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A Determinantal Inequality Involving
Partial Traces

Minghua Lin

Abstract. Let A be a density matrix in Mm ⊗Mn . Audenaert [J. Math. Phys. 48(2007) 083507]
proved an inequality for Schatten p-norms:

1 + ∥A∥p ≥ ∥Tr1 A∥p + ∥Tr2 A∥p ,
where Tr1 and Tr2 stand for the ûrst and second partial trace, respectively. As an analogue of his
result, we prove a determinantal inequality

1 + detA ≥ det(Tr1 A)m + det(Tr2 A)n .

1 Introduction

We denote byMn the set of n × n complex matrices. _e tensor productMm ⊗Mn is
identiûed with the spaceMm(Mn), the set ofm×m blockmatrices with each block in
Mn . Each element ofMm(Mn) is also regarded as an mn×mn matrix with numerical
entries. By convention, the n×n identity matrix is denoted by In ; we use Jn to denote
the n × n matrix with all entries equal to one.

In the sequel, a positive (semideûnite) matrix A is denoted by A ≥ 0. For two
Hermitian matrices A, B of the same size, A ≥ B means A− B ≥ 0.
For any A ∈ Mm(Mn), we can write A = ∑

q
i=1 X i ⊗ Yi for some positive integer

q ≤ m2 and some X i ∈ Mm , Yi ∈ Mn , i = 1, . . . , q. We can deûne two partial traces
Tr1 and Tr2:

Tr1 A =

q

∑
i=1

(TrX i)Yi , Tr2 A =

q

∑
i=1

(TrYi)X i ,

where Tr stands for the usual trace. In other words, the ûrst partial trace Tr1 “traces
out" the ûrst factor and similarly for the second partial trace Tr2. Clearly,

Tr(Tr1 A)B = Tr(Im ⊗ B)A, for any B ∈Mn ;
Tr(Tr2 A)C = Tr(C ⊗ In)A, for any C ∈Mm .

_e actual forms of the partial traces are as follows (see [8, p. 12]):

Tr1 A =
m

∑
i=1
A i , i , Tr2 A = [TrA i , j]

m
i , j=1 .
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A density matrix on a bipartite system (see [8, pp. 4, 53]) is a positive semideû-
nite matrix in Mm ⊗Mn with trace equal to one. Audenaert [1] recently proved an
interesting norm inequality.

_eorem 1.1 ([1, _eorem 1]) Let A ∈Mm(Mn) be a density matrix. _en
(1.1) 1 + ∥A∥p ≥ ∥Tr1 A∥p + ∥Tr2 A∥p ,

where ∥ ⋅ ∥p denotes the Schatten p-norm.

Inequality (1.1) was called out to prove the subadditivity of the so-called Tsallis
entropies; see [1] for more details. In this paper, as an analogue of (1.1), we prove the
following determinantal inequality.

_eorem 1.2 Let A ∈Mm(Mn) be a density matrix. _en
(1.2) 1 + detA ≥ det(Tr1 A)

m
+ det(Tr2 A)

n .

2 Auxiliary Results and Proofs

A linear map Φ∶Mn →Mk is positive if it maps positive matrices to positive matrices.
A linear map Φ∶Mn →Mk is called m-positive if for [A i , j]

m
i , j=1 ∈Mm(Mn),

(2.1) [A i , j]
m
i , j=1 ≥ 0Ô⇒ [Φ(A i , j)]

m
i , j=1 ≥ 0,

and Φ is completely positive if (2.1) is true for any positive integer m.
On the other hand, a linear map Φ∶Mn →Mk is m-copositive if

(2.2) [A i , j]
m
i , j=1 ≥ 0Ô⇒ [Φ(A j, i)]

m
i , j=1 ≥ 0,

and Φ is completely copositive if (2.2) is true for any positive integer m.
We need the following result.

Proposition 2.1 _emapΦ∶Mn →Mn deûned byΦ(X) = (TrX)In−X is completely
copositive.

Proof One may of course use the approach in [7] to prove this. Here we invoke a
standard tool by Choi [4]. It suõces to prove that for any positive integer m ,

[Φ(E j, i)]
m
i , j=1 ≥ 0,

where E i , j ∈ Mn is the matrix with 1 in the (i , j)-entry and 0 elsewhere. But
[Φ(E j, i)]

m
i , j=1 is symmetric, row diagonally dominant with positive diagonal entries,

implying
[Φ(E j, i)]

m
i , j=1 ≥ 0.

_e reader may easily observe that Φ(X) = (TrX)In−X is not 2-positive (see [3]).
In the proof of the next proposition, we only use the fact that Φ(X) = (TrX)In − X

is 2-copositive. Proposition 2.2, ûrst proved by Ando [2], plays a key role in our
derivation of (1.2). We provide a proof here for the convenience of readers. Our proof
is slightly more transparent than the original proof by Ando.
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Proposition 2.2 Let A = [A i , j]
m
i , j=1 ∈Mm(Mn) be positive. _en

(TrA)Im ⊗ In +A ≥ Im ⊗ (Tr1 A) + (Tr2 A) ⊗ In .

Proof _e proof is by induction on m. When m = 1, there is nothing to prove. We
prove the base case m = 2 ûrst. In this case, the required inequality is

(
(TrA)In 0

0 (TrA)In
) + (

A1,1 A1,2
A2,1 A2,2

) ≥

(
A1,1 + A2,2 0

0 A1,1 + A2,2
) + (

(TrA1,1)In (TrA1,2)In
(TrA2,1)In (TrA2,2)In

) ,

or equivalently,

(2.3) H ∶= (
(TrA2,2)In − A2,2 A1,2 − (TrA1,2)In
A2,1 − TrA2,1)In (TrA1,1)In − A1,1

) ≥ 0.

By Proposition 2.1,

(
(TrA1,1)In − A1,1 (TrA2,1)In − A2,1
(TrA1,2)In − A1,2 (TrA2,2)In − A2,2

) ≥ 0,

and so

H = (
0 −In
In 0 )(

(TrA1,1)In − A1,1 (TrA2,1)In − A2,1
(TrA1,2)In − A1,2 (TrA2,2)In − A2,2

)(
0 In
−In 0 ) ≥ 0,

conûrming (2.3).
Suppose the result is true for m = k − 1 > 1. When m = k,

Γ ∶= (TrA)Ik ⊗ In +A − Ik ⊗ (Tr1 A) + (Tr2 A) ⊗ In .

= (Tr
k

∑
i=1
A i , i) Ik ⊗ In +A − Ik ⊗ (

k

∑
j=1
A j, j) − ([TrA i , j]

k
i , j=1) ⊗ In

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
k−1
i=1 (TrA i , i)In

⋱

∑
k−1
i=1 (TrA i , i)In

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(TrAk ,k)In
⋱

(TrAk ,k)In
∑

k
i=1(TrA i , i)In

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1 ⋅ ⋅ ⋅ A1,k−1 0
⋮ ⋮ ⋮

Ak−1,1 ⋅ ⋅ ⋅ Ak−1,k−1 0
0 ⋅ ⋅ ⋅ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋅ ⋅ ⋅ 0 A1,k
⋮ ⋮ ⋮

0 ⋅ ⋅ ⋅ 0 Ak−1,k
Ak ,1 ⋅ ⋅ ⋅ Ak ,k−1 Ak ,k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
k−1
i=1 A i , i

⋱

∑
k−1
i=1 A i , i

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ak ,k
⋱

Ak ,k

∑
k
i=1 A i , i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(TrA1,1)In ⋅ ⋅ ⋅ (TrA1,k−1)In 0
⋮ ⋮ ⋮

(TrAk−1,1)In ⋅ ⋅ ⋅ (TrAk−1,k−1)In 0
0 ⋅ ⋅ ⋅ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋅ ⋅ ⋅ 0 (TrA1,k))In
⋮ ⋮ ⋮

0 ⋅ ⋅ ⋅ 0 (TrAk−1,k)In
(TrAk ,1)In ⋅ ⋅ ⋅ (TrAk ,k−1)In (TrAk ,k)In

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A�er some rearrangement, we have Γ = P +Q, where

P ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
k−1
i=1 (TrA i , i)In

⋱

∑
k−1
i=1 (TrA i , i)In

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1 ⋅ ⋅ ⋅ A1,k−1 0
⋮ ⋮ ⋮

Ak−1,1 ⋅ ⋅ ⋅ Ak−1,k−1 0
0 ⋅ ⋅ ⋅ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
k−1
i=1 A i , i

⋱

∑
k−1
i=1 A i , i

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(TrA1,1)In ⋅ ⋅ ⋅ (TrA1,k−1)In 0
⋮ ⋮ ⋮

(TrAk−1,1)In ⋅ ⋅ ⋅ (TrAk−1,k−1)In 0
0 ⋅ ⋅ ⋅ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

Q ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(TrAk ,k)In
⋱

(TrAk ,k)In
∑

k
i=1(TrA i , i)In

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋅ ⋅ ⋅ 0 A1,k
⋮ ⋮ ⋮

0 ⋅ ⋅ ⋅ 0 Ak−1,k
Ak ,1 ⋅ ⋅ ⋅ Ak ,k−1 Ak ,k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ak ,k
⋱

Ak ,k

∑
k
i=1 A i , i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋅ ⋅ ⋅ 0 (TrA1,k))In
⋮ ⋮ ⋮

0 ⋅ ⋅ ⋅ 0 (TrAk−1,k)In
(TrAk ,1)In ⋅ ⋅ ⋅ (TrAk ,k−1)In (TrAk ,k)In

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(TrAk ,k)In − Ak ,k A1,k − (TrA1,k))In
⋱ ⋮

(TrAk ,k)In − Ak ,k Ak−1,k − (TrAk−1,k)In
(TrAk ,1)In ⋅ ⋅ ⋅ (TrAk ,k−1)In ∑

k−1
i=1 ((TrA i , i)In − A i , i)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now by induction hypothesis, P ≥ 0. It remains to show that Q ≥ 0.
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It is easy to see thatQ can be written as a sum of k−1 matrices with each summand
∗-congruent to

H i ∶= [
(TrAk ,k)In − Ak ,k A i ,k − (TrA i ,k))In
Ak , i − (TrAk , i)In (TrA i , i)In − A i , i

] , i = 1, . . . , k − 1.

Just as in the proof of the base case, we infer that H i ≥ 0 for all i = 1, . . . , k − 1.
_erefore,Q ≥ 0, thus the proof of induction step is complete.

_e next corollary is known as a Cauchy–Khinchin matrix inequality in the liter-
ature (see [9, _eorem 1]). Here we present a simple proof using Proposition 2.2.

Corollary 2.3 Let X = (x i j) be a real m × n matrix. _en

(
m

∑
i=1

n

∑
j=1

x i j)
2
+mn

m

∑
i=1

n

∑
j=1

x2
i j ≥ m

m

∑
i=1

(
n

∑
j=1

x i j)
2
+ n

n

∑
j=1

(
m

∑
i=1

x i j)
2
.

Proof Let vecX = [x11 , . . . , x1n , x21 , . . . , x2n , . . . , xm1 , . . . , xmn]
T be a vectorization

of X. _en a simple calculation gives

(vecX)
T
(Jm ⊗ Jn) vecX = (vecX)

T Jmn vecX = (
m

∑
i=1

n

∑
j=1

x i j)
2
,

(vecX)
T
(Im ⊗ In) vecX = (vecX)

T vecX =
m

∑
i=1

n

∑
j=1

x2
i j ,

(vecX)
T
(Im ⊗ Jn) vecX =

m

∑
i=1

(
n

∑
j=1

x i j)
2
,

(vecX)
T
(Jm ⊗ In) vecX =

n

∑
j=1

(
m

∑
i=1

x i j)
2
.

_us the desired inequality is equivalent to

(2.4) (vecX)
T
(Jm ⊗ Jn +mnIm ⊗ In −mIm ⊗ Jn − nJm ⊗ In) vecX ≥ 0.

Setting A = Jm ⊗ Jn in Proposition 2.2 yields

Jm ⊗ Jn +mnIm ⊗ In −mIm ⊗ Jn − nJm ⊗ In ≥ 0,

and so (2.4) follows.

We require one more result for our purpose.

Proposition 2.4 Let X ,Y ,W , Z ∈ Mℓ be positive. If X + Y ≥ W + Z, X ≥ W, and
X ≥ Z, then

(2.5) detX + detY ≥ detW + det Z .

Proof Without loss of generality, assume that X = Iℓ (for we can assume ûrst X
is invertible by a standard continuity argument, then pre-post multiply all matrices
by X−1/2). A�er this, by a unitary similarity, we can further assume that Y = D, a
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diagonal matrix. _us, we need to show that if Iℓ + D ≥ W + Z and Iℓ ≥ W , Z ≥ 0,
then

(2.6) 1 + detD ≥ detW + det Z .

By the Hadamard inequality (see [5, _eorem 7.8.1]), (2.6) would follow from

(2.7) 1 + detD ≥ det(diag(W)) + det(diag(Z)),

where diag( ⋅ ) means the diagonal part of a matrix.
Let d i ,w i , z i , i = 1, . . . , ℓ, be the diagonal entries of D, W , and Z, respectively.

_en d i ≥ 0, 0 ≤ w i , z i ≤ 1 for i = 1, . . . , ℓ. We will prove (2.7) by induction. _e base
case is clear. Assume that (2.7) is true for ℓ = k − 1 ≥ 1. When ℓ = k, there are two
cases.

Case I: If 1 ≥ ∏k−1
j=1 w j +∏

k−1
j=1 z j , then

1 +
k
∏
j=1
d j ≥ 1 ≥

k−1
∏
j=1

w j +
k−1
∏
j=1

z j ≥
k
∏
j=1

w j +
k
∏
j=1

z j .

Case II: If∏k−1
j=1 w j +∏

k−1
j=1 z j > 1, then

1 +
k
∏
j=1
d j ≥ 1 + (

k−1
∏
j=1

w j +
k−1
∏
j=1

z j − 1)dk ≥ 1 + (
k−1
∏
j=1

w j +
k−1
∏
j=1

z j − 1)(wk + zk − 1)

= 1 +
k
∏
j=1

w j +
k
∏
j=1

z j + (wk − 1)
k−1
∏
j=1

z j + (zk − 1)
k−1
∏
j=1

w j − (wk + zk − 1)

≥
k
∏
j=1

w j +
k
∏
j=1

z j + ( 1 −
k−1
∏
j=1

z j)(1 −wk) + ( 1 −
k−1
∏
j=1

w j)(1 − zk)

≥
k
∏
j=1

w j +
k
∏
j=1

z j .

_us, (2.7) holds for ℓ = k, so the proof of the induction step is complete.

We are now in a position to present the proof of _eorem 1.2.

Proof of_eorem 1.2 Let X = (TrA)Im ⊗ In , Y = A, W = Im ⊗ (Tr1 A), Z =

(Tr2 A) ⊗ In , respectively. Clearly,

(TrA)In ≥ Tr1 A ≥ 0 and (TrA)Im ≥ Tr2 A ≥ 0

imply that X ≥W ≥ 0 and X ≥ Z ≥ 0. Moreover, by Proposition 2.2, X + Y ≥W + Z.
_at is, the conditions in Proposition 2.4 are met. _erefore,

(TrA)
mn

+ detA ≥ det ( Im ⊗ (Tr1 A)) + det ((Tr2 A) ⊗ In)
= det(Tr1 A)

m
+ det(Tr2 A)

n .

Taking into account that A is a density matrix, the desired result (1.2) follows.

Remark 2.5 In [6, Lemma 2.5], the author proved (2.5) under a stronger assump-
tion: X + Y ≥W + Z, X ≥W ≥ Y ≥ 0 and X ≥ Z ≥ Y ≥ 0. However, from the present
proof of _eorem 1.2, we see that [6, Lemma 2.5] could not be directly applied here.
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