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A Determinantal Inequality Involving
Partial Traces

Minghua Lin

Abstract. Let A be a density matrix in M, ® M. Audenaert [J. Math. Phys. 48(2007) 083507]
proved an inequality for Schatten p-norms:

L+ |Alp 2 [ TriAllp + | T2 Aflp,
where Tr; and Tr, stand for the first and second partial trace, respectively. As an analogue of his
result, we prove a determinantal inequality

1+detA > det(Tr; A)™ + det(Trp A)".

1 Introduction

We denote by M, the set of n x n complex matrices. The tensor product M,, ® M, is
identified with the space M,,, (M, ), the set of m x m block matrices with each block in
M,. Each element of M, (M, ) is also regarded as an mn x mn matrix with numerical
entries. By convention, the n x n identity matrix is denoted by I,,; we use J,, to denote
the n x n matrix with all entries equal to one.

In the sequel, a positive (semidefinite) matrix A is denoted by A > 0. For two
Hermitian matrices A, B of the same size, A > B means A - B > 0.

For any A € M, (M,,), we can write A = Z?:l X; ® Y; for some positive integer
g < m? and some X; € Ml,,, Y; € Ml,, i = 1,...,q. We can define two partial traces
Tr; and Tr,:

9 q
TrA =Y (TrX;)Y;, Tro A=) (TrY;)X;,
i=1 i=1

where Tr stands for the usual trace. In other words, the first partial trace Tr; “traces
out" the first factor and similarly for the second partial trace Tr,. Clearly,

Tr(Tr; A)B = Tr(I,, ® B)A, forany B e M,;
Tr(Tr, A)C =Tr(C®I,)A, forany C e M,,.

The actual forms of the partial traces are as follows (see [8, p. 12]):

m
TrlA:ZAi,i, TrzA: [TrA,-,j]m

i,j=1-
i=1
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A density matrix on a bipartite system (see [8, pp. 4, 53]) is a positive semidefi-
nite matrix in M,,, ® M,, with trace equal to one. Audenaert [1] recently proved an
interesting norm inequality.

Theorem 1.1 ([1, Theorem1]) Let A € M,,,(M,,) be a density matrix. Then
(11) 1+ |Afp > [ TriAfp + | Tr2 Al p,

where || - ||, denotes the Schatten p-norm.

Inequality (1.1) was called out to prove the subadditivity of the so-called Tsallis
entropies; see [1] for more details. In this paper, as an analogue of (1.1), we prove the
following determinantal inequality.

Theorem 1.2 Let A € M,,,(M,,) be a density matrix. Then
(1.2) 1+ detA > det(Tr; A)™ + det(Tr, A)".

2 Auxiliary Results and Proofs

A linear map ©: M,, — M, is positive if it maps positive matrices to positive matrices.
Alinear map ®: M, —~ M is called m-positive if for [A;,;]7"_; € M, (M),

(2.1) [Ai)j]zlj=1 2 0 — [(D(Al,])] i,j:1 Z 03

and ® is completely positive if (2.1) is true for any positive integer .
On the other hand, a linear map ®:M,, — M, is m-copositive if

(2.2) [l 2 0= [®(4;)] >0,

i,j=1 —
and @ is completely copositive if (2.2) is true for any positive integer m.
We need the following result.

Proposition 2.1  The map ©:M,, > M, defined by ®(X) = (Tr X)I,,— X is completely
copositive.

Proof One may of course use the approach in [7] to prove this. Here we invoke a
standard tool by Choi [4]. It suffices to prove that for any positive integer m ,

[CD(E]-,,-)] :’jjzl 20,

where E; ; € M, is the matrix with 1 in the (i, j)-entry and 0 elsewhere. But
[®(E ]-,,')]lf’szl is symmetric, row diagonally dominant with positive diagonal entries,
implying
m
[®(E0] ., >0 n

The reader may easily observe that ®(X) = (Tr X)I,, — X is not 2-positive (see [3]).

In the proof of the next proposition, we only use the fact that ®(X) = (Tr X)I, - X
is 2-copositive. Proposition 2.2, first proved by Ando [2], plays a key role in our
derivation of (1.2). We provide a proof here for the convenience of readers. Our proof
is slightly more transparent than the original proof by Ando.
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Proposition 2.2 Let A = [A;;]7";_, € M, (M) be positive. Then
(TrA), @I, +A>1, ®(Tr;A) + (Tr A) ® I,.

Proof The proof is by induction on m. When m = 1, there is nothing to prove. We
prove the base case m = 2 first. In this case, the required inequality is

(TrA)I, 0 ) (A Az),
0 (TrA)I, Ay Azn)
A1,1+A2)2 0 + (TI'A]yl)In (TrAl)z)In
0 A+ Ay, (TrAs), (TrAsn)I,)°

or equivalently,

(TI'Azz)In—Azz AIZ_(TrAIZ)In
2.3 H:= ’ ’ : ’ > 0.
( ) ( A2,1 - TrAz,l)In (TrAl,l)I,, - Al,l

By Proposition 2.1,

(TI'ALI)I” _Al,l (TI‘AZ’])I,/, _A2,1 >0
(TI'A])z)In — A1,2 (TI'Az,z)In — A2)2 -

and so

H- 0 —In (TI'A]J)I,, — Al,l (TI'AZJ)I,, — A2,1 0 In >0
In 0 (TI'Al’z)In - A1,2 (TI'AZ’z)In - Az’z — -

confirming (2.3).
Suppose the result is true for m = k —1 > 1. When m = k,

Ii=(TrA) [ @I, +A-I; ® (Tr; A) + (T, A) ® I,,.
k k r
(T Ao L+ A-Leo (Y Ay) - ([Trall L) @,
i=1 j=1
S (Tr AL

Zi-:ll(TrAi,i)In

0

—(TrAk,k)In

+
(TrAg )1,

L Z?:I(TrAi,i)In

[ A;; 0 A 0 0 - 0 Ak
+ . B . + : : :

Arayg 0 Agcpkaa O 0o - 0 Ak_ik

| O 0 0 A 0 Akl Ak
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(S Ay Agk

- ZZF;]lAi,i - Ak k
| 0 S A
[ (TrAl,l)In (TrAl,k—l)In 0

B (TI'Ak,l’l)In (TrAk,l)k,l)In 0
| 0 0 0
[ 0 0 (TrApx))I,

B 0 0 (TrAx_1) I |
_(TI‘Ak’l)In (TI‘Ak’k_l)In (TI‘Ak,k)In

After some rearrangement, we have I' = P + Q, where

k-1
k- P .
> 1(TrAzl)In Ay Ajka 0
P:: . + M N :
YN (T A, Ag11 o Agrk-r O
0 0 0 0
Zi:llAi,i (TrAy)L, - (TrAy-)l, 0
- YE L A | (T AL o (TrAie-)I, 0
0 0 0 0
and
(TrAk,k)In
Q:= (Tr Ag )1,
YE (TrA; )L
[ 0 0 Al,k Akk
] : : B -
0o - 0 Ak 1k Ak k
| A1 o Agkor Ak YK AL
[ 0 0 (TrApp)) I,
- 0 0 (Tr Ag-1,6) I
_(TI'Ak,l)In (TrAk,k—l)In (TI'Ak’k)In

(TI‘Ak’k)In — Ak,k Al,k - (TrAl,k))I"

- (TrAki)n = Ak Apk = (TrAg i) I
(TrA)L - (TrAge ) S ((Trag) T - )

Now by induction hypothesis, P > 0. It remains to show that Q > 0.
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It is easy to see that Q can be written as a sum of k —1 matrices with each summand
*-congruent to

N (TrAg )L — Ak Aik— (TrA; )1,

H;:= ,
! Ak,i — (TI'Ak),')In (TI'A,‘,I')In —A,‘,i

=1,..., k-1

Just as in the proof of the base case, we infer that H; > O forall i = 1,...,k - L
Therefore, Q > 0, thus the proof of induction step is complete. ]

The next corollary is known as a Cauchy-Khinchin matrix inequality in the liter-
ature (see [9, Theorem 1]). Here we present a simple proof using Proposition 2.2.

Corollary 2.3 Let X = (x;;) be a real m x n matrix. Then

(iixij)ermniZT;jZ:xfj > mZ(;xU) +nzn:(ix,-j) .

i=1 j=1

Proof LetvecX = [Xi1,.. X155 X215+ ++5X2m> > Xmls+-+>Xmn] . De a vectorization
of X. Then a simple calculation gives

Il
—
-

|
—_

m n
(vecX) (I, ® I,,) vec X = (vec X) T vec X = lelxizj,
i=1 j=

(vecX)T (1, ® J,,) vec X = i(ixij)z,

(VecX)T(]m®In)vecX:‘ (ixij) .

Thus the desired inequality is equivalent to
(2.4) (vecX) T (Jn ® Jp + mnly ® I, = mly ® I — 1)y ® I,) vec X > 0.
Setting A = J,, ® ], in Proposition 2.2 yields
Jmn®Jp+mnl, @1, -ml, ®J,—nJ, ®I, >0,
and so (2.4) follows. [ |

We require one more result for our purpose.

Proposition 2.4 Let X,Y,W,Z € Mg be positive. If X+Y > W+ Z, X > W, and
X > Z, then

(2.5) detX +detY >det W +detZ.
Proof Without loss of generality, assume that X = I, (for we can assume first X

is invertible by a standard continuity argument, then pre-post multiply all matrices
by X~/2). After this, by a unitary similarity, we can further assume that Y = D, a
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diagonal matrix. Thus, we need to show thatif I, + D> W+ Zand I, > W,Z > 0,
then

(2.6) 1+detD > det W + det Z.

By the Hadamard inequality (see [5, Theorem 7.8.1]), (2.6) would follow from

(2.7) 1+ det D > det(diag(W)) + det(diag(Z)),

where diag( - ) means the diagonal part of a matrix.

Let di,wi,zi, i = 1,...,¢, be the diagonal entries of D, W, and Z, respectively.
Thend; >0,0 <w;,z; <lfori=1,...,¢ We will prove (2.7) by induction. The base
case is clear. Assume that (2.7) is true for £ = k —1 > 1. When ¢ = k, there are two
cases.

Casel: If1> H] LW+ ]'I;“;ll zj, then
k-1 k-1

k k
1+1'[d >1>Hw]+]'[zj ]'[ + [ z;.
j=1 j=1

j=1 j=1 =

Case II: IfH] a W]+I_I] 1 zj > 1, then

k-1 1
1+1‘[d >1+(]'[w]+Hz]—l)dk>1+(]'[w]+Hz]—l)(wk+zk—1)

j=1 J=1 j=1

k — —
—1+H1W]+I_IIZ]+(Wk 1)lej+(zk—1)lej—(wk+zk—l)

j= j j= j=

k k k-1 k-1
> ij+nzj+(l— Hz]-)(l—wk)+(l— ij)(l—zk)
j=1 j=1

Thus, (2.7) holds for € = k, so the proof of the induction step is complete. ]
We are now in a position to present the proof of Theorem 1.2.

Proof of Theorem 1.2 Let X = (TrA)[,, ® I, Y = A, W = [, ® (Tr;A), Z =
(Tr A) ® I, respectively. Clearly,
(TrA)I, >Tr;A>0 and (TrA)L, >Tr, A>0

imply that X > W > 0 and X > Z > 0. Moreover, by Proposition 2.2, X + Y > W + Z.
That is, the conditions in Proposition 2.4 are met. Therefore,

(TrA)™" +detA > det (I, ® (Tr; A)) +det ((Tr,A) ® 1)
= det(Tr; A)™ + det(Tr, A)".
Taking into account that A is a density matrix, the desired result (1.2) follows. ]
Remark 2.5 In [6, Lemma 2.5], the author proved (2.5) under a stronger assump-

tion: X+Y>W+Z,X>W2>Y>0and X >Z >Y > 0. However, from the present
proof of Theorem 1.2, we see that [6, Lemma 2.5] could not be directly applied here.
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