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The intense applied lower hybrid electric fields used to drive current in tokamaks can
result in the formation of velocity space island structure. When this happens the lower
hybrid current drive efficiency can be calculated for a monochromatic wave and is shown
to be below the quasilinear level.
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1. Introduction

Quasilinear (QL) descriptions of lower hybrid current drive (LHCD) have success-
fully predicted and explained how non-inductive currents can be driven in tokamaks
(Fisch 1978; Karney & Fisch 1979, 1985; Fisch & Boozer 1980; Fisch & Karney
1981; Cordey et al. 1982; Antonsen & Chu 1982; Taguchi 1983), although dis-
crepancies remain (Bonoli 2014). The intense applied radio frequency (RF) fields
used to drive the current result in departures of the electron distribution function
from Maxwellian, indicating a failure of QL theory (Catto & Tolman 2021a,b). The
purpose here is to investigate the failure of QL theory and present an alternative
description valid for a very intense applied monochromatic lower hybrid wave. A
brief analysis of lower hybrid waves appears in the appendix of Catto & Zhou (2023).

Before presenting the detailed calculation, it may be useful to provide a few more
background details. The pioneering evaluations of LHCD in the late 1970s and early
1980s were for plane waves in homogeneous magnetised plasmas. The QL descrip-
tions used seldom mentioned the need to retain collisions in the linearised kinetic
equation, but when the results were applied to tokamak geometry it was normally
assumed that successive passes through resonance were uncorrelated. Catto (2020)
first realised that the resonant particles were particularly sensitive to collisions and
the narrow collisional boundary layer formed that enhanced the role of collisions
for them. Subsequent work by Catto & Tolman (2021a,b) extended the collisional
treatment to tokamak geometry, and demonstrated that the resonance condition is
not local but rather a transit averaged resonance condition. The charges satisfy-
ing or nearly satisfying the transit averaged resonance condition are those that are
particularly sensitive to collisions which act to decorrelate successive poloidal tran-
sits. To lowest order the collision frequency does not enter in QL treatments, but
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its absence does not mean collisions are not playing a role. The structure of the
Fokker–Planck equation for steady state applied wave fields requires collisions to
resolve the singular behaviour in the linearised kinetic equation since initial condi-
tions must be unimportant. To demonstrate the role of tokamak geometry Catto &
Zhou (2023) considered LHCD and used the adjoint procedure of Antonsen & Chiu
(1982) with the Cordey et al. (1982) eigenfunctions to get a rigorous result for the
trapped fraction corrections to LHCD and to demonstrate that in their absence the
usual result was recovered.

To understand why QL theory fails, only a simple nonlinear electron drift kinetic
equation (in v, v|| variables) for a monochromatic applied parallel electric field
E|| = Ẽ|| sin(ωt − k||z) of frequency ω and parallel wavenumber k|| needs to be
considered, namely

∂ f1/∂t + v||∂ f1/∂z − (e/m)E||�z · ∇v( f0 + f1) = C{ f1}. (1.1)

Here f = f0 + f1 with f0(v) a Maxwellian and f1(z, v, v||, t) a small correction,
�B = B�z is the �z directed constant magnetic field, C{ f1} is the linearised electron
collision operator and e and m are the proton charge and electron mass. Defining a
resonance width �v|| via

k||v|| − ω = k||�v|| (1.2)

gives an estimate of f1 by balancing the drive and resonance terms:

f1k||�v|| ∼
(
eẼ||v||/mv

)
∂ f0/∂v. (1.3)

Resonant electrons are particularly sensitive to collisions. Estimating

C{ f1} ∼ νev
2
e∂

2 f1/∂v2
|| ∼ νev

2
e f1/

(
�v||

)2
ν
, (1.4)

with νe and ve the electron collision frequency and thermal speed, and balancing
collisions with the resonant term leads to the normalised collisional boundary layer
width (

�v||
)
ν
/ve ∼ |νe/k||ve|1/3 � 1 (1.5)

and effective resonant electron collision frequency νeff = νev
2
e/(�v||)2

ν ∼
νe(k||ve/νe)

2/3 � νe.
The nonlinear term ignored in QL theory cannot be neglected when

(v||/v)∂ f0/∂v ∼ ∂ f1/∂v|| ∼ f1/�v||. (1.6)

Inserting (1.3) into (1.6) gives a normalised island width estimate of(
�v||

)
is
/ve ∼ ∣∣eẼ||/mk ||v2

e

∣∣1/2
. (1.7)

QL theory assumes (�v||)ν � (�v||)is or |νe/k||ve|1/3 � |eẼ||/mk ||v2
e |1/2. However,

for fields intense enough to cause the electron distribution function to develop
significant non-Maxwellian features this inequality is violated. To verify this,
the usual QL diffusivity can be estimated by using Dql ∼ (eẼ||/m)2δ(ω − k||v||) ∼
(eẼ||/m)2/k||(�v||)ν , corresponding to the delta function estimate δ(ω − k||v||) ∼
1/k||(�v||)ν . QL diffusion modifies the electron Maxwellian once the QL and
collision operators become comparable, that is, once Dql f0 ∼ νev

2
e f0 or when(

�v||
)
ν
∼ (

�v||
)

is
. (1.8)
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This condition is the same as found by allowing the nonlinear, drive and resonant
terms to be of the same order, f1k||(�v||) ∼ (eẼ||v||/mv)∂ f0/∂v ∼ (eẼ||/m) f1/�v||,
suggesting QL theory is no longer valid. Moreover, it indicates that finite velocity
space island effects should be retained because the RF fields are too intense for a
QL treatment.

The ordering (�v||)ν ∼ (�v||)is is not analytically tractable (Hamilton et al. 2023;
Catto 2024). Consequently, the focus of the following sections is the (�v||)3

is �
(�v||)3

ν limit. The next section introduces notation and derives the nonlinear equation
to be solved for a very intense monochromatic wave. Section 3 solves this nonlinear
kinetic equation when (�v||)3

is � (�v||)3
ν . In § 4 the lower hybrid driven parallel cur-

rent and power absorbed to drive the current are evaluated, and the resulting current
drive efficiency found. The result is compared with the standard QL expression. The
final section is a brief discussion.

2. Nonlinear electron kinetic equation

Consider an applied lower hybrid wave of frequency ω � � = eB/mc in a uniform
plasma with a constant magnetic field �B = B�z, where B is the magnitude of the
magnetic field and �z is the unit vector in the direction of the uniform field. For a
lowest order Maxwellian distribution function,

f0 = n(m/2πT )3/2e−mv2/2T , (2.1)

the perturbed distribution function f1 satisfies the nonlinear electron drift kinetic
equation

∂ f1/∂t + v||∂ f1/∂z − (e/m)E||∂ f1/∂v|| − C{ f1} = −(e/T )E||v|| f0 (2.2)

in v|| and v⊥ velocity variables with v2 = v2
|| + v2

⊥. Here n and T are the electron den-
sity and temperature, and f0 + f1 = f with f0 � f1. The perturbing parallel applied
electric field of the lower hybrid wave is taken to be �E = E||�z, with the unimportant
unperturbed electric field neglected for simplicity.

The collision operator is needed to resolve singular behaviour at a resonance or in
the vicinity of small scale velocity space structure. It is approximated by the usual like
and unlike terms, namely the high speed expansion (v2 � v2

e = 2T/m), self adjoint
operator

C{ f } = ∇v ·
{

νe

2x3

[(
v2

↔
I − �v�v

)
· ∇v f1 + 2T f 0

(Z + 1)m
∇v

(
f1

f0

)]}

≈ νe

2x3

[
v2

⊥ + v2
e

(Z + 1)

]
∂2 f1

∂v2
||

, (2.3)

where x = v/ve, νe = 3
√

π(Z + 1)νee/4 and νee = νei/Z = 4
√

2πe4n	n 
c/3m1/2T 3/2

for a quasineutral plasma, with Z the ion charge number and 	n 
c the Coulomb
logarithm. The final form of C{ f } is all that is required near the resonance. The
high speed expansion of the collision operator was used for the original LHCD
calculations (Karney & Fisch 1979, 1985) and was also used for a recent lin-
earised treatment of LHCD in a tokamak (Catto & Zhou 2023) which found that
ω2/k2

||v
2
e ≈ 5/2 maximises current drive.

To make analytic progress the applied electric field is assumed to be monochro-
matic with a wave frequency ω > 0, and a parallel wave vector k|| > 0:

E|| = Ẽ|| sin(k||z − ωt). (2.4)
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If only the linearised equation for f1 were to be solved as in standard QL theory, it
would be adequate to let f1 = Im[ f̃ ei(k||z−ωt)], with Im denoting imaginary part, and
solve

i
(
ω − k||v||

)
f̃ + νv2

⊥z∂
2 f̃ /∂v2

|| = (e/T )Ẽ||v|| f0 ≈ (
eωẼ||/T k ||

)
f0, (2.5)

where only pitch angle scattering need be retained to resolve the singularity at
ω = k||v||, v2

⊥z = v2
⊥ + v2

e/(Z + 1) and ν = νe/2x3. The solution is (Su & Oberman
1968; Johnston 1971; Auerbach 1977; Catto 2020; Catto & Tolman 2021b)

f̃ = − eωẼ|| f0

T
(

k5
||v

2
⊥zν
)1/3

∫ ∞

0
dτe−isτ−τ3/3, (2.6)

with s = (k||/v2
⊥zν)1/3(v|| − ω/k||) and s = 1 giving a velocity space collisional

boundary layer width of v|| − ω/k|| = (�v||)ν = ∣∣νv2
⊥z/k||

∣∣1/3
.

When the applied lower hybrid wave amplitude becomes large enough, the non-
linear term cannot be neglected and the full nonlinear drift kinetic equation must
be considered by letting f = f0 + f1. Fortunately, f0 is slowly varying as is the v⊥
dependence of f1 because the resonance involves only v||. Therefore, the ordering

∂ f1/∂v|| ∼ ∂ f0/∂v|| (2.7)

is employed. Assuming a homogeneous plasma such that

f1 = f1(φ, v||, v⊥), (2.8)

with v⊥ entering as a parameter, and defining

φ = k||z − ωt (2.9)

leads to
(k||v|| − ω)∂ f1/∂φ − (eẼ||/m) sin φ∂( f0 + f1)/∂v|| = C{ f1}. (2.10)

Now only the last form of (2.3) matters. Letting v|| = ω/k|| + u, with u small, leads
to

k||u
∂ f1

∂φ
− eẼ||

m
sin φ

(
∂ f0

∂v||
+ ∂ f1

∂u

)
= νv2

⊥z

∂2 f1

∂u2
. (2.11)

To cast this equation into the form considered by Hamilton et al. (2023), let

f1 = g(u, φ) − (u − σα)∂ f0/∂v||, (2.12)

where σ = u/|u| = ±1 or 0, and α is a constant to be determined, to find

k||u
∂g

∂φ
− eẼ||

m
sin φ

∂g

∂u
= νv2

⊥z

∂2g

∂u2
. (2.13)

Letting
j = ∣∣m/eẼ||k||

∣∣1/2
k||u = ∣∣m/eẼ||k||

∣∣1/2(
k||v|| − ω

)
(2.14)

and

Δ = νk2
||v

2
⊥z

∣∣∣∣∣ m

eẼ||k||

∣∣∣∣∣
3/2

> 0 (2.15)
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gives the equation to be the same as that solved numerically by Hamilton et al.
(2023):

j
∂g

∂φ
− sin φ

∂g

∂ j
= �

∂2g

∂ j 2
. (2.16)

For j ∼ 1, (2.14) gives the velocity space island width to be

(
�v||

)
is
=
∣∣∣∣∣ eẼ||
mk ||

∣∣∣∣∣
1/2

� ω

k||
. (2.17)

QL theory assumes that the collisional boundary layer width(
�v||

)
ν
= ∣∣νv2

⊥z/k||
∣∣1/3

(2.18)

is wider than this velocity space island structure, requiring Δ = [(�v||)ν/
(�v||)is]3 � 1. However, for a strong applied RF field at low enough density the
QL assumption (2.17) fails. In the next section an analytic solution to (2.16) is
found in the intense-field limit Δ � 1.

3. Solution of the kinetic equation in the intense field limit

The limit where the velocity space island and collisional boundary layer widths are
comparable (Δ ∼ 1) is not analytically tractable. However, when the velocity space
island width is small, |(�v||)is/ve|3 � 1, but larger than the collisional boundary layer
width,

1 �
∣∣∣∣∣ eẼ||
mk ||v2

e

∣∣∣∣∣
3/2

� ν

k||ve
, (3.1)

it becomes possible to analytically investigate the failure of QL treatments of LHCD
at low density, high temperature and large applied wave amplitudes.

The preceding nonlinear kinetic equation (2.16) with a temporal evolution term
has been solved numerically by Hamilton et al. (2023) for an astrophysical appli-
cation. They also provided a partial analytic steady solution for Δ � 1, which was
completed by Catto (2024) for a stellarator transport evaluation. The solution is
skew symmetric, satisfying

g( j, φ) = −g(− j, −φ). (3.2)

The analytic treatment starts by introducing the reduced constant of the motion
or Hamiltonian h defined by

h( j, φ) = j 2/2 − cos φ (3.3)
with h = 1 the separatrix between the bound or librating (−1 < h < 1) and the
unbound or circulating (h > 1) electrons (to avoid confusion, the terminology
trapped and passing is avoided and reserved for magnetic wells). The reduced
Hamiltonian allows the kinetic equation to be rewritten in terms of h, φ variables as

∂g

∂φ

∣∣∣∣
h

= �
∂

∂h

∣∣∣∣
φ

(
j

∂g

∂h

∣∣∣∣
φ

)
. (3.4)

Then Δ � 1 suggests a solution of the form g = g1(h) + g2(h, φ) + · · · to satisfy
∂g1/∂φ|h = 0 to lowest order. The next order equation,

∂g2

∂φ

∣∣∣∣
h

= �
∂

∂h

∣∣∣∣
φ

(
j

∂g1

∂h

∣∣∣∣
φ

)
, (3.5)
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then leads to the solubility constraint from the collision operator, namely

∂

∂h

∣∣∣∣
φ

[(∮
h

dφ j

)
∂g1

∂h

∣∣∣∣
φ

]
= 0. (3.6)

Therefore, g1 is independent of collision frequency, but its form is constrained by
collisions.

For the bound or librating electrons g1 = 0 = α = σ , giving f1 = u∂ f0/∂v|| as the
only acceptable and well behaved solution. For the freely circulating or unbound
electrons, far from the resonance, a solution with g1 → (u − σα)∂ f0/∂v|| is required,
where σ = ±u/|u| = ± j/| j | and α is a constant still to be determined. Introducing
the complete elliptic function of the second kind, E, leads to (Hamilton et al. 2023;
Catto 2024)

g1 = σπ

∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

∫ 1

k

dt

t2 E (t)
→
k→0

σ

∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

[
2
k

− 1.379 − k

2
+ O(k3)

]

≈
∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

[
j − 1.379σ − cos φ

j

]
=
(

u − σα − eẼ|| cos φ

mk ||u

)
∂ f0

∂v||
, (3.7)

with j = √
2(h + cos φ) = (2/k)

√
1 − k2sin2(φ/2), k = √

2/(h + 1),
∫ π

−π
dϕ j =

σ8k−1 E(k) and α = 1.379 now determined. The unbound solution satisfies g1 → 0
at the separatrix (h = 1), but ∂g1/∂h|φ and f1 step across it. The narrow collisional
boundary layer about the separatrix provides the smooth matching as in the
banana regime of neoclassical theory. Moreover, far from the resonance layer
f1(k → 0) → 0.

Summarising, the full solution to lowest order (Hamilton et al. 2023; Catto
2024) is

f1 =
∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

[
σπ

∫ 1

k

dτ

τ 2 E (τ )
− ( j − 1.379σ)

]
, (3.8)

but now with σ = ±u/|u| = ±1 for the unbound or circulating electrons and σ = 0
for the bound or librating electrons. Even though the solution is independent of the
collision frequency, its form is determined by the solubility constraint from the col-
lision operator. The 1.379σ step in the solution f1 at the separatrix is not cancelled
by the piecewise continuous behaviour of the derivative ∂g1/∂h|φ there. Instead, the
step is smoothed by a narrow collisional boundary layer at the separatrix that need
not be resolved by the procedure here. The behaviour in the boundary layer does
not play a role in the results that follow next.

4. Driven current and power absorbed in the intense field limit

The skew symmetric perturbed solution f1(u, φ) = − f1(−u, −φ) cannot lead to
a spatiotemporal averaged density as seen by letting u → −u and φ → −φ, then
applying 〈· · · 〉φ = ∮

dφ(· · · )/2π at fixed v|| and employing d3v = 2πv⊥dv⊥dv|| ∝
du ∝ d j , to form〈∫ ∞

−∞
du f 1(u, φ)

〉
φ

= −
〈∫ ∞

−∞
du f 1(−u, −φ)

〉
φ

= −
〈∫ ∞

−∞
du f 1(u, φ)

〉
φ

= 0, (4.1)
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where the limits of the u integration are for the outer limit of the inner-boundary-
layer region and, of course, not actually infinite. However, the parallel current
requires the u moment〈∫ ∞

−∞
duu f 1(u, φ)

〉
φ

= −
〈∫ ∞

−∞
duu f 1(−u, −φ)

〉
φ

= 2
〈∫ ∞

0
duu f 1(u, φ)

〉
φ

�= 0

(4.2)

and the extra u means that skew symmetry allows a parallel current! As a result, the
driven parallel current is evaluated using

〈
J||
〉
φ
= −e

〈∫
d3vv|| f1

〉
φ

= −e

〈∫
d3vu f 1

〉
φ

. (4.3)

Only the circulating electrons carry current. Moreover, integrating by parts
(recalling j 2 f1 ∝ 1/j → 0 far from the separatrix as shown in (3.7)) results in

〈
J||
〉
φ
= −e

2

〈∫
d3v f 1

∂u2

∂u

〉
φ

= e

2

〈∫
d3vu j

∂ f1

∂ j

∣∣∣∣
φ

〉
φ

= 2πe2

m

∣∣∣∣∣ Ẽ||
k||

∣∣∣∣∣
〈∫ ∞

0
dv⊥v⊥

∫ ∞

0
d j j 2 ∂ f1

∂ j

∣∣∣∣
φ

〉
φ

, (4.4)

where both signs of sigma from j are summed over. Inserting

∂ f1

∂ j

∣∣∣∣
φ

= −
∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

[
σπ

k2 E (k)

∂k

∂ j

∣∣∣∣
φ

+ 1

]
, (4.5)

leads to

〈
J||
〉
φ
= 2enωe−ω2/k2||v2

e

π 1/2|k|||
∣∣∣∣ eE ||
mk ||v2

e

∣∣∣∣
3/2
〈∫ ∞

0
d j j 2

[
∂k

∂ j

∣∣∣∣
φ

π

k2 E (k)
+ 1

]〉
φ

. (4.6)

Because the j derivative of k is at fixed φ, the φ integral can be performed at fixed
k or h by using 〈 j 2〉φ = 2h and noting ∂k/∂ j |φ < 0 to find〈∫ ∞

0
d j j 2 ∂k

∂ j

∣∣∣∣
φ

π

k2 E (k)

〉
φ

= −π

∫ 1

0
dk

〈 j 2〉φ

k2 E (k)
= −2π

∫ 1

0
dk

(2 − k2)

k4 E (k)
. (4.7)

This procedure removes the awkwardness of the upper limit of the j integral in the
outer limit of the inner region. A similar procedure and use of 〈 j〉φ = 4π−1k−1 E(k)
gives 〈∫ ∞

0
d j j 2

〉
φ

=
∫ ∞

1
dh 〈 j〉φ = 4

∫ 1

0
dkk−3 〈 j〉φ = 16

π

∫ 1

0
dkk−4 E(k). (4.8)

As a result, the parallel current is negative (since ω/k|| > 0) and given by

〈
J||
〉
φ
= − 16enω√

π |k|||

∣∣∣∣∣ eẼ||
mk ||v2

e

∣∣∣∣∣
3/2

e−ω2
/

k2||v2
e

∫ 1

0

dk

k4

[
π(2 − k2)

4E (k)
− 2E (k)

π

]
, (4.9)
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where

C =
∫ 1

0

dk

k4

[
π(2 − k2)

4E (k)
− 2E (k)

π

]
= 0.047675. (4.10)

Therefore, the lower hybrid driven current for an intense applied field is

〈
J||
〉
φ
= −0.430enve

∣∣∣∣ ω

k||ve

∣∣∣∣
∣∣∣∣∣ eẼ||
mk ||v2

e

∣∣∣∣∣
3/2

e−ω2/k2||v2
e . (4.11)

Unlike the QL limit for which 〈J||〉φ ∝ 1/νe, the expression for 〈J||〉φ is independent
of the collision frequency and scales as Ẽ3/2

|| .
The RF power absorbed by the electrons is proportional to νe, as can be seen by

first using 2 sin φ = −d j 2/dφ|h at fixed h to write

P = 〈
E|| J||

〉
φ
= −eẼ||

〈
sin φ

∫
d3vv|| f

〉
φ

≈ ωeẼ||
2k||

〈∫
d3v f

d j 2

dφ

∣∣∣∣
h

〉
φ

= −ωeẼ||
2k||

〈∫
d3v j 2 ∂g2

∂φ

∣∣∣∣
h

〉
φ

= −ωeẼ||
2k||

〈∫
d3v� j 2 ∂

∂h

∣∣∣∣
φ

(
j

∂g1

∂h

∣∣∣∣
φ

)〉
φ

. (4.12)

In the preceding, v|| = ω/k|| + u and skew symmetry give 〈∫∞
−∞ duu sin φ f1(u, φ)〉φ =

0 and 〈∫ ∞

−∞
du sin φ f1(u, φ)

〉
φ

= −
〈∫ ∞

−∞
du sin φ f1(−u, −φ)

〉
φ

= 2
〈∫ ∞

0
du sin φ f1(u, φ)

〉
φ

�= 0. (4.13)

Then u ∝ j , jd j = dh at fixed φ and h −→
h→∞

2/k2 yield

〈∫ ∞

−∞
d j j 2 ∂

∂h

∣∣∣∣
φ

j
∂g1

∂h

∣∣∣∣
φ

〉
φ

= 2

〈∫ ∞

1
dhj

∂

∂h

∣∣∣∣
φ

j
∂g1

∂h

∣∣∣∣
φ

〉
φ

= 2
∫ ∞

1
dh

[
∂

∂h

∣∣∣∣
φ

〈 j 2〉φ

∂g1

∂h

∣∣∣∣
φ

− ∂g1

∂h

∣∣∣∣
φ

]

= 4h
∂g1

∂h

∣∣h→∞
φ,h=1 − 2g1

∣∣h→∞
h=1

= 2

∣∣∣∣∣ eẼ||
mk||

∣∣∣∣∣
1/2

∂ f0

∂v||

[
π

2
− 2

k
+
(

2
k

− 1.379
)]

= 0.384

∣∣∣∣∣ eẼ||
mk||

∣∣∣∣∣
1/2

∂ f0

∂v||

∣∣∣∣
u=0

(4.14)
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Consequently, using dv|| = du = |eẼ||/mk|||1/2d j yields

P = −0.384πmω

∣∣∣∣∣ eẼ||
mk||

∣∣∣∣∣
2 ∫ ∞

0
dv⊥v⊥�

∂ f0

∂v||

∣∣∣∣
u=0

= 0.384
mnω2νee

−ω2/k2||v2
e

π 1/2k2
||v2

e

∣∣∣∣∣eẼ||
m

∣∣∣∣∣
1/2 ∫ ∞

0
dv⊥

v⊥v2
⊥ze

−v2⊥/v2
e(

v2
⊥ + ω2/k2

||
)3/2 . (4.15)

Recalling that the collision operator is valid for x2 = v2/v2
e � 1, while ω2/k2

||v
2
e ≈

5/2 � 1 and v2
⊥ ∼ v2

e , the resulting integral is approximately

∫ ∞

0
dv⊥

v⊥v2
⊥ze

−v2⊥/v2
e(

v2
⊥ + ω2/k2

||
)3/2 ≈ |k|||3v4

e

2ω3

(
Z + 2
Z + 1

)
. (4.16)

As a result, the RF power absorbed to drive the current for an intense applied lower
hybrid wave is

P = 0.108
Z + 2
Z + 1

mnv2
eνe

∣∣∣∣k||ve

ω

∣∣∣∣
∣∣∣∣∣ eẼ||
k||mv2

e

∣∣∣∣∣
1/2

e−ω2/k2||v2
e . (4.17)

The driven current of (4.11) only depends on g1 as seen by (4.4). It only depends
on the reduced constant of the motion h from (3.4). The form for g1 is constrained
by the collision operator to satisfy (3.6), but the collision frequency does not enter.
However, to drive current there must be dissipation. It enters through the power
absorbed by the electrons from the applied lower hybrid wave. Collisions enter g2,
as seen by (3.5), and it is required in (4.12).

Using νe = 3π 1/2(Z + 1)νee/4, the current drive efficiency in the intense field
limit is ∣∣∣〈J||

〉
φ

Ẽ||
∣∣∣

P
= 2.99ω

(Z + 2)νee

∣∣∣∣ ω

k||ve

∣∣∣∣
∣∣∣∣∣ eẼ||
mk ||v2

e

∣∣∣∣∣
2

(4.18)

leading to the normalised form∣∣〈J||
〉
φ

∣∣/enve

P/mnv2
eνee

= 2.99ω2

(Z + 2)k2
||v2

e

∣∣∣∣∣ eẼ||
mk ||v2

e

∣∣∣∣∣ . (4.19)

Ignoring aspect ratio modifications (Catto & Muni 2023) , the usual QL result
(Fisch 1978) is

J L H
|| /enve

P L H
cd /mnv2

eνee
= 3.01ω2

(Z + 5)k2
||v2

e

. (4.20)

Both pitch angle and energy scatter matter in the intense field limit. Importantly,
the intense field limit depends on Ẽ||, and is smaller by roughly

1 �
(
�v||

)2
is

v2
e

∼
∣∣∣∣∣ eẼ||
mk ||v2

e

∣∣∣∣∣ , (4.21)
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when (�v||)2
is � (�v||)2

ν . Consequently, intense field LHCD is expected to be less
efficient than QL predictions indicate. The result here, namely (4.19), as well as
plasma edge turbulence likely explain some of the decrease in efficiency observed
in experiments (Bonoli 2014). The nonlinear reduction by (�v||)2

is/v
2
e � 1 occurs

because the bound electrons are unable to carry current. The normalised efficiency
is reduced, even though less power is absorbed in the narrow collisional bound-
ary layers, because the bound region containing the non-current carrying electrons
becomes much wider as the applied lower hybrid wave amplitude becomes larger.
Additional island structures are expected to result in further reductions.

5. Discussion

It is normally assumed that a Maxwellian unperturbed distribution evolves due to QL
effects generating non-Maxwellian features. However, the argument in § 1 indicates
that these non-Maxwellian features should be taken as indication that a QL treatment
is no longer valid and velocity space structure associated with island formation is
starting to enter. As a result, the nonlinear term in the perturbed kinetic equation
is no longer negligible and a full nonlinear solution is required. Interestingly, the
unperturbed distribution remains nearly Maxwellian even in the presence of island
formation and when the applied RF becomes intense as long as (4.21) is satisfied. In
the intense limit collisional boundary layers form in very narrow regions about the
separatrix and resolve the step function behaviour between the bound region and the
two circulating regions. As only the circulating electrons can carry current and the
island width is much larger than the collisional boundary layer width, less current
is driven as indicated by comparing the intense field efficiency of (4.19) with the
usual QL current drive efficiency of (4.20). This reduction in the efficiency offers at
least a partial explanation of the experimentally observed decrease in current drive
efficiency.

Note added in proofs. François Waelbroeck kindly brought to my attention a classic
paper by Zakharov and Karpman (1963) in which they demonstrate that Landau
damping is a collisional process. The treatment in Catto (2025b) verifies their results
by solving the steady state driven plasma wave problem linearly and nonlinearly
with collisions. Details associated with the collision operator and the coefficient of
the power absorbed in the weakly collisional, large plasma wave amplitude limit
differ, but the procedure is broadly the same. Their pioneering treatment should
be consulted for full details. Sugihara et al. (1981) inappropriately modify the solu-
tion of Zakharov and Karpman (1963) to remove the step function behavior at the
collisional boundary layer enclosing the separatrix to obtain a piecewise continuous
solution for the distribution function that no longer properly matches to the non-
resonant electron distribution function (Catto 2025a). Their flawed result for the
rf power absorbed agrees with the collisionless result of Canobbio (1972) as they
note. The work here agrees with Zakharov and Karpman (1963) within numerical
coefficients associated with somewhat different forms for the collision operator.
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