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Abstract. We discuss how 3D numerical simulations can be used to analyse the different con-
tributions within dynamical equations of non-local Reynolds stress models of convection.
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1. Models, numerical simulations, model cases, and discussion
Reynolds stress models for turbulent convection require to solve dynamical equations

for the ensemble averages of velocity and temperature fields and their lower order mo-
ments. Because of the non-linearity of the underlying hydrodynamical equations these
equations are part of an unclosed hierarchy which requires additional assumptions (clo-
sure approximations) to formulate predictive models. In Kupka & Muthsam (2007a-c)
and Kupka (2007) a study of a set of moment equations proposed by Canuto & Dubovikov
(1998) (combined with results from Canuto 1992, 1993) was presented. They extended
earlier tests by Kupka (1999), which had been based on 3D numerical simulations of com-
pressible convection by Muthsam et al. (1995, 1999), to the case of deep convection zones.
We present further results using a term-by-term analysis of individual contributions in
the dynamical equations. The simulations are briefly described in Kupka & Muthsam
(2007a), and resolve all scales down to the dissipation range for a given, constant Prandtl
number Pr, assume idealised microphysics, a perfect gas with γ = 5/3, prescribed ra-
diative conductivities, and a cartesian geometry with a constant, downwards pointing
gravitational acceleration. Horizontal boundary conditions are periodic, vertical ones are
closed and stress-free with a constant energy flux imposed at the bottom and a constant
temperature at the top. Radiative transfer is treated in the diffusion approximation. As
in Kupka & Muthsam (2007a) we consider a thin zone of inefficient convection embedded
in stably stratified layers (‘model 3J’, 72× 502 grid points, Pr=1) along side simulations
of a thicker zone with more efficient convection embedded in likewise manner (‘model
155X’ with Pr=0.1 and a resolutions of 160 × 1402 points, first component vertical).
Solutions of Reynolds stress models are obtained with a modified version of the code of
Kupka (1999). The model equations are those suggested in Canuto & Dubovikov (1998)
(CD98) with some extensions taken from Canuto (1992, 1993, 1997) and Canuto et al.
(2001). For the time scales τθ and τpθ the high Peclet number (Pe) limit of CD98 was
taken, since their low Pe number limits are not applicable to moderate Prandtl numbers.

As shown in Fig. 1 for model ‘3J’ the simulations at least broadly agree with the most
complete model (compressibility terms and residuals are not shown, the unstable zone is
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Figure 1. Model terms for the change rate of temperature fluctuations as found in simulations
(left panels) and the model (right panels) for case ‘3J’ (top row) and ‘155X’ (bottom row).

located between the two vertical lines) on the overall shape and the contribution of the
main terms in the dynamical equation for temperature fluctuations. Similar is found for
the other equations of the model which helps to explain its success for shallow convection
zones of A-type stars (Kupka & Montgomery 2002). But for deep, efficient convection
(‘155X’) the discrepancies are much larger, both in terms of the shape and the size of
the individual terms of the dynamical equation investigated here.
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