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Abstract
The travelling wave with the peaked profile is usually considered as a limit in the family of travelling waves with
the smooth profiles. We study the linear and nonlinear stability of the peaked travelling wave by using a local model
for shallow water waves, which is an extended version of the Hunter–Saxton equation. The evolution problem is
well-defined in the function space H1

per ∩ W1,∞, where we derive the linearised equations of motion and study the
nonlinear evolution of co-periodic perturbations to the peaked periodic wave by using the method of characteristics.
Within the linearised equations, we prove the spectral instability of the peaked travelling wave from the spectrum
of the linearised operator in a Hilbert space, which completely covers the closed vertical strip with a specific half-
width. Within the nonlinear equations, we prove the nonlinear instability of the peaked travelling wave by showing
that the gradient of perturbations grows at the wave peak. By using numerical approximations of the smooth trav-
elling waves and the spectrum of their associated linearised operator, we show that the spectral instability of the
peaked travelling wave cannot be obtained as a limit in the family of the spectrally stable smooth travelling waves.

1. Introduction

Instabilities of steadily propagating waves with spatially periodic profiles on a fluid surface, called
Stokes waves, have recently been explored within Euler’s equations in many computational details due
to advanced numerical algorithms with high precision and accuracy [14–16, 28]. As the Stokes waves
become steeper, they become increasingly unstable with respect to co-periodic perturbations, because
the spectral stability problem admits more isolated unstable eigenvalues that bifurcate from the origin
when pairs of purely imaginary eigenvalues coalesce and split into pairs of real eigenvalues [15, 28].
It is believed that the stability of the limiting Stokes waves with the peaked profile [3, 42, 44] can be
concluded by studying eigenvalues of the spectral stability problem for the Stokes waves with the smooth
profiles. A similar cascade of instabilities near the limit to the periodic wave with the maximal height
is observed in other nonlocal wave models such as the Whitham equation [7].

The purpose of this paper is to study the linear and nonlinear instability of the travelling wave with
a peaked profile within the following local model for the evolution of surface water waves:

2c[tx = (c2 − 2[)[xx − ([x)2 + [, (1.1)

where [ = [(t, x) is the surface elevation and c> 0 is the wave speed. The subscripts denote partial
derivatives of [ in t and x. We study 2c-periodic solutions in x and denote the 2c-periodic domain by
T so that [(t, x) : R × T→ R.
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The local model (1.1) is an extended version of the Hunter–Saxton equation derived in [26] for the
dynamics of direction fields. Indeed, if u = u(g, b) satisfies the Hunter–Saxton equation

(
ug + uub

)
b
=

1
2

(
ub

)2 , (1.2)

then the transformation

u(g, b) = 2[(t, x), t = 2cg, x = b + c2g, (1.3)

yields 1.1 without the last term.
The same model (1.1) was also discussed in [1, 2] in connection with the high-frequency limit of the

Camassa–Holm equation, which is one of the toy models for fluid dynamics with smooth and peaked
travelling waves:

ug − ug b b + kub + 3uub = 2ubub b + uub b b , (1.4)

where u = u(g, b) is the horizontal velocity and k > 0 is the parameter. By using the transformation

u(g, b) = 2[(t, x), t = 2cY−1g, x = Y−1(b − c2g), k = Y−2, (1.5)

keeping only the leading-order terms at the formal order of O(Y−3), and integrating in x with zero
integration constant, we obtain (1.1) in the high-frequency limit ɛ→ 0.

The particular form of the local model (1.1) was suggested in [36] based on the reformulation of
Euler’s equations after a conformal transformation of the fluid domain with variable surface to a fixed
rectangular domain and a formal truncation of the model near the travelling wave, see appendix A
in [36]. In this context, x is the horizontal coordinate of the rectangular domain after the conformal
transformation, and t is the time variable defined in the travelling frame moving with the speed c. As
transformations (1.3) and (1.5) suggest, the factor 2c in front of [t in (1.1) can be removed by the
scaling transformation. The travelling waves correspond to the time-independent solutions of the local
model (1.1). The local model (1.1) represents the nonlocal Babenko equation [5] for travelling waves
in shallow fluid after a transformation similar to the high-frequency limit (1.5) for the Camassa-Holm
equation (1.4), see appendix B in [36].

Integrability of the local model (1.1) was established in [25] together with other peaked wave equa-
tions such as the reduced Ostrovsky and short-pulse equations. Some travelling wave solutions of these
peaked wave equations were studied with Hirota’s bilinear method in [40] and with dynamical system
methods in [36]. Local well-posedness in Sobolev spaces for sufficiently smooth solutions has been
proven in [45].

Both local models (1.1) and (1.4) have the travelling periodic waves with the smooth, peaked and
cusped profiles such that the families of smooth and cusped profiles are connected at the limiting wave
with the peaked profile [19, 34, 36]. In the Camassa–Holm equation (1.4), smooth travelling waves are
linearly and nonlinearly stable [13, 17, 19, 31, 35, 38], whereas the peaked travelling waves are linearly
and nonlinearly unstable in the W1,∞ norm [30, 39, 41], despite the fact that the perturbations do not
grow in the H1 norm [11, 12, 32, 33]. In the local model (1.1), the linear stability of the smooth periodic
waves was proven in [36]. The linear and nonlinear instability of the limiting periodic wave with the
peaked profile in H1

per ∩ W1,∞ is the main result of the present study. Stability of the cusped travelling
waves is an open problem for both models due to the lack of local well-posedness of the initial-value
problem in the function spaces to which the cusped profiles belong.
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For completeness, we also mention relevant results on the existence and stability of travelling periodic
waves in the reduced Ostrovsky equation

(vt + vvx)x = v, (1.6)

which is very similar to the local model (1.1) rewritten in the form

(2c[t − c2[x + 2[[x)x = [ + ([x)2. (1.7)

Linear and nonlinear stability of the smooth travelling periodic waves were obtained for the reduced
Ostrovsky equation (1.6) in [20, 23, 27]. Uniqueness of the peaked travelling periodic waves was shown
in [6, 21], where it was also shown that the cusped travelling periodic waves introduced in [24] by a
coordinate transformation do not exist in the reduced Ostrovsky equation (1.6). The linear instability of
the peaked travelling periodic wave was proven in [21, 22].

We note that the spectral stability problem Lk = _k′ with a self-adjoint operator L in a Hilbert space,
considered in [43], appears naturally for the linearisation of the nonlinear equation (1.7) at the smooth
travelling periodic wave, with L being a Hessian operator defined by the variational characterisation of
the travelling periodic waves, see (2.5) and (4.1) below. In the context of the reduced Ostrovsky equation
(1.6), the same spectral stability problem Lk = _k′ with a different Hessian operator L is obtained after
the hodograph transformation [23, 24, 43].

In a similar context of the cubic Novikov equation, smooth travelling waves were found to be linearly
and nonlinearly stable [18], whereas the peaked travelling waves were shown to be linearly and nonlin-
early unstable in the W1,∞ norm [10, 29] despite the perturbations do not grow in the H1 ∩ W1,4 norm
[8, 9].

We now describe the main results and the organisation of the paper.
Section 2 presents the local well-posedness result in H1

per(T) ∩ W1,∞(T) suitable for waves with
the peaked profiles, see theorem 1 below, as well as the conserved quantities useful in the analysis of
stability of travelling waves with both smooth and peaked profiles.

Section 3 introduces the travelling waves with the smooth and peaked profiles, see figure 1. Linearised
equations of motion for the travelling waves are derived in section 4. For the smooth profiles, the spectral
stability problem is equivalent to Lk = _k′ with a self-adjoint operator L in a Hilbert space considered
in [43], see equation (4.1). For the peaked profiles, the spectral stability problem Lk = _k′ becomes
singular and the proper linearisation is based on the local well-posedness result for the time evolution in
H1

per(T)∩W1,∞(T), see equation (4.7). For the spectral theory in Hilbert spaces, it is more convenient to
consider the linearised operator for the travelling wave with the peaked profile in the class of functions
broader than the function space needed for the local well-posedness results. This gives us the linearised
operator A : D ⊂ L2(T) → L2(T) given by (4.14) and (4.15).

Sections 5 and 6 contain the spectral analysis of the linearised operator A : D ⊂ L2(T) → L2(T)
and its truncation to the unbounded local differential part A0 : D ⊂ L2(T) → L2(T). In both cases,
we obtain the exact location of the point spectrum and the resolvent set separated by the boundary,
which belongs to the spectrum, see theorems 2 and 3 below. Since the spectrum is located in the closed
vertical strip symmetrically with respect to iR with a nonzero half-width of the strip, we conclude that
the peaked travelling wave is spectrally unstable in a Hilbert space L2(T).

The nonlinear instability result for the peaked travelling wave is proven in section 7, see theorem 4,
by using the method of characteristics. To define the nonlinear evolution and to use the method of
characteristics, we again consider perturbations to the peaked travelling wave in the function space
H1

per(T) ∩ W1,∞(T), which is a subset of the function space where the spectral instability has been
proven. As a result, the nonlinear instability result is not trivially concluded from the spectral instability
result. One of the main difficulties in establishing the nonlinear instability of the peaked travelling waves
in the Hilbert space H1

per(T) is that the initial-value problem associated with equation (1.7) cannot be
solved using the semigroup approach for initial data in H1

per(T), compared to initial data in smoother
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Sobolev spaces for the smooth travelling waves [45]. To prove the nonlinear instability of the peaked
travelling wave, we show that the W1,∞ norm of the perturbation grows in time. However, we do not
know whether the H1

per norm of the perturbation grows or remains bounded, in contrast to the case of
the Camassa–Holm equation [12, 32].

Section 8 contains numerical approximations of the periodic waves with the smooth profiles and
eigenvalues of the corresponding Hessian operator L in the spectral stability problem Lk = _k′. We
show that the spectral instability of the peaked wave cannot be obtained as a limit in the family of the
spectrally stable smooth waves. This further emphasises that the stability analysis of the smooth and
peaked travelling waves is very different from each other.

2. Evolution and conserved quantities

Taking the mean value of the local model (1.7) for the C1-smooth 2c-periodic solutions [ ∈ C1(R×T)
and integrating by parts yields the constraint∮ [

[ + (mx[)2] dx = 0, (2.1)

where
∮

denotes the integral of a periodic function on T over its period. The integral does not depend
on the choice in the limits of integration.

Let Π0 : L2(T) → L2(T) |{1}⊥ be a projection operator to the periodic functions with zero mean. The
local model (1.7) can be written in the evolution form

2cmt[ = (c2 − 2[)mx[ + Π0m
−1
x Π0

[
(mx[)2 + [

]
, (2.2)

where Π0m
−1
x Π0 : L2(T) → L2(T) |{1}⊥ is uniquely defined on the periodic functions under the zero-

mean constraint. The local well-posedness result suitable for solutions with peaked profiles is given by
the following theorem.

Theorem 1. For every [0 ∈ H1
per(T) ∩ W1,∞(T), there exist g0 > 0 and a unique solution [ ∈

C0((−g0, g0), H1
per(T) ∩W1,∞(T)) ∩C1((−g0, g0), L2(T) ∩ L∞(T)) of the evolution equation (2.2) with

[(0, ·) = [0, which is also continuous with respect to the initial data [0 ∈ H1
per(T) ∩ W1,∞(T).

Proof. The evolution equation (2.2) is a nonlocal version of the inviscid Burgers equation 2cmt[ =

(c2 − 2[)mx[. Since

‖Π0m
−1
x Π0

[
[ + (mx[)2] ‖L2 ≤ ‖[ + (mx[)2‖L2 ≤ ‖[‖L2 + ‖mx[‖L∞ ‖mx[‖L2 ,

‖Π0m
−1
x Π0

[
[ + (mx[)2] ‖L∞ ≤ ‖[ + (mx[)2‖L1 ≤

√
2c‖[‖L2 + ‖mx[‖2

L2 ,

‖mxΠ0m
−1
x Π0

[
[ + (mx[)2] ‖L2∩L∞ ≤ ‖[ + (mx[)2‖L2∩L∞ ≤ ‖[‖L2∩L∞ + ‖mx[‖L∞ ‖mx[‖L2∩L∞ ,

the nonlocal term Π0m
−1
x Π0

[
[ + (mx[)2] is a bounded operator from a ball in H1

per(T) ∩ W1,∞(T)
to H1

per(T) ∩ W1,∞(T). Local well-posedness in H1
per(T) ∩ W1,∞(T) follows by using the method of

characteristics. �

Remark 1. The same argument can be used to establish the local well-posedness of the evolution equa-
tion (2.2) in smooth Sobolev spaces Hs

per(T) with s > 3
2 , see [45]. The smooth Sobolev spaces are

continuously embedded into the function space H1
per(T) ∩ W1,∞(T).

The mass, momentum and energy conservation of the evolution equation (2.2) are obtained for the
smooth solution [ ∈ C0((−g0, g0), Hs

per(T)) with s > 3
2 . Multiplying (1.1) by mx[, and integrating over
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the period, yields conservation of the momentum

Q([) :=
1
2

∮
(mx[)2dx, (2.3)

and in view of the constraint (2.1), also conservation of the mass

M ([) :=
∮

[dx. (2.4)

Furthermore, writing (2.2) in the Hamiltonian form

2cmt[ = −Π0m
−1
x Π0

[
c2Q′ ([) − H′ ([)

]
, (2.5)

where

H ([) :=
1
2

∮ [
[2 + 2[(mx[)2] dx, (2.6)

yields conservation of the energy H ([).

Remark 2. Due to the integrability of the local model (1.1), higher-order conserved quantities exist.
Nevertheless, conservation of Q([), M ([) and H ([) is sufficient for the existence and stability analysis
of the travelling waves with the smooth and peaked profiles.

3. Travelling wave with the smooth and peaked profiles

A travelling wave with the speed c and the smooth profile [ ∈ C∞
per(T) corresponds to the time-

independent solution of the local model (1.1) found from the second-order differential equation

(c2 − 2[)[′′ − ([′)2 + [ = 0, x ∈ T. (3.1)

This equation is integrable with the first-order invariant

E([, [′) = 1
2
(c2 − 2[) ([′)2 + 1

2
[2 = E , (3.2)

the value of which is independent of x.
It was shown in [36] that the family of smooth 2c-periodic solutions [ ∈ C∞

per(T) exists for c ∈ (1, c∗)
with c∗ := c

2
√

2
. The peaked profile [∗ ∈ C0

per(T) ∩W1,∞(T) corresponds to c = c∗ and is given explicitly
as

[∗(x) =
1
16

(c2 − 4c |x | + 2x2), x ∈ [−c, c], (3.3)

extended as a 2c-periodic function on T. It is easy to verify the validity of [∗ in (3.3) as a solution of
(3.1) for x ∈ [−c, 0) ∪ (0, c] with

max
x∈T

[∗(x) = [∗(0) =
c2
∗
2
.

The peaked profile [∗ ∈ C0
per(T) ∩ W1,∞(T) corresponds to the marginal value of Ec := c4

8 in (3.2),
which separates the smooth profiles for E ∈ (0, Ec) and the cusped profiles for E ∈ (Ec,∞). The value
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Figure 1. (a) The solid lines represent the smooth profiles [ for c = 1.03, 1.07. The dashed line rep-
resents the peaked profile [∗ for c = c∗. (b) The wave amplitude versus the wave speed c for smooth
profiles in (1, c∗) and cusped profiles in (c∗, c∞), where c∗ ≈ 1.1107 (dashed line) and c∞ ≈ 1.1850
(dashed-dotted line).

of c = c∗ is selected by setting the period of the peaked profile to 2c. The slope of the peaked profile [∗
has a finite jump discontinuity at x = 0 since

[′∗(x) = −1
4
(c − |x |)sign(x) x ∈ [−c, c], (3.4)

which implies that [′∗(0+) − [′∗(0−) = − c
2 . By using the Dirac delta distribution X0 at x = 0, we can

express the finite jump discontinuity of [′∗(x) as the Dirac delta singularity of the second derivative at
x = 0:

[′′∗ (x) =
1
4
− c

2
X0, x ∈ [−c, c] . (3.5)

It can be checked through explicit computations that the periodic solution with the peaked profile (3.3)
satisfies the constraint (2.1).

Figure 1 presents the periodic profiles [ of the travelling waves for two values of c in (1, c∗) and for
c = c∗ (left) as well as the dependence of the wave amplitude ‖[‖L∞ versus c (right). The wave profiles
were approximated numerically, see section 8. The peaked profile [∗ is shown by a dashed line on the
left panel, and the corresponding value c∗ is shown by a dashed vertical line on the right panel. The
family of periodic waves is continued past c = c∗ with the cusped profiles for c ∈ (c∗, c∞) which satisfy

[(x) = c2

2
− A(c) |x |2/3 +O( |x |), as |x | → 0, (3.6)

where A(c) > 0 is a numerical coefficient and the value of c∞ is numerically computed (dashed-dotted
line on figure 1) [36].

Remark 3. In the context of Babenko’s equation [5] for the fluid of infinite depth, it is shown in [37] that
the peaked profiles with the local behaviour as in (3.4) do not exist after the conformal transformation
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of the fluid domain, whereas the cusped profiles satisfying (3.6) in the conformal coordinate correspond
to the limiting Stokes waves with a 120-degree crest angle in the original spatial coordinate. We make
no claims that the peaked behaviour of the toy model (1.1) corresponds to the limiting Stokes wave of
the original Euler’s equations.

4. Linearisation at the smooth and peaked travelling waves

Let [ ∈ C∞
per(T) be the spatial profile of the smooth travelling waves for c ∈ (1, c∗). The second-order

equation (3.1) is equivalent to the Euler–Lagrange equation

H′ ([) − c2Q′ ([) = 0.

Adding a perturbation Z (t, x) to [(x) and linearising the evolution equation (2.5), we obtain the
linearised equation in the form

2cmtZ = −Π0m
−1
x Π0LZ , L := −mx (c2 − 2[)mx + (2[′′ − 1), (4.1)

where L : H2
per (T) ⊂ L2(T) → L2(T) is the Hessian operator for c2Q([) − H ([) at the profile [ ∈

C∞
per(T). As c → c∗ and [ → [∗ ∈ C0

per(T) ∩ W1,∞(T), the Hessian operator becomes singular since

2[′′∗ (x) − 1 = −1
2
− cX0, x ∈ [−c, c] .

This suggests that the linearised equation (4.1) defined along the family of the smooth travelling waves
breaks at the peaked travelling wave. We need to be careful to linearise the evolution equation (2.5) about
the travelling wave with the peaked profile [∗ by working in the function space H1

per(T)∩W1,∞(T), where
the local well-posedness is established by theorem 1.

To get the proper linearisation near the peaked profile [∗, we note the following result, which is
obtained verbatim from the analysis of [39, 41].

Lemma 1. [39, 41] Consider a local solution [ ∈ C0((−g0, g0), H1
per(T) ∩W1,∞(T)) of theorem 1, and

assume that there exists b (t) such that

lim
x→b (t)−

mx[(t, x) ≠ lim
x→b (t)+

mx[(t, x), t ∈ (−g0, g0).

Then, b ∈ C1((−g0, g0)) satisfies

b′ (t) = − 1
2c

(c2 − 2[(t, b (t))), t ∈ (−g0, g0). (4.2)

In order to consider a local solution [ ∈ C0((−g0, g0), H1
per(T) ∩ W1,∞(T)) of the evolution equa-

tion (2.2) in a local neighbourhood of the travelling wave with the peaked profile (3.3), we define the
decomposition

[(t, x) = [∗(x − b (t)) + Z (t, x − b (t)), (4.3)

where we assume that the only peak of [(t, ·) on T is located at x = b (t) for some t ∈ (−g0, g0). The peak
location b (t) moves with the local characteristic speed of the inviscid Burgers equation, as in Lemma 1.
Substituting (4.3) into (2.2) with c = c∗ and using (4.2) yields the evolution problem for the perturbation
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term Z (t, x):

2c∗mtZ = (c2
∗ − 2[∗)mxZ − 2(Z − Z |x=0) ([′∗ + mxZ) + Π0m

−1
x Π0

[
Z + 2[′∗mxZ + (mxZ)2] , (4.4)

where we have translated x − b (t) into x on T. Truncation of the evolution equation (4.4) by the linear
terms in Z yields the linearised equation

2c∗mtZ = (c2
∗ − 2[∗)mxZ − 2[′∗(Z − Z |x=0) + Π0m

−1
x Π0

[
Z + 2[′∗mxZ

]
, (4.5)

subject to the linearised constraint ∮
[Z + 2[′∗mxZ]dx = 0. (4.6)

The next result gives the equivalent form of the linearised evolution.

Lemma 2. The linearised equation (4.5) is equivalently written in the form

2c∗mtZ = (c2
∗ − 2[∗)mxZ −

1
c

∮
[′∗Zdx + 1

2
Π0m

−1
x Π0Z , (4.7)

where both
∮
Zdx and Z |x=0 are constant in t and satisfies the constraint

Z |x=0 = − 1
2c

∮
Zdx, (4.8)

Proof. The constraint (4.8) is obtained by substituting (3.4) into (4.6), and integrating the second term
in (4.6) by parts. To simplify the linearised equation (4.5), we use (3.5) and write

Z + 2[′∗mxZ = 2mx ([′∗Z) +
1
2
Z + cX0Z . (4.9)

This transforms the linearised equation (4.5) to the form

2c∗mtZ = (c2
∗ − 2[∗)mxZ −

1
c

∮
[′∗Zdx + 2[′∗Z |x=0 +

1
2
Π0m

−1
x Π0Z + cZ |x=0Π0m

−1
x Π0X0. (4.10)

By using Fourier series, we get

X0 =
1

2c

∑
n∈Z

einx,

so that

Π0m
−1
x Π0X0 = Π0m

−1
x

(
X0 −

1
2c

)
=

∑
n∈Z\{0}

1
2cin

einx .

On the other hand, it follows from (3.5) that

[′′∗ (x) =
1
4
− c

2
X0 = −1

4

∑
n∈Z\{0}

einx,
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which yields

[′∗(x) = −
∑

n∈Z\{0}

1
4in

einx .

Hence, the two terms with Z |x=0 in (4.10) cancels out as

2[′∗ + cΠ0m
−1
x Π0X0 = 0, (4.11)

and the linearised equation (4.10) can be written in the form (4.7).
Finally, we show that both

∮
Zdx and Z |x=0 are constant in t. The conservation of

∮
Zdx follows by

taking the mean value of (4.7), with the account of the projection term − 1
c

∮
[′∗Zdx. The conservation

of Z |x=0 is shown by taking the limit x→ 0 since if Z =
∑

n∈Z Zneinx, then

1
c

∮
[′∗Zdx =

1
c

∑
n∈Z\{0}

Zn

∮
[′∗(x)einxdx

= − 1
c

∑
n∈Z\{0}

Zn
©­«

∑
m∈Z\{0}

1
4im

∮
ei(n+m)xdxª®¬

=
∑

n∈Z\{0}

Zn

2in
(4.12)

and

lim
x→0

1
2
Π0m

−1
x Π0Z = lim

x→0

1
2

∑
n∈Z\{0}

ZnΠ0m
−1
x einx =

∑
n∈Z\{0}

Zn

2in
, (4.13)

from which it follow that 2c lim
x→0

mtZ (t, x) = 0 and the value of Z |x=0 is preserved in time. �

The linearised equation (4.7) of lemma 2 is defined by the linearised operator A : Dom(A) ⊂
L2(T) → L2(T) given by

Af := (c2
∗ − 2[∗)mxf −

1
c

∮
[′∗fdx + 1

2
Π0m

−1
x Π0f , (4.14)

where

Dom(A) :=
{
f ∈ L2(T) : (c2

∗ − 2[∗)f ′ ∈ L2(T)
}
≡ D. (4.15)

Remark 4. The local well-posedness result of Theorem 1 suggests that we should consider the linear
operator A : H1

per (T) ∩ W1,∞(T) ⊂ L2(T) ∩ L∞(T) → L2(T) ∩ L∞(T) with the same definition of A
as in (4.14). However, for the spectral stability theory, it is more convenient to work in a Hilbert space
L2(T) for which the domain of A is given by (4.15).

We denote the spectrum of A : D ⊂ L2(T) → L2(T) by f(A). According to the standard defini-
tion (definition 6.1.9 in [4]), the spectrum f(A) is further divided into three disjoint sets of the point
spectrum fp (A), the residual spectrum fr (A), and the continuous spectrum fc (A) with the resolvent
set denoted by d(A) = C\f(A).
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Remark 5. By using (2.1), (3.4) and (3.5), as well as c∗ = c

2
√

2
, we obtain

A[′∗ = (c2
∗ − 2[∗)[′′∗ − 1

c

∮
([′∗)2dx + 1

2
Π0[∗

= −c

2
(c2

∗ − 2[∗)X0 +
1
4
(c2

∗ − 2[∗) −
1
c

∮
([′∗)2dx + 1

2
[∗ −

1
4c

∮
[∗dx

= −c

2
(c2

∗ − 2[∗)X0 +
c2

32
− 3

4c

∮
([′∗)2dx

= −c

2
(c2

∗ − 2[∗)X0,

so that A[′∗ = 0 in L2(T). Similarly, we have [′∗ ∈ D so that 0 ∈ fp(A). However, [′∗ ∉ C0
per(T), hence

[′∗ ∉ H1
per(T) ∩ W1,∞(T). Thus, H1

per(T) ∩ W1,∞(T) is embedded into D but is not equivalent to D.
The spectral theory of the linear operator A : D ⊂ L2(T) → L2 (T) is developed in a wider space of
functions than the space needed for the local well-posedness of the evolution equation (2.2).

5. Truncated linearised equation

The following lemma allows us to truncate the linearised operator (4.14) and (4.15).

Lemma 3. The linear operator K := 1
2Π0m

−1
x Π0 : L2(T) → L2(T) is a compact (Hilbert–Schmidt)

operator.

Proof. By the Fourier theory, we have

f(K) = fp (K) =
{

1
2n

, n ∈ Z\{0}
}
.

Since eigenvalues of fp(K) are square summable, K : L2(T) → L2(T) is a compact (Hilbert–Schmidt)
operator. �

Using lemma 3, we see that A = A0 + K , where K is a compact perturbation of the unbounded
truncated operator A0 : Dom(A0) ⊂ L2(T) → L2(T) given by

A0f := (c2
∗ − 2[∗)mxf −

1
c

∮
[′∗(x)f (x)dx, (5.1)

with the same Dom(A0) = Dom(A) = D. The constraint in the definition of A0 ensures that∮
(A0f ) (x)dx = 0 if f ∈ D. (5.2)

The spectrum of A0 can be analysed similarly to the work [22]. In fact, since

c2
∗ − 2[∗(x) =

1
4
[c2 − (c − |x |)2], x ∈ [−c, c],

extended as a 2c-periodic function on T, we define the change of coordinates x ↦→ z by

dx
dz

=
1
4

x(2c − x), x ∈ [0, 2c], (5.3)
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where the interval [0, 2c] is located between the two consequent peaks on the periodic domain T.
Solving the differential equation (5.3) with x(0) = c yields

x(z) = c + c tanh
( cz

4

)
, (5.4)

which is an invertible mapping R 3 z ↦→ x ∈ [0, 2c]. The following lemma shows that the spectrum
of the operator A0 : D ⊂ L2(T) → L2(T) can be found from the spectrum of a simpler linear operator
defined on the infinite line R.

Lemma 4. The spectrum of the truncated operator A0 : D ⊂ L2(T) → L2(T) coincides with the
spectrum of the linear operator D0 : H1(R) ⊂ L2(R) → L2(R) given by

D0h := mzh + c

4
tanh

( cz
4

)
h + c

4
w(z)

∫
R

w′ (z)h(z)dz, (5.5)

where w(z) := sech
(
cz
4
)
. The constraint (5.2) coincides with the constraint 〈w, D0h〉 = 0, which holds

for every h ∈ H1(R), where 〈·, ·〉 is the standard inner product in L2(R) with the induced norm ‖ · ‖.

Proof. Using the transformation (5.4), we obtain A0f = B0g, where g(z) = f (x) and B0 : Dom(B0) ⊂
L2

w (R) → L2
w (R) is given by

B0g := mzg + c

4

∫
R

w(z)w′ (z)g(z)dz (5.6)

and

Dom(B0) :=
{
g ∈ L2

w (R) : g′ ∈ L2
w (R)

}
≡ H1

w (R),

with the weight w(z) := sech
(
cz
4
)
. Here the exponentially weighted spaces L2

w (R) and H1
w (R) are

defined with the squared norms:

‖g‖2
L2

w
=

∫
R

w2(z) |g(z) |2dz, ‖g‖2
H1

w
=

∫
R

w2(z)
(
|g′ (z) |2 + |g(z) |2

)
dz

and the inner product in L2
w (R) is defined by

〈g1, g2〉L2
w
=

∫
R

w2(z)g1(z)g2(z)dz.

The constraint (5.2) coincides with the constraint 〈1, B0g〉L2
w
= 0, which holds for every g ∈ H1

w (R). By
using the change of variables h(z) = w(z)g(z), we get B0g = w−1D0h and 〈1, B0g〉L2

w
= 〈w, D0h〉 = 0,

where D0 : H1(R) ⊂ L2(R) → L2(R) is given by (5.5). Due to the transformations above, the spectrum
of A0 : D ⊂ L2(T) → L2(T) coincides with the spectrum of the linear operator D0 : H1(R) ⊂ L2 (R) →
L2(R). �

The following theorem prescribes the spectrum of the truncated operator A0 : D ⊂ L2(T) → L2(T)
given by (5.1).
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Theorem 2. The spectrum of A0 : D ⊂ L2(T) → L2(T) completely covers the closed vertical strip
given by

f(A0) =
{
_ ∈ C : −c

4
≤ Re(_) ≤ c

4

}
. (5.7)

Proof. We obtain fp (A0) and d(A0) as

fp(A0) =
{
_ ∈ C : −c

4
< Re(_) < c

4

}
, (5.8)

d(A0) =
{
_ ∈ C : |Re(_) | > c

4

}
. (5.9)

Since f(A0) is a closed set and d(A0) is an open set, the closure of the open region (5.8) yields (5.7).
fp(A0): By lemma 4, it is equivalent to consider fp(D0), where D0 : H1(R) ⊂ L2(R) → L2(R) is

given by (5.5). Let h ∈ H1(R) be a solution of D0h = _h for some _ ∈ C. Then, h = h(z) satisfies

h′ (z) + c

4
tanh

( cz
4

)
h(z) + c

4
w(z)〈w′, h〉 = _h(z), z ∈ R, (5.10)

subject to the orthogonality condition _〈w, h〉 = 0. Substitution h(z) = h̃(z)w(z) reduces (5.10) to the
form

h̃′ (z) + c

4
〈ww′, h̃〉 = _h̃(z), z ∈ R, (5.11)

subject to the orthogonality condition _〈w2, h̃〉 = 0.
For _ = 0, the general solution of equation (5.11) is h̃(z) = c1 + c2z, where (c1, c2) are arbitrary

constants. This yields the general solution h(z) = (c1 + c2z)w(z) of equation (5.10) for _ = 0. Since
h ∈ H1(R), then 0 ∈ fp(D0).

For _≠ 0, the general solution of equation (5.11) is a scalar multiplier of the particular solution

h̃(z) = e_z + c

4_
〈ww′, e_z〉, (5.12)

where the inner product is defined for |Re(_) | < c
2 . Since

c

8
‖w‖2 =

1
2

∫
R

sech2(z)dz = 1,

the orthogonality condition _〈w2, h̃〉 = 0 is satisfied for the solution (5.12). Integration by parts and
transformation back to h yields the solution

h(z) = e_zw(z) − c

8
w(z)〈w2, e_z〉,

which show that h ∈ H1(R) if and only if |Re(_) | < c
4 , so that fp(A0) = fp(D0) is given by (5.8).
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d(A0): By lemma 4, it is equivalent to consider d(D0). Let h ∈ H1(R) be a solution of (D0−_)h = f
for some _ ∈ C and f ∈ L2(R). Then, h = h(z) satisfies

h′ (z) + c

4
tanh

( cz
4

)
h(z) + c

4
w(z)〈w′, h〉 = _h(z) + f (z), z ∈ R. (5.13)

Since 〈w, D0h〉 = 0, we have _〈w, h〉 + 〈w, f 〉 = 0. Multiplying equation (5.13) by h̄, integrating over R,
adding complex conjugation and dividing by 2 yields

c

4
〈tanh

( cz
4

)
h, h〉 + c

4
Re〈h, w〉〈w′, h〉 = Re(_)‖h‖2 + Re〈h, f 〉.

By Cauchy–Schwarz inequality and the constraint _̄〈h, w〉 + 〈f , w〉 = 0, we obtain(
Re(_) − c

4

)
‖h‖2 ≤ Re(_)‖h‖2 − c

4
〈tanh

( cz
4

)
h, h〉

= −Re〈h, f 〉 − Re
c

4_̄
〈f , w〉〈w′, h〉

≤
(
1 + c‖w‖‖w′‖

4|_ |

)
‖h‖‖f ‖

and (
−Re(_) − c

4

)
‖h‖2 ≤ −Re(_)‖h‖2 + c

4
〈tanh

( cz
4

)
h, h〉

= Re〈h, f 〉 + Re
c

4_̄
〈f , w〉〈w′, h〉

≤
(
1 + c‖w‖‖w′‖

4|_ |

)
‖h‖‖f ‖.

This yields the bound

‖h‖ ≤ (1 + ‖w‖‖w′‖) ‖f ‖
|Re(_) | − c

4
, for |Re(_) | > c

4
.

Hence, {_ ∈ C : |Re(_) | > c
4 } belongs to d(D0), but since f(D0) is a closed set and d(D0) is an

open set, then {_ ∈ C : |Re(_) | > c
4 } is equivalent to d(D0) in view of the location of fp(D0). This

completes the proof of d(A0) = d(D0) given by (5.9). �

6. Full linearised evolution

The full linearised evolution is defined by the linear operator A : D ⊂ L2 (T) → L2(T) given by (4.14).
The following theorem prescribes the spectrum of A.

Theorem 3. The spectrum of A : D ⊂ L2(T) → L2(T) completely covers the closed vertical strip given
by

f(A) =
{
_ ∈ C : −c

4
≤ Re(_) ≤ c

4

}
. (6.1)

Proof. Again, we obtain fp(A) and d(A) as

fp(A) =
{
_ ∈ C : −c

4
< Re(_) < c

4

}
= fp(A0), (6.2)
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d(A) =
{
_ ∈ C : |Re(_) | > c

4

}
= d(A0). (6.3)

Since f(A) is a closed set and d(A) is an open set, the closure of the open region (6.2) yields (6.1).
fp(A):Let f ∈ D be a solution of Af = _f for some _ ∈ C. Then, f = f (x) satisfies

1
4

x(2c − x)f ′ (x) + 1
4c

∫ 2c

0
(c − x)f (x)dx + 1

2
Π0m

−1
x Π0f = _f (x), 0 < x < 2c. (6.4)

subject to the orthogonality condition _
∫ 2c
0 f (x)dx = 0.

If f ∈ D, then f ∈ L2(T) and (c2
∗ − 2[∗)f ′ ∈ L2(T), whereas lim

x→0+
f (x) and lim

x→2c−
f (x) may not be

defined. Nevertheless, since c2
∗ − 2[∗(x) ≠ 0 for x ∈ (0, 2c), we have f ∈ C0(0, 2c). Bootstrapping

arguments for equation (6.4) imply that f ∈ C∞(0, 2c). Differentiating (6.4) in x yields the second-order
differential equation

1
4

x(2c − x)f ′′ (x) + 1
2
(c − x)f ′ (x) + 1

2
f (x) − 1

4c

∫ 2c

0
f (x)dx = _f ′ (x), 0 < x < 2c. (6.5)

If _≠ 0, then
∫ 2c
0 f (x)dx = 0 so that equation (6.5) can be rewritten in the form

1
4

x(2c − x)f ′′ (x) + 1
2
(c − x)f ′ (x) + 1

2
f (x) = _f ′ (x), 0 < x < 2c. (6.6)

One solution of (6.6) is obtained explicitly as f1(x) = 2_ − c + x. The second linearly independent
solution f2(x) of (6.6) is obtained from the Wronskian

f1(x)f ′2 (x) − f ′1 (x)f2(x) = W (x), (6.7)

where W(x) satisfies the first-order differential equation by Abel’s theorem:

W ′ (x) = 2(2_ − c + x)
x(2c − x) W (x). (6.8)

Integrating (6.8) yields

W (x) = c2

x(2c − x)

( x
2c − x

) 2_
c , (6.9)

where the constant of integration has been normalised by the condition W (c) = 1. It follows from (6.7)
and (6.9) that if _≠ 0, then f2(x) satisfies the following asymptotic limits

f2(x) ∼
{

x
2_
c , _ ≠ c

2 ,
1, _ = c

2
as x → 0+

and

f2(x) ∼
{

(2c − x)− 2_
c , _ ≠ − c

2 ,
1, _ = − c

2
as x → (2c)− .

On the other hand, f1, f2 ∈ C∞(0, 2c) for every _ ∈ C.
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If |Re(_) | < c
4 , then f2 ∈ L2(T) and (c2

∗ − [∗)f ′2 ∈ L2(T), so that f (x) = c1f1(x) + c2f2(x) belongs
to D for every (c1, c2) ∈ R2. Satisfying the constraint

∫ 2c
0 f (x)dx = 0 for _≠ 0 yields a one-parameter

family of solutions f ∈ D of (6.4) for every _ ∈ fp(A)\{0}, where fp(A) is given by (6.2).
If _ = 0, then equation (6.5) contains a constant term. Without the constant term − 1

4c

∫ 2c
0 f (x)dx,

the two homogeneous solutions f1, f2 ∈ D are given by

f1(x) = x − c, f2(x) =
1

2c
(x − c) ln

x
2c − x

− 1,

However, only f 1 satisfies (6.5) since
∫ 2c
0 f1(x)dx = 0. On the other hand, it is easy to see that f (x) = 1

is also a solution of (6.5). Thus, there exists a two-parameter family of solutions f = c1(x− c) + c2 ∈ D
of equation (6.4) for _ = 0, so that 0 ∈ fp(A).

Finally, if |Re(_) | ≥ c
4 , then f2 ∉ L2(T) due to the asymptotic limits as x → 0+ and x → (2c)− .

On the other hand,
∫ 2c
0 f1(x)dx = 4c_ ≠ 0 for _≠ 0, so that there exist no nonzero solutions f ∈ D of

equation (6.4) for every _ ∉ fp(A). This completes the proof of fp(A) given by (6.2).
d(A): Let f ∈ D be a solution of the resolvent equation (A − _)f = g for g ∈ L2(T) rewritten in the

form:

(c2
∗ − 2[∗)mxf −

1
c

∮
[′∗fdx + 1

2
Π0m

−1
x Π0f − _f = g, x ∈ T. (6.10)

Since
∮

Afdx = 0, we get −_
∮

fdx =
∮

gdx. Taking into account that Π0m
−1
x Π0 is a skew-adjoint

operator in L2(T), we multiply (6.10) by f̄ , integrate over T, add a complex conjugate equation and
divide by 2 to obtain

Re〈f , (c2
∗ − 2[∗)mxf 〉 − Re(_)‖f ‖2 − 1

c
Re〈f , 1〉〈[′∗, f 〉 = Re〈f , g〉.

Integrating by parts in the first term and using −_̄〈f , 1〉 = 〈g, 1〉 for _≠ 0, we obtain

〈[′∗f , f 〉 − Re(_)‖f ‖2 + Re
〈[′∗, f 〉〈g, 1〉

c_̄
= Re〈f , g〉.

Since − c
4 ≤ [′∗(x) ≤ c

4 for x ∈ [0, 2c], we get by Cauchy–Schwarz inequality that(
Re(_) − c

4

)
‖f ‖2 ≤ Re(_)‖f ‖2 − 〈[′∗f , f 〉

= −Re〈f , g〉 + Re
〈[′∗, f 〉〈g, 1〉

c_̄

≤
(
1 +

√
2c‖[′∗‖
c |_ |

)
‖g‖‖f ‖

and (
−Re(_) − c

4

)
‖f ‖2 ≤ −Re(_)‖f ‖2 + 〈[′∗f , f 〉

= Re〈f , g〉 − Re
〈[′∗, f 〉〈g, 1〉

c_̄

≤
(
1 +

√
2c‖[′∗‖
c |_ |

)
‖g‖‖f ‖.
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This yields the bound

‖f ‖ ≤
(
1 + 4

√
2c‖[′∗‖
c2

)
‖g‖

|Re(_) | − c
4

, for |Re(_) | > c

4
.

Hence, {_ ∈ C : |Re(_) | > c
4 } belongs to d(A), but since f(A) is a closed set and d(A) is an open

set, then {_ ∈ C : |Re(_) | > c
4 } is equivalent to d(A) in view of the location of fp(A) in (6.2). This

completes the proof of d(A) given by (6.3). �

Remark 6. Since the intersections of fp(A) ∩ d(A0) and fp(A0) ∩ d(A) are empty, as follows from
(5.8), (5.9), (6.2) and (6.3), the result f(A) = f(A0) also follows by theorem 1 in [22]. Computations in
the proof of theorem 3 do not rely on the truncated operator A0 : D ⊂ L2(T) → L2(T) introduced and
studied in section 5. We included these computations anyway to emphasise that the linear instability
of the peaked travelling wave is induced by the quasilinear part of the inviscid Burgers equation and
that the dispersion term of the evolution equation (2.2) does not play the role. This has been the main
property of the linear instability of the peaked travelling wave in the Camassa–Holm equation [30, 39,
41], the reduced Ostrovsky equation [21, 22] and the Novikov equation [10, 29].

7. Nonlinear evolution

We shall now derive the nonlinear instability result for the peaked travelling wave by using the nonlinear
evolution equation (4.4). With the help of equations (4.9) and (4.11) in lemma 2, we rewrite the nonlinear
evolution equation (4.4) in the equivalent form:

2c∗mtZ = (c2
∗ − 2[∗)mxZ − 2(Z − Z |x=0)mxZ −

1
c

∮
[′∗Zdx + 1

2
Π0m

−1
x Π0

[
Z + 2(mxZ)2] . (7.1)

After applying the transformation (4.3) and integrating by parts using (3.5), the original constraint (2.1)
becomes

0 =

∮ [
Z + 2[′∗mxZ + (mxZ)2] dx =

1
2

∮ [
Z + 2(mxZ)2] dx + cZ |x=0. (7.2)

The following lemma identifies two conserved quantities of the evolution equation (7.1), whose sum
yields the constraint (7.2).

Lemma 5. Consider a local solution Z ∈ C0((−g0, g0), H1
per(T) ∩ W1,∞(T)) of the evolution equation

(7.1) for some g0 > 0. Then ∮
Zdx and Z |x=0 +

1
c

∮
(mxZ)2dx (7.3)

are conserved for t ∈ (−g0, g0).

Proof. The conservation of
∮
Zdx is shown by taking the mean value of the evolution equation (7.1),

while the conservation of Z |x=0 + 1
c

∮
(mxZ)2dx follows from the constraint (7.2). We can also show the
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latter conservation directly as follows. For smooth solutions, we differentiate equation (7.1) and obtain

2c∗mtmxZ = (c2
∗ − 2[∗)m2

x Z − 2[′∗mxZ − 2(Z − Z |x=0)m2
x Z − 2(mxZ)2

+ 1
2
(Z + 2(mxZ)2) − 1

4c

∮
(Z + 2(mxZ)2)dx (7.4)

Multiplying (7.4) by mxZ and integrating in x over T yields

c∗
d
dt

∮
(mxZ)2dx = −

∮
[′∗(mxZ)2dx. (7.5)

Furthermore, taking the limit x→ 0 in equation (7.1) as in (4.12) and (4.13), we get

2c∗ lim
x→0

mtZ = lim
x→0

Π0m
−1
x Π0(mxZ)2 =

2
c

∮
[′∗(mxZ)2dx. (7.6)

By adding (7.5) divided by c and (7.6) divided by 2, we verify conservation of Z |x=0+ 1
c

∮
(mxZ)2dx. By

Sobolev’s embedding of H1
per(T) into C0

per(T), we have well-defined Z |x=0 ∈ C0(−g0, g0). Hence, the
conserved quantities (7.3) are well-defined for the local solution Z ∈ C0((−g0, g0), H1

per(T) ∩W1,∞(T)).
�

Based on the conserved quantity Z |x=0 + 1
c

∮
(mxZ)2dx, we obtain the nonlinear instability of the

peaked travelling wave given by the following theorem.

Theorem 4. For every X > 0 there exists Z0 ∈ H1
per(T) ∩ W1,∞(T) satisfying

‖Z0‖H1
per

≤ X2, ‖Z0‖W1,∞ ≤ X, (7.7)

such that the unique local solution Z ∈ C0((−g0, g0), H1
per(T) ∩ W1,∞(T)) of the evolution equation

(7.1) with Z |t=0 = Z0 satisfies

‖Z (t0, ·)‖W1,∞ = 1, (7.8)

for some t0 ∈ (0, g0).

Proof. The proof follows by the method of characteristics which works for every local solution Z ∈
C0((−g0, g0), H1

per(T) ∩ W1,∞(T)) of the evolution equation (7.1). Let x = X (t, s) be the family of
characteristic curves for (t, s) ∈ (−g0, g0) × (0, 2c) obtained from{

2c∗mtX (t, s) = −(c2
∗ − 2[∗(X)) + 2(Z (t, X) − Z (t, 0)),

X (0, s) = s.
(7.9)

Since the vector field of the initial-value problem (7.9) is Lipschitz for the local solution Z ∈
C0((−g0, g0), H1

per(T) ∩ W1,∞(T)), there is a unique solution for X ∈ C1((−g0, g0) × (0, 2c)) such
that X (t, 0) = 0 and X (t, 2c) = 2c. Since [0, 2c] is the fundamental period of T, we also get
Z (t, 0) = Z (t, 2c). By solving the linear equation for msX (t, s), we get

msX (t, s) = exp
(

1
c∗

∫ t

0

[
[′∗(X (t′, s)) + mxZ (t′, X (t′, s))

]
dt′

)
,

from which it follows that msX (t, s) > 0 for every t ∈ (−g0, g0) and s ∈ (0, 2c). Hence the mapping
[0, 2c] 3 s ↦→ X (t, s) ∈ [0, 2c] is a diffeomorphism for t ∈ (−g0, g0).
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To proceed further, we consider the restriction of Z0 ∈ H1
per(T) ∩ W1,∞(T) ∩ C1(0, 2c). Along the

family of characteristic curves, we can now define Z (t, s) := Z (t, X (t, s)) and V (t, s) := mxZ (t, X (t, s)).
By using the evolution equations (7.1) and (7.4) along the family of characteristic curves satisfying
(7.9), we obtain the following initial-value problems:{

2c∗mtZ (t, s) = − 1
c
〈[′∗, Z〉 + 1

2Π0m
−1
x Π0(Z + 2(mxZ)2),

Z (0, s) = Z0(s),
(7.10)

and {
2c∗mtV (t, s) = −2[′∗(X)V − V2 + 1

2 (Z (t, s) + Z (t, 0)),
V (0, s) = Z ′0(s),

(7.11)

where we have used the constraint (7.2). If Z0 ∈ H1
per(T) ∩ W1,∞(T) ∩ C1(0, 2c), then the solutions of

the initial-value problems (7.9), (7.10) and (7.11) are defined in the class of functions
X ∈ C1((−g0, g0) × (0, 2c)),
Z ∈ C1((−g0, g0) × (0, 2c)),
V ∈ C1((−g0, g0), C0(0, 2c)),

respectively, with the bounded one-sided limits as s → 0+ and s → (2c)− . Due to the conservation law
in (7.3), we have

Z |x=0 +
1
c

∮
(mxZ)2dx = C0,

from which Z |x=0 ≤ C0 with a time-independent positive constant C0. Since X (t, 0) = 0, we get Z (t, 0) ≤
C0 so that the evolution problem (7.11) in the limit s → 0+ yields for V0(t) := lim

s→0+
V (t, s):

2c∗V ′
0(t) =

c

2
V0(t) − V2

0 (t) + Z (t, 0) ≤ c

2
V0 (t) + C0.

Iterating the inequality as

2c∗
d
dt

e−
ct

4c∗ V0(t) ≤ C0e−
ct

4c∗

and integrating yields

2c∗
[
e−

ct
4c∗ V0(t) − V0(0)

]
≤ 4c∗C0

c

[
1 − e−

ct
4c∗

]
≤ 4c∗C0

c
.

This implies

V0(t) ≤
(
V0(0) +

2
c

C0

)
e

ct
4c∗ .

If the initial bound (7.7) is true, we get by Sobolev embedding of H1
per(T) to L∞(T) that

|C0 | ≤ X2 + 1
c
X2 ≤ 2X2,
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so that the interval (−X,− 2
c
|C0 |) is nonempty for all sufficiently small X > 0. Selecting −X < V0(0) <

− 2
c
|C0 | to satisfy the initial bound (7.7) and to ensure that V0(0) + 2

c
C0 < 0 yields the exponential

divergence V0(t) → −∞ as t → +∞. Since g0 > 0 is the maximal existence time in H1
per(T) ∩W1,∞(T)

norm, there exists t0 ∈ (0, g0) such that the instability bound (7.8) holds. �

Remark 7. By incorporating the quadratic term in the bound

2c∗V ′
0(t) =

c

2
V0(t) − V2

0 (t) + Z (t, 0) ≤ c

2
V0(t) − V2

0 (t) + C0,

one can find initial data Z0 ∈ H1
per(T)∩W1,∞(T) for which ‖Z (t, ·)‖W1,∞ diverges in a finite time, see [39]

for a similar analysis of the Camassa–Holm equation. However, we do not have the bound on ‖Z (t, ·)‖H1
per

compared to the case of the Camassa–Holm equation, where the H1
per norm of the perturbation does not

grow in time, see [32, 33, 39].

8. Numerical approximations

We approximate numerically the smooth profile [ ∈ C∞
per(T) of the travelling waves from the second-

order equation (3.1) and the eigenvalues of the Hessian operator L : H2
per(T) ⊂ L2(T) → L2(T)

which defines the linearised time evolution (4.1) for the smooth travelling waves. In both cases, we are
interested to understand the convergence of numerical results to the peaked travelling wave with the
profile [∗ ∈ C0

per(T) ∩W1,∞(T) as c → c∗. We show that the lowest eigenvalue of L diverges as c → c∗,
which suggests that the linearised equation (4.1) cannot be used for the peaked travelling wave. This
explains why we had to derive a different linearised equation (4.5) for the peaked travelling wave.

To obtain the solutions [ ∈ C∞
per(T) of the second-order equation (3.1) for c ∈ (1, c∗), we use the

first-order invariant (3.2) and define [ from the boundary-value problem:
(
d[
dx

)2
=

2E − [2

c2 − 2[
,

[(±c) = −
√

2E .
(8.1)

Since [(−x) = [(x), we take the negative sign in the square root of (8.1) for x ∈ [0, c] and obtain the
solution profile [(x) for x ∈ [0, c] by finding the root of the integral equation

f ([(x)) − x = 0, f ([) :=
∫ 1

[/
√

2E

√
c2 − 2

√
2Ex

√
1 − x2

dx, (8.2)

for E ∈ (0, Ec), where Ec := c4

8 is the value separating smooth and cusped profiles.
To determine the value of E for each c ∈ (1, c∗), we consider the period function T (E , c) studied in

[36]. The period function is represented by using the complete elliptic integral E(^) of the second kind
with the elliptic modulus ^ ∈ (0, 1), which is defined by E ∈ (0, Ec) and c ∈ (1, c∗) as follows:

T (E , c) = 4E(^)
√

c2 + 2
√

2E , ^ =

√
4
√

2E
c2 + 2

√
2E

. (8.3)

The periodic profile [ ∈ C∞
per(T) corresponds to the value of E = E (c) found from the root of

T (E (c), c) = 2c.
To approximate the solution profile numerically, we let xj = jh, j ∈ {0, . . . , N} be a fixed grid with

the step size h = c/N for a large integer N. By the fundamental theorem of calculus, the solution profile
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{(xj, [j)}N
j=0 can be found by solving f ([j) − xj = 0 for every j. We implement Newton–Raphson’s

method as the root-finding algorithm under a specific tolerance n > 0, such that

[
(k+1)
j = [

(k)
j − 1

f ′
(
[
(k)
j

) [
f
(
[
(k)
j

)
− xj

]
,

���f (
[
(k)
j

)
− xj

��� < n , (8.4)

where k ∈ N denotes iteration number, and we take [
(k)
0 (0) =

√
2E and [

(k)
N (c) = −

√
2E as two

boundary grid points for any k to avoid the singularities. Given a c-grid {ci}M
i=1 with M grid points, we

compute Ei := E (ci) from the period function (8.3) by solving numerically T (Ei, ci) = 2c. This outputs
the sets of parameter pairs {(ci, Ei)}M

i=1, which can be used in the root-finding algorithm (8.4). After
the solution {(xj, [j)}N

j=0 is obtained on [0, c] for N + 1 grid points, the even reflection fills all 2N + 1
grid points on [−c, c] domain. The solution points {(xj, [j)}N

j=−N are plotted in figure 1 (left) and the
parameter pairs {(ci,

√
2Ei)}M

i=1 are plotted in figure 1 (right).
The solution {(xj, [j)}N

j=−N can be represented in Fourier space by using the discrete Fourier
transform (DFT) with 2N + 1 modes:

[̂n =
h

2c

N−1∑
j=−N

[je−inxj , n ∈ {−N , . . . , N} (8.5)

where one of the endpoints xN = c in the physical space is removed due to the 2c-periodicity. For the
peaked wave profile [∗ at c = c∗, the solution (3.3) can be represented as the Fourier cosine series

[∗(x) = −c2

48
+

∞∑
m=1

cos(mx)
2m2 . (8.6)

By applying DFT on the selected grid, the solution points {(n, [̂n)}N
n=0 are plotted for the smooth profiles

in figure 2. The black dashed line represents the Fourier series (8.6) for the peaked profile. We note that
the fast convergence of the Fourier transform for the smooth waves is replaced by the slow convergence
O(m−2) of the Fourier transform for the peaked waves.

Next, we study numerically the spectrum of the Hessian operator L : H2
per(T) ⊂ L2(T) → L2 (T)

which appears in the linearised equation (4.1). The spectrum of L can be computed by solving the
spectral problem with the 2c-periodic conditions,

LW = _W, W ∈ H2
per (T). (8.7)

We will apply two numerical methods (the finite-difference method and the Fourier collocation method)
to solve the spectral problem (8.7). We write L = M+W with M = −mx (c2−2[)mx and W = (2[′′−1).

For the finite difference method, using the numerical approximation of the solution profile
{(xj, [j)}N

j=−N and the central difference approximation of the second derivative M, we construct the
differentiation matrix for L acting on the eigenvector W = (W−N , . . . , WN−1) ∈ R2N ,

L =



(W0 +M0) ([−N ) M+1 ([−N ) 0 · · · M−1([N )
M−1 ([−N+1) (W0 +M0) ([−N+1) M+1([−N+1) · · · 0

0 M−1([−N+2) (W0 +M0) ([−N+2) · · · 0
...

...
...

. . .
...

M+1([N−1) 0 0 · · · (W0 +M0) ([N−1)


,
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Figure 2. The solution profiles [̂ in Fourier space (8.5) in log-log coordinates for c = 1.03, 1.07 with
N= 300 grid points and n = 10−14 tolerance. The black dashed line represents the peaked profile [∗ for
c = c∗.

where the boundary point xN = c is removed due to the 2c-periodicity. The diagonal elements M0([j),
W0([j) and the off-diagonal elements M±1 ([j) for j ∈ {−N , . . . , N − 1} can be written as

M0([j) =
2c2−2[j−[j+1−[j−1

h2 , M±1([j) = − c2−[j−[j±1
h2 ,

and

W0 ([j) =
4E + 2[2

j − 2c2[j(
c2 − 2[j

)2 − 1

for c ∈ (1, c∗), where the differential equations (3.1) and (3.2) have been used to eliminate [′′ (x). By
numerically solving the eigenvalue problem, we obtain the first four eigenfunctions W plotted in figure
3. The eigenfunctions display spikes near x = 0 in the limit of c → c∗.

For the Fourier collocation method, we use the discrete Fourier transform (8.5) and represent W in
the spectral problem (8.7) by Ŵ = (Ŵ−N , . . . , ŴN ) ∈ R2N+1. Thanks to the L2-isomorphism between
functions in physical and Fourier spaces, the eigenvalue problem in Fourier space L̂Ŵ = _Ŵ shares the
same eigenvalues as that in the physical space. We write again L̂ = M̂ + Ŵ with

M̂ = 2(D1[̂)D1 − c2D2 + 2[̂D2, Ŵ = 2(D2[̂) − cI

for c ∈ (1, c∗), where the first and second derivative are represented by

D1 = i diag(−N , . . . , N), D2 = D2
1
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Figure 3. Eigenfunctions corresponding to the first four eigenvalues for five values of c in (1, c∗). The
grid in physical space is chosen to be N= 300. The solution profiles obtained from equation (8.4) are
used, and all eigenfunctions are plotted on [−c, c] with positive slope near −c.

and [̂ is the Toeplitz matrix for convolution with the Fourier modes for m ∈ {−N , . . . , N},

[̂ =



[̂0 · · · [̂−N · · · 0
...

. . .
...

. . .
...

[̂N · · · [̂0 · · · [̂−N
...

. . .
...

. . .
...

0 · · · [̂N · · · [̂0


.

By numerically solving the eigenvalue problem in the Fourier space, we obtain the first four eigenfunc-
tions plotted in figure 4. Convergence of eigenfunctions in Fourier space for large m becomes worse as
c → c∗.

Figure 5 shows the first four eigenvalues obtained by the finite-difference method (left) and the
Fourier collocation method (right). The lowest eigenvalue diverges to −∞ as c → c∗. After _1, the
even-numbered eigenvalues _2,_4, . . . correspond to eigenfunctions of even parity in x, whereas the
odd-numbered eigenvalues _3,_5, . . . correspond to eigenfunctions of odd parity. Convergence of
eigenvalues as c → c∗ is low in both physical and Fourier space for the fixed truncation number N.
The grey shaded region highlights the loss of precision in the numerical approximations of eigenvalues
with poor convergence to the eigenvalues of the limiting peaked wave for N = 300.
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Figure 4. The absolute value of eigenfunctions corresponding to the first four eigenvalues in Fourier
space is plotted versus m ∈ {1, . . . , N} for five values of c in (1, c∗). The grid in physical space is chosen
to be N= 300, and the solution profiles [̂ are obtained from equations (8.4) and (8.5).

To compute eigenvalues for the limiting wave with the peaked profile [∗ at c = c∗ in the finite-
difference method, we use

c = c∗ : W0([j) = −1
2
− c(X0)j .

The Dirac delta distribution is approximated by the Gaussian pulse with a small parameter U = c/N as

X0(x) ≈
1

√
cU2

e−x2/U2
, x ∈ T.

As is shown in the left panel of figure 5, eigenvalues do not converge well as c → c∗ to the limiting
eigenvalues at c = c∗ for the fixed value of N = 300.

To illustrate further the low convergence of eigenvalues as c → c∗, we plot the dependence of the
third eigenvalue (which is theoretically zero, see [36]) versus c in figure 6 (left). For computations with
different methods and for different N, we observe the growth |_3 |, which is a numerical way to detect
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Figure 5. The dependence of the first four eigenvalues of the spectral problem (8.7) is plotted
versus c for c ∈ (1, c∗) obtained with the finite-difference method (left) and with the Fourier
collocation method (right). Eigenvalues computed for the peaked profile with c = c∗ in the
finite-difference method (left) are marked as circles. The grid in physical space is chosen to be
N= 300.
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Figure 6. (a) The third eigenvalue |_3 | plotted versus c to show its departure from 0 as c →
c−∗ for different grids N = 100, 200, 300 by the finite difference (CD) and Fourier collocations
(Fourier) methods. (b) The same plots but for the L2-norm of the residual terms ‖LW3 − _3W3‖L2 and
‖L̂Ŵ3 − _3Ŵ3‖L2 .
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the loss of accuracy of numerical computations. Similarly, we show in figure 6 (right) the L2 norms of
the residual terms


‖LW3 − _3W3‖L2 =

(
N−1∑
j=−N

|LW3(xj) − _3W3(xj) |2Δx

)1/2

,

‖L̂Ŵ3 − _3Ŵ3‖L2 =

(
N∑

k=−N
|L̂Ŵ3(mk) − _3Ŵ3(mk) |2Δm

)1/2

.

The residual terms grow as c → c∗ in agreement with other figures, and the growth becomes visible for
larger values of c if the truncation number N is increased.

We conclude that the spectral stability problem for the travelling wave with the peaked profile [∗ ∈
C0

per(T) ∩ W1,∞(T) cannot be analysed by working with the spectral stability problem for the family of
travelling waves with the smooth profiles [ ∈ C∞

per(T) in the limit c → c∗. The lack of convergence is
fundamental, both at the levels of functional analysis and numerical approximations. On the analysis
side, the linearised system (4.1) for the smooth waves is invalid for the peaked waves and needs to be
replaced by the linearised system (4.7). On the numerics side, the eigenvalues of the Hessian operator
L do not converge well as c → c∗ to the limiting eigenvalues at c = c∗ for the fixed value of N. Due
to the lack of convergence, we have a striking discrepancy between the spectral stability of the smooth
waves [36] and the spectral instability (theorem 3) of the peaked waves.
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