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Heegner Points over Towers of Kummer
Extensions

Henri Darmon and Ye Tian

Abstract. Let E be an elliptic curve, and let Ln be the Kummer extension generated by a primitive pn-

th root of unity and a pn-th root of a for a fixed a ∈ Q× − {±1}. A detailed case study by Coates,

Fukaya, Kato and Sujatha and V. Dokchitser has led these authors to predict unbounded and strikingly

regular growth for the rank of E over Ln in certain cases. The aim of this note is to explain how some

of these predictions might be accounted for by Heegner points arising from a varying collection of

Shimura curve parametrisations.

1 Introduction

Let E be an elliptic curve defined over a number field F. For each finite extension

L of F, write rE(L) for the rank of the group E(L) of L-rational points on E. A p-

adic Lie extension of F is a Galois extension L∞/F whose Galois group G is a p-adic

Lie group (for example, the splitting field of any continuous representation of the

absolute Galois group of F acting on a finite dimensional Qp-vector space). The

present note is motivated by the following general problem:

Problem 1.1 To understand the variation of rE(L) as L ranges over all finite extensions

of F contained in L∞.

This problem dates back at least to the foundational article [Ma], which considers

the case when G = Zp, and makes the first steps towards examining this problem

by the methods of Iwasawa theory. As in classical descent theory, it is convenient to

replace the Mordell–Weil group E(L) by the p-power Selmer group of E over L, thus

sidestepping the difficulties associated with the Shafarevich–Tate conjecture. This

Selmer group is defined to be

Selp(E/L) := ker
(

H1(L, E[p∞]) −→
⊕

v

H1(Lv, E)[p∞]
)
,

where E[p∞] denotes the Galois module of all p-power division points on E, and v

runs over all places of L. The idea of Iwasawa theory is to exploit the structure of

the Selmer group of E over L∞ as a module for the Galois group G to show that the

groups Selp(E/L) exhibit some coherence as L varies.

A rich, well-developed theory now paints a fairly precise picture when F = Q and

G is either abelian or dihedral.

The last decade has seen the emergence of a program of non-abelian Iwasawa the-

ory whose goal is to study Problem 1.1 in settings which are further removed from
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the abelian setting. A prototypical example is the case where L∞ = Q(A[p∞]) is the

field generated over Q by the coordinates of the p-power division points of an elliptic

curve A over Q . The article [Har] exhibits cases where rE(Q(A[pn])) is unbounded

with n, but it is fair to say that the type of growth it could exhibit is at present only

poorly understood.

An intermediate case which appears more tractable, while still representing a sig-

nificant departure from the cyclotomic and anti-cyclotomic situations, is the case of

Kummer towers (sometimes also called false Tate curve extensions), where Ln is an ex-

tension of the form Q(µpn , q1/pn

) for some q ∈ Q× which is p-power free, and L∞

is the union of the Ln. In that case G = Zp ⋊ Z
×
p contains no abelian subgroup of

finite index. Studies by Coates, Fukaya, Kato, and Sujatha [CFKS] and V. Dokchitser

[Do-V] has led these authors to predict unbounded and strikingly regular growth for

rE(Ln) in certain cases. The aim of this note is to explain how some of these predic-

tions might be accounted for by Heegner points arising from a varying collection of

Shimura curve parametrisations.

From now on, let E be an elliptic curve defined over Q . We recall the deep fact that

E is known to be modular, a result which underlies all of our subsequent work. We

begin by reviewing earlier results in the (abelian) Iwasawa theory of elliptic curves

which provide both a context and some essential tools for our study.

A. Cyclotomic towers. Let L∞ = Q(µp∞) be the field obtained by adjoining the

group µp∞ of all p-power roots of unity to Q . Thus Gal(L∞/Q) = Z
×
p . Any finite

extension L ⊂ L∞ is contained in Ln = Q(µpn ) for some n, where µpn denotes the

group of pn-th roots of unity. A qualitative answer to Problem 1.1 in this case is

supplied by the following.

Theorem 1.2 (Kato–Rohrlich) The rank rE(Ln) is bounded as n → ∞.

The proof of Theorem 1.2 falls naturally into two parts. A non-vanishing theo-

rem of Rohrlich [Ro] shows that ords=1 L(E/Ln, s) remains bounded as n → ∞, or

equivalently that the twisted L-values L(E, χ, 1) are non-zero for all but finitely many

Dirichlet characters χ of p-power conductor. Secondly, a deep theorem of Kato [Ka]

shows that the χ-part of E(L∞) ⊗ C is trivial when L(E, χ, 1) 6= 0. It follows that

E(L∞) must have the same rank as E(Ln) for all sufficiently large n.

B. Anticyclotomic towers. It will be assumed from now on that p > 2. Let K be

an imaginary quadratic field, and let L∞ be the anticyclotomic Zp-extension of K.

This is the unique Zp-extension of K which is Galois over Q and for which G =

Gal(L∞/Q) is a semi-direct product of the form Zp ⋊ Z/2Z, where the quotient of

order two acts nontrivially on Zp. For each n ≥ 0, let Ln be the unique subfield of L∞

of degree pn over K. The group Gal(Ln/Q) is a dihedral group of order 2pn. Suppose

for simplicity that the conductor of E is relatively prime to p and the discriminant of

K. Then one has the following.

Theorem 1.3 The ranks rE(Ln) are either bounded or of the form pn + O(1), as

n → ∞.

The dichotomy in Theorem 1.3 is controlled by the sign in the functional equa-

tion for the L-series L(E/K, s). Let sign(E, K) ∈ {−1, 1} denote this sign. If χ is a
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finite order character of Gal(L∞/K), the functional equation for the twisted L-series

L(E/K, χ, s) relates L(E/K, χ, s) to L(E/K, χ, 2 − s), and the sign occurring in this

functional equation is equal to sign(E, K).

If sign(E, K) = 1, a non-vanishing result of Vatsal [Va1] establishes the analogue

of Rohrlich’s theorem: L(E/K, χ, 1) 6= 0 for almost all finite order characters of

Gal(L∞/K). The main result of [BD4] supplies the analogue of the theorem of Kato

alluded to in the discussion of the cyclotomic case. It then follows that E(L∞) =

E(Ln) for n sufficiently large.

If sign(E, K) = −1, the twisted L-series L(E/K, χ, s) all vanish to odd order, and

therefore

ords=1 L(E/Ln, s) ≥ pn.

The Birch and Swinnerton-Dyer conjecture therefore predicts a growth for rE(Ln)

which is at least linear in [Ln :K]. Heegner points arising from the modularity of E and

the theory of complex multiplication can be used to construct an explicit subgroup

HP(n) of E(Ln). The main theorem of [Cor] and [Va2] states that the rank of HP(n)

is equal to pn + O(1). The methods of Kolyvagin [Ko1], [Ko2] (suitably adapted to

ring class characters, as in [BD1]) then prove the result.

The key novelty of the anticyclotomic setting is the possibility of unbounded (and

in fact, linear in the degree) growth of rE(Ln); up to a bounded error term, this linear

growth is accounted for by Heegner points. (We remark that, although the case where

sign(E, K) = 1 seems closer to the cyclotomic case, Heegner points still play a crucial

role in the proof of the main results of [BD4].)

Note that the group Gal(Ln/Q), while non-abelian, is still not far from abelian, in

the sense that it contains an abelian normal subgroup of index 2.

C. Kummer towers. Fix an odd prime p, and an integer q > 1 which is p-power

free. Then define

Ln = Q(µpn , q1/pn

), (n ≥ 1); L∞ =
⋃

n≥1

Ln.

Thus

Gal(Ln/Q) ≃ (Z/pn
Z) ⋊ (Z/pn

Z)×, G = Gal(L∞/Q) ≃ Zp ⋊ Z
×
p .

The study of elliptic curves over this tower has been undertaken by a number of

authors, notably in [HV] (from the algebraic point of view of descent, and Iwasawa

theory) and in [Do-V] (from the analytic point of view of L-functions and root num-

bers.)

On the algebraic side, assuming that E has good ordinary reduction at p, it is

proven in [HV] that there exists a positive constant C > 0 such that the Zp-corank

of Selp(E/Ln) is at most C pn for all n.

On the analytic side, if we write

Fn = Q(µpn )+, Kn = Q(µpn ),

it follows from the modularity of E over Q and the theory of abelian base change

that the Hasse–Weil L-series L(E/Kn, s) is entire, and has a functional equation of the
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standard type; the same also holds for its twists L(E/Kn, χ, s) by abelian characters χ
of Kn. It follows that

L(E/Ln, s) =
∏

χ∈ ̂Gal(Ln/Kn)

L(E/Kn, χ, s)

is entire and has a functional equation and analytic continuation. Alternately (and

more germane to the methods of this article), abelian base change shows that E/Fn

arises from a Hilbert modular form fn on GL2(Fn). The L-series L(E/Kn, χ, s) can

be expressed in terms of the Rankin convolution of fn with a theta-series over Fn

associated to IndKn

Fn
χ, and the analytic continuation of L(E/Kn, χ, s) follows from

Rankin’s method. The following result is proved in [Do2]:

Proposition 1.4 Suppose that

(i) p is an odd prime of good reduction for E;

(ii) q is an odd prime of multiplicative reduction for E;

(iii) q generates (Z/p2Z)×;

(iv) sign(E, Q(µp)) = 1.

Then

ords=1 L(E/Ln, s) ≥ pn − 1.

In the setting of Proposition 1.4, the Birch and Swinnerton-Dyer conjecture pre-

dicts that

(1.1) rE(Ln) ≥ pn − 1.

The following result (Theorem 11 of [Do-TV1], improved by [CFKS]) singles out

some special cases where the inequality (1.1) is expected to be sharp.

Proposition 1.5 Assume the hypothesis of Proposition 1.4, and assume in addition

that Selp(E/Q(µp∞)) = 0. Then

corankZp
Selp(E/Ln) = pn − 1.

The assumption on Selp(E/Q(µp∞)) is used in the proof via p-descent in the spirit

of the methods of non-commutative Iwasawa Theory developed in [HV].

In the setting of Proposition 1.5, both the Birch and Swinnerton-Dyer conjecture

and the Shafarevich–Tate conjecture predict that

(1.2) rE(Ln) = pn − 1, for all n ≥ 0.

The purpose of this note is to point out a possible strategy for verifying (1.2) inde-

pendently of these deep conjectures. Our main result (Theorem 1.8 below) removes

the dependence on the Birch and Swinnerton-Dyer conjecture and the Shafarevich-

Tate conjecture, but remains conditional on Conjecture 1.7 below, which might be

viewed as a natural extension of the ongoing work of Skinner and Urban [Sk] to the
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setting of totally real fields. We now introduce the notations and concepts that are

needed to formulate Conjecture 1.7 precisely.

Let f0 be the elliptic modular form associated with the elliptic curve E/Q . Let F

be a totally real abelian extension of Q , and let f denote the (normalized) Hilbert

modular eigenform on GL2(F) associated with f0 by abelian base change. For each

prime λ of F, let aλ( f ) be the coefficient attached to λ in the Fourier expansion of f ,

and let T be the Hecke algebra over F. Let ϕ : T → Z be the homomorphism on T

that sends the Hecke operator Tλ to aλ( f ).

Let K be a totally imaginary quadratic extension of F and ω the associated quad-

ratic Hecke character over F. Assume for simplicity that the discriminant of K is

relatively prime to the conductor N of E over F. Let Σ
′ denote the following finite set

of places of F:

(1.3) Σ
′
= { places v of F : v|∞ or ωv(N) = −1}.

Lemma 1.6 If L(E/K, 1) 6= 0, then Σ
′ has even cardinality.

Proof The non-vanishing of L(E/K, 1) implies that sign(E, K) = 1. A standard

formula (for example, [Zh2, (1.1.2)]) for the root number asserts that sign(E, K) is

equal to (−1)#Σ
′

.

Let B ′ denote the (unique, up to isomorphism) quaternion algebra over F which is

ramified precisely at the places of Σ
′. Such a quaternion algebra exists by Lemma 1.6,

and is totally definite. Fix an embedding K →֒ B ′ (such an embedding exists since

Kv := K ⊗F Fv is a field whenever B ′ is ramified at v) and choose an order R ′ in

B ′ containing OK as a subring of relative discriminant N. Write Ẑ for the profinite

completion of Z, and set R̂ ′ := R ′ ⊗Z Ẑ, B̂ ′ = R̂ ′ ⊗ Q . Let G ′ denote the algebraic

group over F representing the functor on F-algebras given by A → (B ′ ⊗F A)×. Let

U ′ be the compact open subgroup R̂ ′
×

of G ′(A f ) where A f is the ring of finite adèles

of F. By strong approximation, the set

(1.4) X ′
= G ′(F)\G ′(A f )/U ′

is finite. (It can be viewed as the points on the Shimura variety of dimension 0 associ-

ated with the pair (G ′,U ′).) The set X ′ is also in bijection with the conjugacy classes

of Eichler orders in B ′ that are locally conjugate to R ′, equipped with an orientation

at N in the sense [BD2, §2.2]. Let Z[X ′] denote the finitely generated Z-module of

Z-valued functions on X ′. We call it the space of integral automorphic forms for G ′ of

weight 2 and level N. This module is equipped with an action of the Hecke algebra T

and with a natural non-degenerate Z-valued bilinear form

(1.5) 〈 · , · 〉 : Z[X ′] × Z[X ′] −→ Z

for which the Hecke operators Tλ (with λ ∤ N) are self-adjoint. By the Jacquet–

Langlands correspondence and multiplicity one, there is a unique rank one Z-module

in Z[X ′] on which T acts via the homomorphism ϕ. Let φ ′ denote a generator of this
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Z-module. Note that φ ′ is well defined up to sign, so the quantity 〈φ ′, φ ′〉 is a well-

defined integer. The algebraic part of L(E/K, 1) is defined by the formula

(1.6) L(E/K, 1) := 2−([F : Q]+1)
√

N(dK/F)
L(E/K, 1)

( f , f )
〈φ ′, φ ′〉,

where dK/F is the relative discriminant of K/F and N(dK/F) is its absolute norm. The

quantity ( f , f ) is the period of the Hilbert modular form f , as defined in Theorem

6.1 of [Zh3]. As will be explained in Section 2 below, the quantity L(E/K, 1) is an

integer. We make the following conjecture:

Conjecture 1.7 Let p be a prime that does not divide the absolute norm of N. Assume

that p does not divide the Tamagawa numbers of E/K, and that the mod p Galois rep-

resentation E[p] is absolutely irreducible. If Selp(E/K) is trivial, then p does not divide

L(E/K, 1).

We can now state the main result.

Theorem 1.8 Let p and q be two odd primes such that q generates (Z/p2Z)×. Let E

be an elliptic curve defined over Q , and let Ln = Q(µpn , q1/pn

). Assume that

(i) E has good ordinary reduction at p and Gal(Q(E[p])/Q) ∼= GL2(Fp);

(ii) E has multiplicative reduction at q;

(iii) Selp(E/Q(µp∞)) = 0.

(iv) Conjecture 1.7 holds for E and the extensions F = Q(µpn )+ and K = Q(µpn ) for

all n.

Then rE(Ln) = pn − 1 and rE(Q(q1/pn

)) = n.

Concerning the behaviour of the Hasse–Weil L-series and the Shafarevich–Tate

groups, our proof of Theorem 1.8 leads to the following information.

Theorem 1.9 Under the assumptions of Theorem 1.8, we have

ords=1 L(E/Ln, s) = pn − 1, ords=1 L(E/Q(q1/pn

), s) = n.

Furthermore, the Shafarevich–Tate groups of E over Ln and Q(q1/pn

) are finite.

The next two sections are devoted to a discussion of the two critical hypotheses

(iii) and (iv) that are made in Theorem 1.8.

2 Conjecture 1.7 and Zhang’s formula

The formulation of Conjecture 1.7 is justified by an explicit formula of Zhang for

L(E/K, 1) (generalising a formula of Gross [Gr]) which shows that this quantity is

always an integer.

The article [Zh3] associates with X ′ and K a canonical element ∆
′
K of Q[X ′].

This element is obtained by considering the conjugacy classes of optimal embeddings

of OK into Eichler orders in B ′ which are locally conjugate to R ′. Such an optimal

embedding is defined to be a pair

(Ψ, α) ∈ G ′(F)\
(

hom(K, B ′) × G ′(A f )
)
/U ′
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satisfying

(2.1) α−1
v Ψ(OK,v)αv ⊂ R ′

v, for all places v of F.

The class group K×\K̂×/
∏

v O
×
K,v acts naturally on the optimal embeddings by the

rule

ξ ⋆ (Ψ, α) := (Ψ,Ψ(ξ)α).

Let (Ψ1, α1), . . . , (Ψh, αh) be a full orbit for this action, and let w j be the cardinality

of the automorphism group of (Ψ j , α j). Then we define

(2.2) ∆
′
K :=

h∑

j=1

w−1
j α j ∈ Q[X ′].

It can be shown that ∆
′
K belongs to the dual lattice Z[X ′]∨ of Z[X ′] under the pairing

(1.5).

Zhang’s formula (cf. [Zh3, Theorem 7.1]) relates the position of the vector ∆
′
K in

Z[X ′]∨ to the special value of L(E/K, 1):

〈φ ′,∆ ′
K〉

2

〈φ ′, φ ′〉
= 2−([F : Q]+1)

√
N(dK/F)

L(E/K, 1)

( f , f )
.

(Note that the expression on the left is unchanged when φ ′ is rescaled.) This formula

shows that

L(E/K, 1) = 〈φ ′,∆ ′
K〉

2

is an integer. Moreover, as ∆ ranges over all the elements of Z[X ′]∨, the fact that

φ ′ is not divisible by any integer greater than 1 in Z[X ′] implies that the quantities

〈φ ′,∆〉 have no common prime divisor. This is why we expect that if a prime p

does not arise in the extraneous factors of the Birch and Swinnerton-Dyer conjecture

(namely, the Tamagawa numbers of E/K and the cardinality of E(K)tors), it should

only divide L(E/K, 1) when the Selmer group Selp(E/K) is non-trivial.

A proof of conjecture 1.7 has been announced in [Sk] in the case where F = Q .

The approach of [Sk] is to assume that p divides L(E/K, 1) and to relate this quantity

to the constant term of an Eisenstein series on U (2, 2) arising from a lift of f0. A mod

p congruence between this Eisenstein series and a cusp form leads to an irreducible

but residually reducible p-adic Galois representation from which the sought-for non-

trivial element of Selp(E/K) can be constructed. It is the authors’ hope that Conjec-

ture 1.7 might eventually yield to similar methods. While the technical obstacles may

be considerable, it is fair to say that Conjecture 1.7 presents less mystery than either

the Birch–Swinnerton-Dyer or the Shafarevich–Tate conjectures, thanks to the ideas

introduced in [Sk].

We also remark that the converse of Conjecture 1.7 is proved, in the case where

F = Q and under certain extra hypotheses, in [BD4]. The approach described there,
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just like the methods of [Sk], admits a generalization to totally real fields. (See for

example [Lo] and [TZ].)

The proof of Theorem 1.8 involves certain imprimitive versions of the invariants

∆
′
K and L(E/K, 1). More precisely, given an ideal λ of OF , we let OK [λ] := OF +

λOK be the OF-order of K of conductor λ. An optimal embedding of K into B ′ of

conductor λ is defined in the obvious way, by replacing OK by OK [λ] in the definition

(2.1) of an optimal embedding of conductor 1. The invariant ∆
′
K,λ is then defined as

in (2.2), but summing this time over an orbit of optimal embeddings of conductor λ
under the action of the class group K×\K̂×/ÔK [λ]×. Finally we set

(2.3) L(E/K, 1)(λ) := 〈φ ′,∆ ′
K,λ〉

2.

Let us return now to the specific setting where F = Q(µpn )+ and where K =

Q(µpn ). Let p be the unique prime of F above p, and let

ap := p + 1 − #E(Z/pZ) = p + 1 − #E(OF/p).

Lemma 2.1 For all integers t ≥ 1,

L(E/K, 1)(pt ) ≡ (ap − 1)at−1
p L(E/K, 1) (mod p).

Proof The elements ∆K,pt are related to the images of ∆
′
K under powers of the Hecke

operator Tp via the following recursive formulae:

∆
′
K,p = (Tp − 1)∆ ′

K , ∆
′
K,pt+1 = Tp∆

′
K,pt − p∆

′
K,pt−1 , for t ≥ 1.

Recall that Tp acting on Q[X ′] is self-adjoint, and that Tpφ
′
= apφ

′. It follows that

L(E/Kn, 1)(p) = 〈φ ′, (Tp − 1)∆ ′
K〉 = (ap − 1)〈φ ′,∆ ′

K〉 = (ap − 1)L(E/K, 1)(p).

Likewise, we have, for all t ≥ 1:

L(E/Kn, 1)(pt+1) = apL(E/Kn, 1)(pt ) − pL(E/Kn, 1)(pt−1)

≡ apL(E/Kn, 1)(pt ) (mod p).

3 Regular Primes

We now make some remarks on hypothesis (iii) that occurs in Theorem 1.8. Assume,

as in the statement of Theorem 1.8, that E has good ordinary reduction at p. Let

K∞ = Q(µp∞) and k = Q(µp), and let Γ = Gal(K∞/k) ≃ Zp be the Galois group

of the cyclotomic Zp-extension of k. Let X(E/K∞) denote the Pontryagin dual of

Selp(E/K∞). We call p a regular prime for E if the following equivalent conditions are

satisfied:

(i) Selp(E/K∞) = 0;

(ii) Selp(E/K∞) is finite;

(iii) the characteristic ideal of X(E/K∞) is trivial;
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(iv) the Euler characteristic χ(E/K∞) :=
|H0(Γ, X(E/K∞))|

|H1(Γ, X(E/K∞))|
is a p-adic unit;

(v) the number
|X(E/k)| · |Ẽ(Fp)|2 ·

∏
v cv

|E(k)|2
is a p-adic unit, where Ẽ is the reduc-

tion of E at the unique prime of k above p, and cv denotes the Tamagawa number

of E at a finite place v of k.

The equivalence between (i) and (ii) is given by Matsuno’s Theorem [Mat] that

X(E/K∞) is p-torsion-free. The remaining equivalences are well known.

The terminology of regular primes follows from the obvious analogy with the notion

of regular prime in the theory of cyclotomic fields. We expect that if rE(Q) = 0, then

there are infinitely many regular primes for E. Although this appears hard to prove,

there is a readily computable criterion that allows one to test whether a given prime is

regular, which is analogous to Kummer’s criterion for regularity in terms of Bernoulli

numbers, and rests on the notion of modular symbols.

Write 2πi f0(z)dz for the holomorphic differential form on Γ0(N)\H attached to

f0. The modular symbol [r] attached to r ∈ Q is the complex number defined by the

formula

[r] :=

∫ i∞

r

2πi f0(z)dz.

The fact that the weight two modular form f0 is periodic with period 1 implies that

[r] depends only on the value of r in Q/Z. The set of values taken on by [r] as

r ∈ Q/Z generates a rank two lattice ΠE ⊂ C, which is commensurable with the

Néron lattice of E. This makes it possible to view [r] as taking values in ΠE.

For 0 ≤ j ≤ p − 2, define the “ j-th Bernoulli number attached to E” by the

formula

BE( j) =

p−1∑

r=1

[ r

p

]
r j ∈ ΠE.

Let Γ = Gal(K∞/k) and let Λ(Γ) be its Iwasawa algebra. A construction originally

due to Mazur and Swinnerton-Dyer attaches a p-adic L-function Gk ∈ Λ(Γ) to E

and the cyclotomic Zp-extension K∞/k. This p-adic L-function is defined in terms

of modular symbols, and it follows directly from its definition that the following

conditions are equivalent.

(i) Gk is a unit in the Iwasawa algebra Λ(Γ);

(ii) under the isomorphism Λ(Γ) ∼= Zp[[T]], the constant term Gk(0) is p-adic unit;

(iii) p does not divide BE( j) for all 0 ≤ j ≤ p − 2.

We will say that a prime p is analytically regular for E if these equivalent conditions

are satisfied.

Theorem 3.1 (Kato) Let E be an elliptic curve defined over Q and p a good ordinary

prime for E. Assume that E[p] is an irreducible GQ -module. Then the characteristic

ideal of X(E/K∞) divides GkΛ(Γ). In particular, if p is analytically regular for E, then

p is regular for E.

A computer program can be used to find the first few analytically regular primes

for E by computing the numbers BE( j), much as Kummer’s criterion can be used
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to generate tables of regular primes. The following list gives some regular primes

for the first few elliptic curves in Cremona’s tables, and indicates the proportion of

the primes < 20, 000 that are analytically regular. (The authors are grateful to Jack

Fearnley for performing these calculations.)

E Analytically regular p < 100 Percentage < 20, 000

11A 3, 23, 31, 59, 67, 89, 97. 27.5
14A 3, 5, 13, 59, 61, 83. 27.0
15A 17, 23, 31, 79. 27.0
17A 3, 7, 11, 13, 23, 31, 53, 79. 27.8
19A 5, 7, 11, 17, 47, 61. 28.0

Of course, it is expected that the converse to Theorem 3.1 holds, i.e., that a prime

p is analytically regular if and only if it is regular. The ongoing work of Skinner and

Urban alluded to in the discussion of Conjecture 1.7 may shed some light on this

converse.

Theorem 3.1 and the above table yield plenty of instances where the hypotheses

made on E, p, and q in Theorem 1.8 are satisfied, proving that Theorem 1.8 is not

vacuous. For the sake of illustration, we mention the following result.

Corollary 3.2 Let E : y2 − y = x3 − x2 be the (unique, up to isogeny) elliptic curve of

conductor 11, and let p be one of the primes 3, 23, 31, 59, 67, 89, or 97. If Conjecture 1.7

is true, then

rE(Q(µpn , 111/pn

)) = pn − 1, rE(Q(111/pn

)) = n.

The remainder of this article is devoted to explaining the proof of Theorem 1.8.

4 The Basic Strategy

We maintain the notations of the previous section and the assumptions in the state-

ment of Theorem 1.8. Let us begin by listing a few facts about E and its behaviour

over Ln that will be needed in the course of our study.

Lemma 4.1 With notations and assumptions of Theorem 1.8, we have the following:

(i) E(L)[p∞] = 0 for any subfield L of L∞.

(ii) The Shafarevich–Tate group X(E/k) has trivial p-primary part.

(iii) The prime q is inert in K∞ and p ∤ ordq(qTate), where qTate denotes the period of

the Tate curve E over the completion of k at the unique prime above q.

(iv) ap 6≡ 1 (mod p).

(v) Selp(E/Q(µpn )) = 0 for each n ≥ 0.

(vi) The functional equation of the L-function L(E/Q(µpn ), s) has sign +1.

(vii) Any elliptic curve isogenous to E still satisfies conditions (i)–(iii) in Theorem 1.8.

Proof Part (i) of this lemma follows directly from the fact that Gal(Q(E[p])/Q) is

isomorphic to GL2(Fp) and that G has no quotient isomorphic to GL2(Fp). Parts
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(ii)–(iv) then follow from the characterisation (v) in the definition of a regular prime

for E. To prove (v), let Γn = Gal(K∞/Q(µpn )). The kernel of the restriction map

Selp(E/Q(µpn )) −→ Selp(E/K∞)Γn

is contained in H1(Γn, Ep∞(K∞)) which is zero by (1), i.e., this restriction map is

injective. But Selp(E/K∞) = 0 by assumption, and (v) follows. Now (vi) follows

from (v) and the parity theorem in [Ne1, Prop. 12.5.9.5(iv)]. (See also [Do-TV2,

Theorem 1.1] and [Ne2]; alternately, (vi) is also a consequence of Conjecture 1.7.)

Part (vii) follows from the fact that E[p] is an irreducible Gal(Q/Q)-module, in

light of the fact that properties (i)–(iii) in Theorem 1.8 are preserved under isogenies

of degree prime to p.

For each integer n ≥ 1, recall that Gn = Gal(Ln/Q) ∼= (Z/pnZ) ⋊ (Z/pnZ)×

and that Kn = Q(µpn ). Let χn be any faithful character of Gal(Ln/Kn) ∼= Z/pnZ

(i.e., a surjective homomorphism to the group of pn-th roots of unity). The induced

representation ρn := IndQ

Kn
χn is an absolutely irreducible rational representation of

Gn of dimension pn− pn−1 which is faithful and does not depend on the choice of χn.

Lemma 4.2 The representation ρn is the unique faithful irreducible representa-

tion of Gn. Any other irreducible representation of Gn factors through the group

Gal(Ln−1Kn/Q).

Theorem 1.8 is now a consequence of the following more precise statement.

Theorem 4.3 Assume all the hypotheses of Theorem 1.8. Then for each n ≥ 0,

(4.1) E(Ln) ⊗ Q ∼= ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρn.

Our strategy to prove Theorem 4.3 is to proceed by induction on n. For n = 0, we

have Ln = Fn = Q , and there is nothing to show. So assume that

E(Ln−1) ⊗ Q = ρ1 ⊕ · · · ⊕ ρn−1.

In particular, rE(Ln−1) = pn−1 − 1. Proposition 1.5 implies that rE(Ln) ≤ pn − 1. To

show that equality is attained, it is enough to prove that

(4.2) HomGn
(ρn, E(Ln) ⊗ Q) 6= 0,

which implies that E(Ln)⊗Q contains exactly one copy of ρn, and therefore that (4.1)

holds.

Note that (by Lemma 4.1(iii)) the prime q is inert in Kn/Q . Denote by qn the

unique prime of Kn above q. The prime qn is totally ramified in Ln/Kn, with ramifi-

cation degree pn. Let q
′
n denote the unique prime of Ln above qn, and let Ln denote

the completion of Ln at this prime. Finally let On denote the ring of integers of Ln,

and let En denote the Néron model of E over Spec(On). By assumption, the elliptic
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curve E has split multiplicative reduction at qn. Thus E is a Tate curve over Ln, and

the group of connected components of En is isomorphic to

L×
n /qZ

TateO
×
Ln

≃ Z/ ordq(qTate)pn
Z.

Let Φn denote the p-primary part of this group of connected components. By

Lemma 4.1(iii), we know that p ∤ ordq(qTate), and hence Φn is (canonically) iso-

morphic to Z/pnZ. Write ∂ : En(On) → Φn for the specialization map to the group

of connected components. We can also view ∂ as a map on E(Ln) by the universal

property of the Néron model.

The following proposition gives a useful criterion in terms of the specialisation

map ∂ for equation (4.2) to be satisfied.

Proposition 4.4 Let y be a point in E(Ln) and let V y ⊂ E(Ln) ⊗ Q be the rational

representation of Gn generated by y. If ∂(y) has order pn, then HomGn
(ρn,V y) 6= 0.

Proof By Lemma 4.2, we only need to show that y does not belong to

E(Ln)tors + E(L ′
n−1), where L ′

n−1 := Ln−1Kn.

Lemma 4.1(i) implies that ∂(E(Ln)tors) = 0, while the fact that q has ramification

degree pn−1 in L ′
n implies that

∂(E(L ′
n−1)) ⊂ pΦ ≃ Z/pn−1

Z.

Proposition 4.4 reduces the proof of Theorem 1.8 to the problem of producing for

each n = 1, 2, . . . , an algebraic point yn ∈ E(Ln) such that ∂(yn) has order pn in

Φn. We will construct the point yn as a Heegner point arising from an appropriate

Shimura curve parametrisation of E.

5 Shimura Curves

In this section and the next, the integer n ≥ 1 will be fixed. In order to lighten the

notations, we will therefore supress it from the subscripts and write

F = Q(µpn )+, K = Q(µpn ), and L = Ln = Q(µpn , q1/pn

).

Let q denote the unique prime of F above q, and let Fq denote the completion of F at

this prime. We will denote by OFq
the ring of integers of Fq, and choose a uniformising

element πq of OFq
. Finally, let Fq = OFq

/πq denote the residue field of Fq at q.

Let f be the Hilbert modular form obtained by abelian base change of f0 to F

so that L( f , s) = L(E/F, s), L( fK , s) = L(E/K, s). Let ω be the quadratic Hecke

character over F associated with the extension K/F. By Lemma 4.1(vi), the sign of

the functional equation for L( fK , s) is +1. It follows that the set Σ
′ introduced in

(1.3) has even cardinality.

Fix an infinite place τ of F, and let

Σ := Σ
′ \ {τ , q}.
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Let B be the quaternion algebra over F ramified exactly at the places of Σ. Let OB

be a maximal order of B and fix an isomorphism OB,q
∼= M2(OFq

). Let R ⊂ OB be

an Eichler order of B of discriminant prime to q. Let g ∈ ÔB be an element whose

component at q is
(

1 0
0 πq

)
and whose other components are 1. Let R0(q) be the order

of B defined by B∩ (R̂∩ gR̂g−1). Let G be the algebraic group over F representing the

functor on F-algebras A → (B ⊗F A)×. Consider the following two open compact

subgroups of G(A f ): U = R̂×, U0(q) = R̂0(q)
×

. Let H = C − R and let X and

X0(q) be the Shimura curves over F associated with (G,H) of level U and U0(q)

respectively. They have complex points

X(C) = G(F)\H × G(A f )/U ,

X0(q)(C) = G(F)\H × G(A f )/U0(q).

These two (not necessarily connected) curves are equipped with two natural “degen-

eracy maps” X0(q) → X, denoted π1 and π2, respectively. These two maps satisfy

π1 = π2 ◦ wq, where wq is the Atkin–Lehner involution at q. Let J and J0(q) denote

the Jacobians of X and X0(q), respectively.

Let Π be the automorphic representation for G such that the automorphic repre-

sentation for GL2,F corresponding to f is the Jacquet-Langlands lift of Π. Let φ be

a new vector in Π. It is unique up to multiplication by a non-zero scalar and is an

eigenvector of the Hecke algebra TU0(q) of level U0(q). The annihilator of the new line

Cφ in TU0(q) cuts out a quotient of J0(q) which is isogenous to E over F.

Theorem 5.1 The elliptic curve E is isogenous over F to a quotient of J0(q).

By eventually replacing E with another elliptic curve in its isogeny class, we will

assume without loss of generality (by Lemma 4.1(vii)) that E is an optimal quotient

of J0(q), so that the modular parametrization

(5.1) η : J0(q) −→ E

has connected kernel.

The curves X and X0(q) have canonical nodal models (in the sense of [Ed, Section

1]) over Spec(OFq
), which will be denoted by X and X0(q) respectively. The special

fiber of X0(q) is the union C0 ∪C∞ of two copies of X/Fq
intersecting transversally at

the set XSS of supersingular points of X/Fq
. A local equation in a neighbourhood of

a supersingular point s ∈ XSS is given by t1t2 = πms

q , where ms = # Aut(s). Assume

for simplicity that ms = 1 for all s ∈ XSS. This can always be achieved at the cost

of replacing the level structure U by a subgroup of finite index. It will simplify our

subsequent discussion without altering any of its essential features to assume that this

condition is satisfied.

The generic fiber of X0(q), viewed as a q-adic rigid analytic space, can be expressed

as the union of two wide open spaces (in the terminology of Coleman [Cole]), de-

noted W0 and W∞, intersecting in a disjoint union of open annuli As indexed by the

elements of XSS:

W0 ∩W∞ =
⋃

s∈XSS

As.
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Figure 1: The nodal model of X0(q) over Spec(OFq
).

Let U0 and U∞ denote the largest affinoid subregions contained in W0 and W∞

respectively, so that X0(q)(F̄q) can be expressed as a disjoint union:

X0(q)(F̄q) = U0 ∪U∞ ∪
⋃

s∈XSS

As.

Any point in X0(q)(Fq) is contained in one of the affinoids U0 and U∞, and the

Cartier divisor associated with such a point meets the special fiber at a smooth point,

belonging to either C0 or C∞ (but not to both). The same also holds if Fq is replaced

by any unramified extension. For each s ∈ XSS, choose a local parameter js of OAs

which identifies the annulus As with the standard annulus in Cq defined by {|πq| <
|z| < 1}. We choose these local parameters in such a way that they give rise to

compatible orientations in the sense of [Cole] on each of the annuli As. The situation

(in the case where X has genus 0 and three supersingular points, labelled 1, 2, and 3,

so that X0(q) has genus two) is depicted in Figure 1.

Let Kq be any unramified extension of Fq and let L be a totally ramified extension

of Kq of degree d. We will write πL for a uniformizing element of the ring of integers

OL of L, so that (πd
L

) = (πq).

Over the ramified base Spec(OL), the nodal model of X0(q) is obtained by resolv-

ing the singularities of the special fiber by a sequence of blowups, so that the singular

points of the two irreducible components C0 and C∞ of XFq
are now connected at

each supersingular point by a chain of d− 1 rational curves intersecting transversally

at ordinary double points. Let ℓs,1, . . . , ℓs,d−1 denote this chain of projective lines

ordered in such a way that

(i) the line ℓs,1 intersects C0 at the singular point ss,1 on C0 attached to s;

(ii) the lines ℓs, j−1 and ℓs, j intersect transversally in a singular point ss, j , for j =

2, . . . , d − 1; and
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Figure 2: The nodal model of X0(q) over Spec(OL).

(iii) the line ℓs,d−1 intersects C∞ in the singular point ss,d on C∞ attached to s.

The reduction map from the OL-points of the generic fiber to the smooth points

of the special fiber can be described by introducing, for each s ∈ XSS, the affinoid

regions

Affs, j = {α ∈ As such that | js(α)| = |π
j
L
|}, j = 1, . . . , d − 1.

The open annulus As is a disjoint union of the d − 1 affinoids Affs, j with the open

annuli of the form

As, j = {α ∈ As such that |π
j
L
| < js(α)| < |π

j−1
L

|}, j = 1, . . . , d.

On the level of L-rational points, we have

As(L) = Affs,1(L) ∪ · · · ∪ Affs,d−1(L).

A point P ∈ X(L) on the ordinary locus reduces to a smooth point on one of the

components C0 or C∞. If P belongs to the supersingular locus, its image under the

reduction map is a smooth point on the unique irreducible component ℓs, j such

that P belongs to Affs, j . The nodal model of X0(q) over Spec(OL) is represented

schematically in Figure 2.

Let G denote the dual graph of the special fiber of X0(q) over Spec(OL). Its vertices

are indexed by the irreducible components of this special fiber, and we will denote

this set of vertices by

V(G) = {v0, v∞} ∪ {vs, j , where s ∈ XSS, j = 1, . . . , d − 1}.
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Figure 3: The dual graph G of the special fiber of X0(q) over Spec(OL).

Two vertices are joined by an edge if they intersect. The set E(G) of (ordered) edges

of G is therefore in bijection with the singular points of the special fiber, and we write

E(G) = {es, j , where s ∈ XSS, j = 1, . . . , d.}.

The dual graph of X0(q) over Spec(OL) is depicted in Figure 3. Note that it need not

be connected, because X0(q) may have several distinct components.

By reduction, a divisor on X0(q)(OL) gives rise to a formal integral linear combi-

nation of elements of V(G). Let

red : Div(X0(q)) −→ Z[V(G)]

denote this reduction map. Let Div0(X0(q)) denote the group of divisors which are

homologically trivial (i.e., whose restrictions to each component of the generic fiber

are of degree zero). Given any ∆ ∈ Div0(X0(q)(L)), write γ∆ for any path in G (i.e.,

element of Z[E(G)]) satisfying

boundary(γ∆) = red(∆).

Note that the path γ∆ is determined by this equation only up to elements of H1(G, Z).

Assume now for simplicity of exposition that ordπq
(qTate) = 1, so that E/Fq

has

trivial group of connected components. This implies that the group Φ of connected

components in the special fiber of E/OL
is isomorphic to Z/dZ.

We now recall the description of the specialisation map

∂ ◦ η : Div0(X0(q)(L)) −→ Z/dZ

that follows from the discussion in [Ed].

Let 1E be a generator of the character group of the torus attached to E, and let

ξE := η∗(1E)

denote its pullback under the modular parametrisation η. The element ξE can be

viewed as an element of Z[XSS]. The set XSS is identified with the double coset space
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X ′ associated to the quaternion algebra B ′ introduced in (1.4). By the argument ex-

plained in [Rib], which adapts to the more general setting of Shimura curves over

totally real fields, the fact that E/Fq
has a trivial group of connected components im-

plies that the element ξE is indivisible. Since it belongs to the eigenspace for the Hecke

algebra associated to f , it follows that

ξE = ±φ ′,

where φ ′ is the element introduced just before (1.6). After eventually adjusting the

sign of φ ′, we can assume that ξE = φ ′.

To give a concrete description of the specialisation map to connected components,

it is useful to view ξE as a function on the set E(G) of ordered edges of G, by setting,

for all s ∈ XSS:

〈ξE, es,1〉 = · · · = 〈ξE, es,d〉 := 〈ξE, s〉.

We may extend ξE to Z[E(G)] by Z-linearity. Note then that 〈ξE, γ〉 := ξE(γ) belongs

to dZ, for all γ ∈ H1(G, Z). In particular, if ∆ is a degree 0 divisor on X0(q)(L), the

expression 〈ξE, γ∆〉 is well defined in Z/dZ.

The following proposition is a reformulation of the main result of [Ed].

Proposition 5.2 For all ∆ in Div0(X0(q)(L)), we have

∂ ◦ η(∆) = 〈ξE, γ∆〉 = 〈φ ′, γ∆〉.

6 Heegner Points

Fix an embedding ρ : K → B. Assume that the maximal order OB of B has been

chosen to contain OK and fix an isomorphism OB,q
∼= M2(OFq

). Finally, let R ⊂ OB

be an order of B containing OK with relative discriminant N/q.

Let T be the algebraic group over F representing the functor A → (K ⊗F A)× for

any F-algebra A. We may regard T as a torus in G via the fixed embedding ρ : K → B.

Then T(F) →֒ G(F)+ acts on H. Let h0 be the unique fixed point of T(F) in the upper

half plane H+. Then X(C) is equipped with the set of CM points:

CU : = G(F)+\G(F)+h0 × G(A f )/U

≃ T(F)\G(A f )/U ,

where the last identification is given by [(h0, g)] → [g]. By Shimura’s theory, these

CM points by K are defined over abelian extensions of K. More precisely, there is an

action of T(A f ) ≃ K̂× on CU , given by the left multiplication on G(A f ). Shimura’s

reciprocity law asserts that this action factors through the reciprocity map T(A f ) ։

Gal(Kab/K) and corresponds to the Galois action on CU . For a CM point z = [g] in

CU with g ∈ G(A f ), the stabilizer of z in T(A f ) equals

Uz := T(F) · (T(A f ) ∩ gU g−1).

There exists a unique order Oc = OF + cOK of OK , with c a nonzero ideal of OF , such

that Ô×
c = T(A f ) ∩ gU g−1. We say that the conductor of z is c.
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Let λ be a prime of OF which is relatively prime to q, and let z0 ∈ CU be a CM

point by K of conductor λ. This point is defined over the ring class field H[λ] of K of

conductor λ. This ring class field is characterized by the reciprocity law isomorphism

Gal(H[λ]/K) ≃ K×\K̂×/ÔK [λ]×

of class field theory, where we recall that OK [λ] = OF + λOK is the OF-order of K of

conductor λ.

The fibers of z0 under the maps πi : X0(q) → X, i = 1, 2 are isomorphic to

Spec H[λq]. The field H[λq] is a cyclic extension of H[λ] which is totally ramified

at all the primes of H[λ] above q. Let dλ := [H[λq] : H[λ]] denote the degree of

H[λq] over H[λ].

Choose any two closed points z1, z2 ∈ X0(q)(H[λq]) satisfying

(6.1) π1(z1) = z0, π2(z2) = z0.

For each σ ∈ Gal(H[λ]/K), choose a lift σ̃ ∈ Gal(H[λq]/K) of σ to this group, and

write

∆λ,q =
∑

σ∈Gal(H[λ]/K)

(z1 − z2)σ̃ ∈ Div0(X0(q)(H[λq])),

yλ,q = η(∆λ,q) ∈ E(H[λq]),

where we recall that η is the modular parametrization of (5.1). Because the prime

q is inert in K/F, it splits completely in H[λ]/K. Choose a prime of H[λ] above q

and write ∂ : E(H[λq]) → Z/dλZ for the associated projection onto the group Φ of

connected components of E over H[λq] at this prime.

We remark that the lifts z1 and z2 are well defined by (6.1) up to translation by an

element of Gal(H[λq]/H[λ]). Since this extension is totally ramified at the primes

above q, and since the inertia groups at these primes act trivially on the connected

components, the expression ∂(yλ,q) does not depend on the choice of points z1 and z2

satisfying (6.1). For the same reason, it does not depend on the choice of lifts σ̃, which

are well defined up to multiplication by elements in the inertia group at q. Finally,

because the group Gal(H[λ]/K) acts transitively on the primes of H[λ] above q, the

expression ∂(yλ,q) obtained through summing over the Gal(H[λ]/K)-translates of

the divisor (z1 − z2) is also independent of the choice of this prime.

Theorem 6.1 We have ∂(yλ,q)2
= 4L(E/K, 1)(λ) (mod dλ).

Proof Let

∆
′
K,λ =

∑
s∈XSS

m(s)s ∈ Z[X ′]

denote the Heegner vector introduced in Section 2. It follows from [BD3, Ap-

pendix(2.3)] and Gross’ work on quasi-canonical liftings of formal groups that (after

eventually permuting z1 and z2 if necessary) we have

red
( ∑

σ∈Gal(H[λ]/K)

zσ̃
1

)
=

∑
s∈XSS

m(s)vs,dλ−1,

red
( ∑

σ∈Gal(H[λ]/K)

zσ̃
2

)
=

∑
s∈XSS

m(s)vs,1.
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Therefore we can choose

(6.2) γ∆λ,q
=

∑

s∈XSS

m(s)(es,2 + · · · + es,dλ−1).

By Proposition 5.2,

(6.3) ∂(yλ,q) = ∂ ◦ η(∆λ,q) = 〈φ ′, γ∆λ,q
〉.

Combining (6.2) and (6.3) gives

∂(yλ,q) = (dλ − 2)〈φ ′,∆ ′
K,λ〉.

The theorem now follows after squaring both sides, in light of the definition of

L(E/K, 1)(λ) given in (2.3).

Let L ⊂ H[λq] be a cyclic extension of K of degree d which is totally ramified at

q, and write

∆L =
∑

σ∈Gal(H[λq]/L)

(z1 − z2)σ ∈ Div0(X0(q))(L),

yL = η(∆L) ∈ E(L).(6.4)

Theorem 6.2 We have

∂(yL)2
= 4L(E/K, 1)(λ) (mod d).

Proof Since q splits completely in H[λ]/K and is totally ramified in L/K, the exten-

sions L and H[λ] are linearly disjoint over K. Therefore the natural homomorphism

Gal(H[λq]/L) −→ Gal(H[λ]/K) is surjective. We may therefore choose the lifts σ̃ of

σ in such a way that σ̃ belongs to Gal(H[λq]/L). After defining yλ,q with this choice

of lifts, we have

yL = NormH[λq]/LH[λ](yλ,q),

where LH[λ] is the compositum of L and H[λ] and NormH[λq]/LH[λ] is the norm to

this field. Since all the primes of LH[λ] above q are totally ramified in H[λq], it

follows that this norm element induces the natural projection map Z/dλZ −→ Z/dZ

from the group of connected components of E over H[λq] to the group of connected

components over L. It follows from Theorem 6.1 that

∂(yL)2 ≡ 4L(E/K, 1)(λ) (mod d),

as was to be shown.
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7 Conclusion of the Proof

We can now prove Theorems 1.8 and 1.9.

Proof of Theorem 1.8. The extension L = Ln = Q(µpn , q1/p) is an abelian extension

of K = Q(µpn ) which is unramfied outside p and q and is tamely ramified at q. This

extension is also Galois over the totally real subfield F = Q(µpn )+, and Gal(L/F) is

a dihedral group. It follows from class field theory that L is contained in a ring class

field of the form H[p
t
q] for a suitable t ≥ 1. Let yn = yL ∈ E(L) denote the Heegner

point that was constructed in (6.4). By Theorem 6.2 and Lemma 2.1, we have

∂(yn)2 ≡ 4L(E/K, 1)(pt ) (mod pn)

= 4(ap − 1)at−1
p L(E/K, 1) (mod p).

Recall that by Lemma 4.1 the Selmer group Selp(E/Q(µpn )) is trivial. Conjecture 1.7

for E and the quadratic extension K/F implies that the special value L(E/K, 1) is a

p-adic unit. Hence the same is true of ∂(yn)2, in light of Lemma 4.1(iv). Therefore

∂(yn) has order pn, and Theorem 1.8 follows (by induction on n) from Proposi-

tion 4.4.

Proof of Theorem 1.9 The L-series L(E/L) factors as a product of abelian L-series of

E/K:

L(E/L, s) =
∏

χ∈ ̂Gal(L/K)

L(E/K, χ, s).

The factor L(E/K, 1) associated with the trivial character is non-vanishing by as-

sumption, while the remaining pn − 1 factors each have a zero of odd order because

of the sign in the functional equation of L(E/K, χ, s). Our proof that rank(E(L)) ≥
pn − 1 exhibited a Heegner point whose natural image in the χ-component (E(L) ⊗
C)χ is non-zero. It follows from Zhang’s generalisation of the Gross–Zagier for-

mula that each factor associated to a non-trivial χ has non-vanishing derivative. The

method of Euler systems, as generalised to the setting of totally real fields in [KL] and

[TZ] (and suitably adapted to non-trivial ring class characters, as in [BD1]) implies

the second statement in Theorem 1.9.

Remark Theorem 4.3 completely determines the structure of E(Ln)⊗Q as a repre-

sentation for Gal(Ln/Q). One can therefore compute rE(L) for any subfield L of L∞

finite over Q from this theorem. Let L be an arbitrary finite extension of Q contained

in L∞, let K = L ∩ K∞. Define integers m, n, d by

[L :K] = pn, [K : Q] = dpm−1 with d | p − 1.

One can show that if d 6= p − 1, then L = K(q1/pn

) for some pn-th root q1/pn

of q,

and if d = p − 1, then L = K(ζ pℓ

q1/pn

) with 0 ≤ ℓ ≤ n − 1, where ζ is a primitive

pn+m-th root of unity.
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Theorem 7.1 Assume the hypotheses of Theorem 1.8. Then

rE(L) =





pℓ−1 − 1, if d = p − 1 and 0 ≤ ℓ < m,

d · pn−1
p−1

, if d 6= p − 1 and n ≤ m,

d ·
( pm−1

p−1
+ pm−1(n − m)

)
, otherwise.

In particular, rE(L) is equal to 0, n, and pn − 1 for L = Q(µpn ), Q(q1/pn

), and Ln,

respectively.
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