎𝑘𝑖 (𝑏2 (𝑀)) for all 2 ≤ 𝑖 ≤ 𝑛 − 2, then,
by Theorem 6.7, M is the total space of a principal 𝑇𝑛−4-bundle over 𝐵 = #𝑏2 (𝑀 )+𝑛−4C𝑃

2. By the
classification of closed, simply connected 4-manifolds with an effective𝑇2-action by Orlik and Raymond
[37], B admits an effective𝑇2-action. Hence, by the lifting results of [21, 47], M admits a cohomogeneity-
2 torus action that contains a free subaction of cohomogeneity 4; in particular it contains a free subaction
of cohomogeneity 6. �

We note that it follows from the proof of Corollary G that, if M admits a cohomogeneity-two torus
action that contains a free subaction of cohomogeneity six, then M also admits a (possibly different)
cohomogeneity-two torus action with a free subaction of cohomogeneity four.

Remark 6.9. Note that not all cohomogeneity-two actions of 𝑇𝑛−2 on a closed, simply connected
n-manifold M admit a free subaction of cohomogeneity six. Indeed, if every involution of 𝑇𝑛−2 is
contained in one of the isotropy subgroups of the action, every𝑇1-subgroup of𝑇𝑛−2 necessarily intersects
nontrivially with an isotropy subgroup. Such an action can for example be constructed as follows:

Let 𝐴 = {0, 1}𝑛−2 \ {0}, and consider a (2𝑛−2 − 1)-gon, where each edge is labeled by one of the
vectors in A so that each element of A appears precisely once. It is easily verified that this is a legally
weighted orbit space in the sense of [15, Section 2], and therefore defines closed, simply connected n-
manifold M with a cohomogeneity-two torus action for which 𝑇1 (𝑣) appears as an isotropy subgroup for
all 𝑣 ∈ 𝐴, where 𝑇1 (𝑣) is the circle in 𝑇𝑛−2 with slope v. Hence, by construction, all involutions of 𝑇𝑛−2

are contained in an isotropy subgroup. We thank Lee Kennard and Lawrence Mouillé for providing this
example.

Proof of Corollary H. We use the core metric construction introduced by Burdick [4] to construct a
metric of positive Ricci curvature on each quotient manifold. By [4, Theorem C], [5, Theorem B] and
[41, Theorem C], spheres, complex projective spaces and total spaces of linear sphere bundles over
spheres and complex projective spaces admit core metrics, where in the latter case the dimension is
at least 6. Hence, by [4, Theorem B], any finite connected sum of such manifolds admits a metric of
positive Ricci curvature. In dimension 5, it was shown by Sha and Yang [44, Theorem 1], that any
5-manifold of the form (*) admits a metric of positive Ricci curvature. Finally, by a classical result of
Nash [33, Theorem 3.5], projective bundles over spheres admit metrics of positive Ricci curvature.

Hence, for each manifold M appearing in Corollaries D and G and in Theorems E and F, and for the
free torus action considered in the proof of the corresponding result, the quotient admits a metric of
positive Ricci curvature. Hence, M is the total space of a principal torus bundle over a manifold with
a metric of positive Ricci curvature. Since M is simply connected, it follows from the lifting result of
Gilkey–Park–Tuschmann [16], that M admits a metric of positive Ricci curvature that is invariant under
the corresponding torus action. �
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