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PROPERLY DISCONTINUOUS ACTIONS ON A-TREES

by I. M. CHISWELL

(Received 21st September 1992)

The main result is a theorem giving several possibilities for the action of a 2-generator group acting on a
A-tree, generalising the result that, if the action is free then the group is either free or free abelian. This
involves investigation of several cases in which the action is shown to be properly discontinuous. This leads to
a generalisation of results of Culler and Morgan, characterising abelian, dihedral and irreducible actions on R-
trees, to arbitrary A-trees.
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1.

Harrison's Theorem for A-trees (Theorem 1 in [3]) states that if a group G acts freely
on a A-tree, then every 2-generator subgroup is either free of rank 2 or abelian. In [5]
there is a more general result, describing various possibilities for an action of a free
group of rank 2 on a A-tree, but a complete proof is not given. In this paper we give a
proof of a version of Steiner's theorem, dropping the assumption that the group acting
on the tree is free (which makes little difference). Before stating the result, we need the
following definition, which appears in [5].

Definition. Let G be a group acting on a A-tree (X,d) (so d is the metric on X). The
action is called free and properly discontinuous if for all xeX, the set {d(x,gx)\geG,
g # 1} has a positive lower bound in A.

Essentially, the main result is as follows.

Main Theorem. Let G= <s,t> act on a A-tree X with hyperbolic length function t.
Then one of the following possibilities occurs

(i) G acts freely and properly discontinuously on X, and s, t freely generate G.

(ii) By finite succession of elementary Nielsen transformations, s and t can be
transformed into new generators u and v such that at least one ofY(M), f(v) is zero.

(iii) (f(s)>0, tf(t)>0 but sts'H'1 has a fixed point.

(iv) By a finite succession of elementary Nielsen transformations, s and t can be
transformed into new generators u and v such that / (u)>0, <f(i>)>0 but uvu~lv has
a fixed point.

In fact, more detail can be given in Case (iv), and Harrison's Theorem can then be
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easily deduced. Our method of proof is similar to the proof of Theorem 1 in [3], with
some modifications in one case which are suggested by [5]. It is based on a series of six
propositions, corresponding to Lemmas 2-6 in [3]. In Section 2 we prove the first two
of these propositions, which we regard as the good cases. The remaining four, which we
view as pathological cases arising when A is non-archimedean, are proved in Section 3.
The proof of the main result is in Section 4, and an application of Proposition 1 to the
classification of actions on trees is given. The proofs in Section 2 and Section 3 are
regrettably rather technical, in that they involve consideration of many cases, although
they are based only on the simple idea of considering the effect of successively applying
powers of s and t to points of the tree, where G = <s,t> is a group acting on some A-
tree. To understand the proofs, it is necessary also to understand the proofs of Lemmas
2-6 in [3], as well as some of the basic theory of A-trees (see [1]). If s and t are
hyperbolic isometries which meet coherently, we shall use L and R to denote the left
and right-hand endpoints of As n A,, when they exist (see the introduction in [3]). As in
[1] and [3], A(s,t) will denote the diameter of Asr\A, when this is non-empty, and in
the case that As n A, = [L, R], we may take A(s, t) to be the length of the segment [L, /?].

We shall use the Bridge Proposition ((2.17) in [1]) and the idea of the bridge between
two closed subtrees. If A is a closed subtree of a A-tree X and xeX, the bridge between
{x} and A has the form [x,p] for some peA. We call p the projection of x onto A. It is
consistent with the notation of [1] to denote p by prA(x), but we shall not use this
notation.

Before proceeding we prove two lemmas which are used in the proofs of all the six
propositions which follow.

Lemma 1. Let G be a group acting on a A-tree X with metric d, and let X' be a
(non-empty) G-invariant subtree. Let geG. If xeX, then there exists veX' such that
d(x,gx)^d{v,gv).

Proof. If g is not an inversion, this follows from 6.6 in [1]. Suppose g is an
inversion, so that Ag2 is the subtree of fixed points of g2. Again by 6.6 of [1], we can
choose zeAg2f\X'. Since zeAg*, we have gzeAg2, hence [z,gz~]<^AgiC\X'. Let v be the
projection of x onto [_z,gz~]. Since g[z,gz'] = [z,gz~\, gv is the projection of gx onto
{_z,gz~]. Also g has no fixed points in X, so gv^v, hence [x,gx] = [x,v,gv,gx] by the
Piecewise Geodesic Proportion [1;2.14], therefore d{x,gx)^d(v,gv). •

The second lemma is a trivial observation but will be used repeatedly.

Lemma 2. Let G be a group acting on a A-tree X with metric d. Suppose Y is a subset
of X with GY=X and suppose that there exists keA such that for all ye Y and l^geG,
d(y,gy)^k. Then d(x,gx)^k for all xeX and l^geG. If d{y,gy)>k for all ye Y and
\jtgeG, then d(x,gx)>kfor all xeX and \=£geG.

Proof. If xeX and l^geG, there exists heG and yeY such that x — hy. Then
d(x,gx) = d(hy,ghy) = d(y,(h~igh)y)^k, with strict inequality in the last part of the
lemma. •
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The first proposition is concerned with the situation in Lemma 2 of [3], which is
described in the hypotheses of the following lemma. When considering an action on a
tree, we shall use t to denote the corresponding hyperbolic length function.

Lemma 3. Let G= <s,t> act on a A-tree (X,d), suppose that AsnA,^0 and s, t
meet coherently. Let A = A(s, t) and assume <f(s)>A and <f(r)>A. Put
k = min{d(R,sL),d(R,tL)} = min{f(s)-A,f{t)-A}. Let geG, and write g = ul...,un where
ut,u2,...,un is a freely reduced word in {s±1,t±l} and « ^ 1 . Then

(a) d(\_L,RlglL,RJ)^nk,

(b) ifn> 1, then d{[R,sL],g[_R,sL])^k and d([R,tL],glR,tL])^k.

Proof. If n = 1 it is easy to see that (a) is true, using the fact that As and A, are linear
subtrees, and the situation is illustrated by the following diagram, which is part of the
diagram for Case 2 on p. 362 of [1].

We therefore assume n > 1. By Lemma 2 of [3],

where Q, is either L or R for l ^ z ' g n - 1 . Again, it is easy to see that either
LelR,UlQ^ or RelL,UlQ{], and either Le[.u;lQn.l,R'] or Rs[u;lQn_uL\. Thus
there are four possibilities:

(i) [R,gL] = [R,L,UtQ^u^Qz,...,u,...«„_,6B-i,gR,gL~],

(ii) \_L,gL] = lL,R,ulQl>ulu2Q2,...,u1...un-lQn-l,gR,gL],

(hi) [R,gR] = [R,L,u1Q1,ulu2Q2,...,ul...un-1Qn-1,gL,gRl
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(iv) lL,gK] = lL,R,u1Ql,ulu2Q2,...,ul...un_lQn-l,gL,gRl

It is easily checked that the distance between two successive points on the right-hand
side in (i)—(iv), other than the first two points or the last two points, is at least k.
Therefore d([L,R],g[L,/?]) is the distance between the second and penultimate points
on the right-hand side, and is ^ nk, as required.

Since [L,sL] = [L,R,sL~], so that g[L,sL]=g\_L,R,sL], it follows that
d([R,sL],g[R,sL])^(n — 2)k by the triangle inequality, and similarly it follows that
d([R,tL],g[R,tL])^.(n — 2)k, so (b) follows if «^3, and it remains to prove (b) when
n = 2.

Put d =</([/?,sL],g[R,sL~}). One of the four cases (i)-(iv) above occurs and we
consider them in turn.

Case (i). The situation is illustrated by the following diagram.

I 1 1 1 1 1
sL R L M,e, gR gL

We leave it to readers to check that either gsLe[ulQ1,gR'] or \jgsL,gR~\r\
lQl^ = {gR}, hence d £ < * ( L , K , Q , ) £ *.

Case (ii). In this case the diagram is

R M ,e , gR gL

Now [R,sL]n[R,u1Q1'] = {R} unless ut=s, in which case sLe[_R,ulQl~\, and
g[R,sL] n[gR,UiQ^ = {gR} unless u2 = s~1, in which case gsLe[u1Ql,gR']. Since
d(R,ulQl)'^.k and d(gR,ulQl)'2ik., and both Ui=s and u2 = s~l are impossible (since
u,,«2 is a reduced word), we see that, in all cases, d^k.

In Case (iii) we see in a similar way that d^d(L,ulQl) + d(ulQl,gL)^.2k, and Case
(iv) follows by applying Case (i) with g" 1 in place of g. The other assertion in (b), that
d([R,tL],g[R,tL])^k, is proved by interchanging the roles of s and t in this argument.

•
Lemma 4. In the situation of Lemma 3, suppose 1 ^geG and xeX. Then d(x,gx)^k.

Proof. Let X' = \JgeG[R,gR']. It follows from (2.11)(a)(ii) in [1] that X' is a
G-invariant subtree of X. By Lemma 1, we may assume that xeX'. Let Y =
[s~lL,sR~} u [t~lL,tR']. Then Y is a subtree of X' (see the diagram on the previous
page); note that [s"1L,s/?]£[s"2R,s/?]cX, since <f(s)>A, and similarly with t in place
of s, so Y^X'.) By Lemma 2 in [3], if xeX', xe[hQ,huQ'] for some heG, where
«e{s ± l , t ± 1 } and Q,Q'e{L,R}. It is easily seen that [Q,uQ'~\ c Y, hence X' = GY. Now
let Z = [L,sL~\\j\_L,tL~], a subtree of Y. Again it is easy to see that y ^ Z u
U«6(«*'.i*«j"Z' h e n c e X' = GZ.

Thus by Lemma 2 we may assume that xeZ. Note that
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Z = [L, R] u [K, sL] u [/?, tL]. If x e [L, /?], then d(x,gx) ^ k by Lemma 3(a); also, if n > 1
and xe[/?,sL] u[R, fL], then d(x,gx)^fc by Lemma 3(b). Suppose « = 1 and
xe[/?,sL]u[/?,tL].

If x e [i?,sL], there are the following possibilities.

(i) g = t. Thengxet[R,sL] and
(ii) g = r l . Then d([R,sL],rl{_R,sL]) = d(R,t~ 1R) = d(R,tR)^k as in (i).

(iii) g = s±l. Then d(x,gx)=f(s) = d(R,sR)^d(R,sL)^k, since [R,sL] £ /is.

Thus in all cases d(x,gx)^.k. Similarly, interchanging the roles of s and t, we find that
if n = 1 and xe[/?, *L], then d(x,gx)^/c, and the lemma is proved. •

Proposition 1. In the circumstances of Lemma 3, G acts freely and properly disconti-
nuously on X, and s, t freely generate G.

Proof. This follows at once from Lemmas 3 and 4 (the fact that s and t are free
generators also follows from Lemma 2 in [2]). •

The second proposition deals with the situation of Lemma 3 in [3]. The proof is quite
similar to that of Proposition 1, with the bridge [S,T~\ between As to A, playing a role
analogous to that of [L, R~\ in Proposition 1.

Lemma 5. Suppose that G= <s,t> acts on a A-tree (X,d), with <f(s), / ( t )>0, and
Asn A , = 0. Let [S,T~] be the bridge between As and A , , where SeA5 and TeA,. Put
/c = min{/(s),<f(t)}- Let geG, and write g = ul...un, where uu...,un is a freely reduced
word in { s 1 1 , ^ 1 } . Then

(a) d&T,S],glT,S])Znk,
(b) ifn>\, then d{{_S,sS],g[_S,sS-])^k and d([T,tT],g[T,tT])^k.

Proof. If n = 1 it is easy to see that (a) is true (see the diagram for the case <f(s) > 0,
<f(0>0 on p. 355 of [1]). We may therefore assume n> 1. By Lemma 3 of [3],

where Q, is either S or Tfor 1 fsi^n— 1. Again, it is easy to see that either Te[S,u,Qi]
or Se[T,u1Q1'], and either Te[u;lQn_l,S] or Se[u;lQn^l,T\. Thus there are four
possibilities:

(i) [S,gT] = [S, T,UlQuutu2Q2,...,«!...u...,&_,,*S,
(») U,gT] = [T,S,uxQl,u,u2Q2,...,ul...un.xQn_ltgS,gT],

(iii) \_S,gS] = IS, T, UlQlt Uiu2Q2 Ul... um-lQm-ugT,gS],
(iv) lT,gS] = [.T,S,ulQl,ulu2Q2,...,u1...un_lQn-l,gT,gSl.

It is easily checked that the distance between two successive points on the right-hand
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side in (i)-(iv), other than the first two points or the last two points, is at least k.
Therefore rf([T,S],g[T,S]) is the distance between the second and penultimate points
on the right-hand side, and is ^ nk, as required.

Since [T,sST\ = [T,S,sS~\, so that glT,sS]=g[T,S,sS], it follows from the triangle
inequality that d([S,sS],g[S,sS])^(n-2)fc, and similarly it follows that
d([T,tT\,g[T,tT])^(n-2)k, so (b) follows if n^3, and it remains to prove (b) when
w = 2.

Put d = d([S, sS],g[S,sS>]). One of the four cases (i)—(iv) above occurs and we consider
them in turn.

Case (i). The situation is illustrated by the following diagram.

I 1 1 1 1 1
sS S T u,Q, gS gT

Once again an easy check shows that either g s S e O ^ . g S ] or [gsS,gS]n
tQ^ = {gS}, hence d ^d^u^^k.

Case (ii). In this case the diagram is

I 1 1 1 1
T S u.fi, gS gT

Now [S,sS] n [S,M1Q1] = {S} unless ul=s, in which case sSe{_S,UiQi], and g[S,sS] n
[gS,ulQl~\ = {gS} unless u2 = s~l, in which case gsSefj^Q^gS]. Since d(S,UiQi)^k and
digS^&J^k, and both ut = s and u2 = s~l is impossible (since ul,u2 is a reduced
word), we see that, in all cases, d ^ k.

In Case (iii) we have d ^d(T,u1Q1) + rf(u1ei,gr)^2/c, and (iv) follows from (i)
applied with g'1 in place of g. The other assertion in (b), that d([T,tT],g[T,tT])^fc, is
proved by interchanging the roles of s and t in this argument, which has the effect of
interchanging S and T. •

Lemma 6. In the situation of Lemma 5, suppose 1 ^geG and xeX. Then d(x,gx)^.k.

Proof. Let X'=\JgeG[S,gST\, a G-invariant subtree. By Lemma 1, we may assume
that xeX'. Let y = [s" 1 r , t " 1 S] u [sT.fS]. Then Y is a subtree of X' (again see the
diagram on p. 355 of [1]; note that [_s~1T,t~1S] £ [S,t~'SjuCS.s"1*"*S] £ X', and
[sT,tS] £ [S,sfS]u[S,tS] e x\ so y c r . ) By Lemma 3 in [3], if
xeX',xe[hQ,huQ'~\ for some heG, where ue{s±l,t±1} and Q,Q'e{S,T}. It is easily
seen that [f tug '] £ Y, hence X' = GY. Now let Z=[sS,tT] = [sS,S,T,tT\, a subtree of
Y. Again it is easy to see that F s Z u UU6(,*i.,±i}«Z, hence X' = GZ. By Lemma 2, we
may assume that xeZ. Note that Z = [S,sS]u[S, T ] u [T,tT].

If xe[S, T], then d(x,gx)tk by Lemma 5(a); also, if w>l and xe[S,sS] u [T,tT],
then d(x,gx)^k by Lemma 5(b). Suppose n=\ and xe[S,sS] u [7,17]. If JC e[S,sS],
there are the following possibilities.
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(i) g = t. Then gxet[S,sST\ and d([S,sS],tlS,sS]) = d{S,tS)^d(T,tT) = l(t)^k, since

(ii) g = t~i. Then d([S,sS],rl[S,sS~\) = d(S,riS) = d(S,tS)^k as in (i).
(iii) g = s±1. Then since [S,sS] £ A^ we have d(x,gx) = t(s)^.k.

Thus in all cases d(x,gx)^.k. Similarly, interchanging the roles of s and t, we find that
if n = l and xe\_T,tT], then d(x,gx)S^fc, and the lemma is proved.

Proposition 2. In the circumstances of Lemma 5, G acts freely and properly disconti-
nuously on X, and s,t freely generate G.

Proof. This follows at once from Lemmas 5 and 6 (we can also use Lemma 3 in [3]
to see s, t freely generate G). •

We now consider in turn the situations in Lemmas 4, 5 and 6 of [3]. Lemma 5 deals
with two cases and it is necessary here to treat them separately. It will be left to readers
to draw their own pictures to illustrate the proofs. We begin with the situation of
Lemma 4 in [3]. First, we need a lemma which is also used in the next case.

Lemma 7. Let g be a hyperbolic isometry of a A-tree (X,d) and let a,beX. If
[a,6]n [ga,gfc]#0, then at least one endpoint of \a,b~\n[j>a,gb~] is in Ag. 7/[a,6]n
[ga,gb~] = 0 then either the bridge joining [_a,b] and [ga,gb~\ is contained in Ag, or this
bridge is of the form [w,gw]for some w€[a,b].

Proof. If [a, b~] n Ag = 0 then let [w, x] be the bridge between [a, fc] and Ag with
w€[fl,i] and xeAg. Then [a, ft] n [ga,gb] = 0 and the bridge joining them is
[w,x,gx,gw]. Otherwise, [a,b~\ n Ag = [x,y] for some x,y with x^gy. If gx<gy then
[a,b~]r\[ga,gb~\ = [gx,y] has both endpoints in Ag. Ifgx = _y then [a, 6] n \jga,gb] = [y,w']
for some w, and the endpoint yeAg. Finally if y<ggx, then [a,fc] n [ga,gb'] = 0 and the
bridge joining [a, U] and [ga,gb] is [y,gx] which is contained in Ag. D

Before stating the next lemma we need to introduce the simple notion of signed
distance. Let A be a linear subtree of a A-tree (X,d), so there is an isometry <x:/l->A. If
x,yeA, the signed distance from x to y (relative to a) is ot(y) — a(x). Thus d(x,y)
= |a(.y) —aM|- V A = Ag is the axis of a hyperbolic isometry g then we choose a so that
a.(gx) = a(x) + <f(g) for xe/4, that is, so that the signed distance from x and y is positive if
and only if x<gy. In Lemma 8 we shall use signed distance for points which are in the
intersection of the axes of two hyperbolic isometries s, t which meet coherently, so it
does not matter whether we use A, or A, to measure signed distance. We denote the
signed distance from x to y by d(x,y).

This next lemma is an elaboration of Lemma 4 in [3], and is concerned with the
behaviour of a point Q e [L, R] = As n A, when powers of s and t are successively
applied. Roughly, if u = s""fni...s""'fn'' where only nk can be zero, then uQe[L,R~\ only if
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the points tn'Q,smtt'"Q,t''2smit''lQ,... all lie in [L,K], and are translated back and forth
along [L,R] by successive application of t"\sm\tni, etc. Also, if one of these points
leaves [L, R], then the projection of uQ onto As behaves in the same way as it does in
the case Q = R, which is treated in Lemma 4 of [3].

Lemma 8. Let G=<s,t> be a group acting on a A-tree (X,d) with <f(s)>0 and
t(t) > 0. Assume s, t meet coherently, and that As n A, has both a left and right-hand
endpoint (denoted by L,R respectively). Let A = A(s, t) and suppose that
£(t)<t(s)<A<£(s) + t(t), that A4 <tf(s),f(t)> and that <f(s),<f(t) are Z-linearly indepen-
dent. Let Q be any point of [L, /?] and let u=sm'tr" ...smkt"k, where the m, and n, are
integers, k ̂  1 and only nk is allowed to be zero. Let w be the projection of uQ onto As.
Then

(1) IfuQ4[L,R], then either sL^sw or w^ss~lR. Moreover:
(a) / / we[sL, R~\, then either d(w,R) = at?{s) + pf(t) for some integers a, /? with a<0,

or d(w,L) = oc^{s) + P^(t) for some integers a,j? with a>0, /?^0. In either case,

(b) / / we[L,s~lR], then either d(w,L) = a.£(s) + fi£(i) for some integers a,/? with a<0,
P^O, or d(w,R) = a/(s) + P^(t)for some integers a,)? with a>0, /?^0. In either case,
w / L .

(2)/ / MQe[L,R] then sm'tni...smktnkQe[L,R'] and tni...smkt"kQ6lL,R] for lgigfc.
Further, either all mf = 1 and all nt ̂ 0, or all m,, = — 1 and all n, ̂ 0 . In either case,
the signed distance 2(Q,uQ) = p£(s) + qt(t) where p = ]T?=i mt = ±k and q = Yj=i ni-

Proof. The proof is by induction on k. Suppose k=\. If nl=Q then w = uQ = sm'Q
can be in [L, R] only when m, = +1, because A<2<f(s), and the lemma is clearly true in
this case. Suppose n^O. If t"'Q4[L,R] then w is either sm'L or sm'R, depending on the
sign of n,, and uQ4[L,R~\. It is easily checked that the conditions on w are satisfied.
Suppose f"Qe[L,K]. Then w = uQ, and because A<<f(s) + <f(t), uQ can be in [L,R] only
when m, = + 1. For the same reason, if nl <0, m, = 1 and if n, >0, «!, = — !. It is now
clear that the lemma is true in this case.

Now assume the result is true for fe-1, and put u' = smHni...smkt"k. If u'Q$[L,R], then
an analysis like that given in the proof of Lemma 4 in [3] shows that the conditions on
w are satisfied and that uQ$[L,R]. Suppose that u'Qe[L,R]. By induction there are
two possibilities:

Case 1. m, = 1 and n, gO for 2^i^k.
Case 2. m, = - 1 and n, |>0 for If^i^k.
In Case 1, if t"'u'Q$[L,R], then w=sm'R or w = sm'L and uQ$\_L,R]. Suppose

f'u'QelL,Rl Since inductively V: = t"2...fV-Qe[L,R] and m2 = l, f'u'Q = tn>sV$
[L,/?] if «!>(), again because A</(s)+/(t), so nt<0. Then w = ug = smit"'u'Q, which
can be in [L, /?] only when m ^ l for similar reasons, and either w^ss~lR or sL^sw.
Further, when UQB{L,R], 2(Q,uQ) = d{Q,u'Q) + ̂ (s) + n^(t), and the result follows by
induction in this case. Case 2 is dealt with in a similar manner. •

Lemma 9. Under the hypotheses of Lemma 8, for all geG\{l} and all Qe[_L,R],
d(Q,gQ)>0.
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Proof. Let u = s""f'"...sm'Itnk, where the m, and n, are integers, fc^l and only nk is
allowed to be zero, as in Lemma 8. If g = u, then the result follows easily from Lemma 8
because if uQe[L,R], the coefficient p in d(Q,uQ) is non-zero, and /(s), /(f) are linearly
independent, so d(Q,uQ)= \d(Q,uQ)\ #0.

Suppose g = t"u, where n#0. If uQe[L, R], then again by considering the signed
distance from Q to gQ along the axis A,, we see that d(Q,gQ)>0. Assume uQ£[L,K].

Let w be the projection of uQ onto As, and let w' be the projection of gQ onto /4S. By
Lemma 8, there are four possibilities.
Case 1. R<sw. Then it is easily checked that

fR ifn>0
w'=-lt"R if n<0 and L<,t"R

[L if/i<0 and t"R<,L.

Note that t"R^L since otherwise A=|«|/(r), so Ae<if(s)/(0>. contrary to
hypothesis.

Also, in all cases, d(gQ,As)^d(R,uQ)>0, so d(gQ,Q)>0.
Case 2. we[sL, R]. By Lemma 8, t"w^L,R, and it is easily checked that

r t"w iftnw
w' = l R ifR<,t"w

[L if tnw<,L.

In all cases it is easy to see that gQ$\_L,R], in fact d(gQ, A,) = d(uQ, w)>0.
Case 3. w<sL. Similar argument to Case 1.
Case 4. we[L,s"'/?]. Similar argument to Case 2.

The only other possibility is that g = f where n#0. But /(t")= |n | / ( t)#0, so

We cannot yet prove that the action is properly discontinuous, but it does now follow
that the action is free.

Lemma 10. Under the hypotheses of Lemma 8, the action of G on X is free.

Proof. We first show that for all l^geG and all xeX, we have d(x,gx)>0. As in
Lemma 4, Y = \JgeG[R,gR] is a G-invariant subtree of X and by Lemma 1 we may
assume xeY. Write g = ut...un where uie{s±1,t±l}. By (2.14) in [1],

lR,gR~] S [K,«!«] u KK,u,u2K] u . . . u[u, . . . un_,K,gR]

and each of the intervals in this union is in the orbit of either [s"li?, K] or [t~1R,R].
But lt~lR,R] £ O~lR,R], so Y=G{s~lR,R\ Since [s" 1 ^ ,^] £ [L,R], it now follows
from Lemma 9 and Lemma 2 that d(x,gx)>0. Thus no element of G\{1} has a fixed
point. Now it follows from Lemma 4 in [3] that G is freely generated by s and t, so G is
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torsion-free. Hence, if \=£geG, g 2 # l , so g2 has no fixed points, hence g is not an
inversion, so g must be a hyperbolic isometry. •

Lemma 11. Under the hypotheses of Lemma 8, let A— <t(s),t(t), A>. For geG, let
wg be the projection of gR onto As. Then:

(1) For all geG\{l}, d(R,gR)^a>0for some aeA.

(2) For all geG\{\}, d(L,gL)^a>0for some aeA.

(3) For all geG, wg is in the orbit of either R or L.

(4) For all geG\{l} and heG, d{gwh,wh)^a>0for some aeA.

Proof. (2) follows from (1) on replacing s,t by s"1,!"1 respectively, and (4) follows
from (l)-(3), so we have to prove (1) and (3). Let u = s""t"> ...smkt"k, where the mx and n,
are integers and only nk is allowed to be zero. An inspection of the proof of Lemma 4 in
[3] shows that the conclusions of that lemma are valid even when nk = 0. If g = u, further
inspection of the proof of Lemma 4 of [3] shows that (3) holds, and that d(R,wu)>a>0
for some aeA, hence d(R,uR)^.a. Thus (1) holds in this case.

If g = t"u where n>0, then a similar inspection of the proof of Lemma 9 above shows
that (1) and (3) hold in this case. For example, if wue[sL,K], uQ$lL,R~] and R<,t"wu,
then R = wg and d(R,gR)^d(R,tnwu) = nt!'(t)-d(R,wu)>0, and d{R,wu)eA by Lemma 8,
so (1) and (3) hold. Finally, the result is clear if g = t". •

Lemma 12. Under the hypotheses of Lemmas 8 and 11, suppose that there exists
0<ceA such that c^a for all 0<aeA. Then for all l # g e G and all Qe[s~lR,R],

Proof. Take g # 1; note that, by Lemma 10, g is a hyperbolic isometry. Let w be the
projection of gR onto As, and let w' be the projection of gs'lR onto As. If either
w<ss~lR and R<sw\ or w'<ss~lR and R<sw, then by (2.14) in [1],

a contradiction. We therefore need to consider the following three cases.
Case 1. Either we[s"'R,]?] or w'eCs"1^,/?] and w^w'. Then [s" ' /?,R]n

\j>s~lR,gR] is one of

[w, w'l [w, R], [w, s- lRl [w', R], [w', s" **]

and by Lemma 7, one of the endpoints of this intersection, say z, is in Ag. By Lemma
11, d(z,gz)^.c. Hence f(g)^c, so d(x,gx)^.c for all xeX, in particular for x6[s"'R,i?].
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Case 2. Suppose w = w'e[s~1K,K]. If we [gs~'/?,£/?], then we are finished as in Case
1. Otherwise, [s~iR,K]n\jgs~lR,gR] = 0 and w is an endpoint of the bridge between
[s " ' /? ,#] and [gs"1/?,^/?]. By Lemma 7, either weAg and we are finished as in Case 1,
or this bridge is [w,gw], and the result follows using Lemma 11 and the Bridge
Proposition (2.17(c) in [1]).

Case 3. Suppose w,w' <ss~iR or R<sw,w'. Then either R or s~1R is an endpoint of
the bridge joining [s"1^,/?] and [gs~iR,gR], and again the result follows using
Lemmas 7 and 11. •

We still cannot prove that the action is properly discontinuous under the hypotheses
of Lemmas 8, but we can prove this if we assume in addition the existence of c as in
Lemma 12. This weaker result will eventually be sufficient to prove the main theorem.

Proposition 3. Under the hypotheses of Lemmas 8 and 12, for all l^geG and all
xeX, d(x,gx)^.c, and s,t freely generate G.

Proof. The first assertion is proved by an argument like that used in Lemma 10,
using Lemma 12 in place of Lemma 9. Now s, t generate infinite cyclic groups since they
are hyperbolic, and by Lemma 4 in [3], G is their free product. •

We now consider the situation of (1) in Lemma 5 of [3]. The strategy will be similar
to that used to prove Proposition 3.

Lemma 13. Let G=<s,t> be a group acting on a A-tree (X,d) with <f(s)>0 and
/(t) > 0 and assume s, t meet coherently, and that As n A, has both a left and right-hand
endpoint (denoted by L, R respectively). Let A = A(s, t) and suppose that <f(tr) < <f(s) for all
integers r, and /(s)<A<<f(s) + /(t). Let Q be any point of[_L,R~] and let u = smtr" ...sm"tnk,
where the m, and n, are integers, k ̂  1 and only nk is allowed to be zero. Let w be the
projection of uQ onto As. Then:

(1) Suppose uQ $ [L , R~\ ;ifwe [L , R ] then either w = s~*R or w = sL.

(2) lfuQe[L,R~], then k=\, t"<Qe[L,R] and either mt = l and n ^ O , or ml = - \ and

Proof. The proof is by induction on k. Suppose fe=l. If nt=0 then w=uQ, which
can be in [L,R~\ only when m=±l. If M ^ O then an argument like that in Lemma 8
shows that w is either uQ,s""L or s""R, and «ge[L,R] only when t"'Qe[L,R] and
either nl <0 and mi = 1, or nx >0 and m1 = — 1.

Now assume k>\ and the result is true for k— 1. Put u'=smit"2.. .s"1"!^. If
u'Q $ [L, /?], then an analysis like that given in the proof of Lemma 5 in [3] shows that
the conditions on w are satisfied and that uQ$[L,R]. Suppose that u'Qe\_L,R~]. By
induction k = 2 and there are two possibilities:

(1) m2 = l and

( 2 ) m 2 = - l and n 2 ^
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In Case 1, if f"u'Q<fc\_L,K], then w = s""/? or w=smiL and uQ$[L,K], and we[L,K]
only when w = s~lR or w = sL.

Suppose tn>u'Qe[L,R]. Since t"2Qe[L,K] and m2 = \, t"'st"2Q$\_L,R] if nj>0,
because A<<f(s) + /(t), so n t <0 . Then w = uQ = sm'tn'u'Q, which can be in [L,R] only
when m! = l for similar reasons. But then it is easy to see that Q<suQ and
d(Q,uQ) = 2t(s)-(ni+n2W(t)'2:{(s) + £(t)>b., so uQ£[L,K]. Case 2 is dealt with in a
similar manner. •

Lemma 14. Under the hypotheses of Lemma 13, for all geG\{l} and all Qe[L,/?],

Proof. Let u = sm'tl" ...sraictnk, where the m, and n( are integers, fc^l and only /i* is
allowed to be zero, as in Lemma 8. If g — u, then the result follows easily from Lemma 8
because if uQelL,R],d(Q,uQ) = <?(s)- | wx |<f(t)>0.

Suppose g = t"u, where n#0. If uge[L,i?], then rf(G,gQ) = ̂ (s)- |«, |/(t)±nif(t)>0.
Assume «Q^[L,R].

Let w be the projection of uQ onto -4s, and let w' be the projection of gQ onto /ls. By
Lemma 13, there are four possibilities.

Case 1. R<sw. Then it is easily checked that W = R if n>0 and w' = t"R if M<0, and
that d(gQ,As)^d(R,w)>0, so d(gQ,Q)>0.

Case 2. w = sL. Then it is easily checked that W = t"sL if n<0 and w' = R if n>0 and
that d (gQ, As)^d (uQ, As)>0,sod (gQ, Q) > 0.

Case 3. w<sL. Similar argument to Case 1.
Case 4. w = s~lR. Similar argument to Case 2.
The only other possibility is that g = t" where n#0. But £(?)= |« | / ( t)#0, so

•
Lemma 15. Under the hypotheses of Lemma 13, the action of G on X is free.

Proof. This is proved in the same way as Lemma 10, observing that by Lemma 5(1)
in [3], s and t freely generate G, so G is torsion-free, and using Lemma 14. •

Lemma 16. Under the hypotheses of Lemma 14, let c = min{<f(s) + (f(t) — A, A — £(s)}.
Then:

(1) For all geG\{\), d(R,gR)^c.

(2) For allgeG\{l}, d(L,gL)^c.

(3) IfWg is the projection of gR onto A& then for all geG, wg is in the orbit of either R
or L.

(4) For allgeG\{l} andheG,d(gwh>wh)^c.

Proof. As in Lemma 11, (2) follows from (1) on replacing s,t by s"1, t"1

respectively, and (4) follows from (l)-(3), so we have to prove (1) and (3). Let
u = sm'tl" ...smkt'"', where the mt and n, are integers and only nk is allowed to be zero. An
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inspection of the proof of Lemma 5(1) in [3] shows that the conclusions of that lemma
are valid even when nk—0. U g=u, further inspection of the proof of Lemma 5 of [3]
shows that (3) holds. One of the conclusions of that lemma is that either stL^swu or
wu^ssL, so either d(wu,R)^d(R,stL) = <!'(s) + f{t)-A or d(wu,R)^d(R,sL) = A-f(s).
Thus in either case d(R,uR)^d(R, w j ^ c , and the lemma is true when g = u.

If g=t" where n # 0 , then wg is either R or t"R depending on the sign of n, and
d(R,gR) = \n\£(t)^t(i)^c because of the hypothesis <f(s)<A<<f(s) + £(i). Thus we need
only verify (1) and (3) when g = t"u, where n^O. We consider several cases.

Case 1. Suppose /?<sw,,. Then if n>0, wg = R and d(R,gR) = d(R,t"R) + d(R,uR)^
d(R,t"R)^c, as already noted. If n<0, then w9 = r"Re[L,R] and again d(R,gR) =
d (R, t"R) + d(R,uR)^d (R, t"R) ̂  c.

Case 2. Suppose wu<sL. If n<0 then wg = L and again d(R,gR) = d(R,uR) +
\n\S(t)^S(t)^c. lfn>0, then wg = t"Land d(R,gR)^d(tnL,R) = A-nf(t)>t(t)^c.

Case 3. Suppose w^s'^. If n>0, then wg = tns'lRe[L,R] and d{R,gR)^
d(R,wg) = t(s)-nt(t)>t{t)^c. If n<0, then w9 = Land d{R,gR)^d(L,R) = A^A-f(s)^
c.

Case4. Suppose wu = sL. If n>0 then wg = R and d(R,gR)^d(R,t"sL)^d(R, tsL) = if(s) +
<f(0-A^c. If n<0 , then wg = f"sLe[L,K] and d(R,g/?)^d(R,wg) = A-<f(s)+|« | /( t)

By Lemma 5 in [3], these are the only possibilities for wu, so this completes the proof.

•
Lemma 17. Under the hypotheses of Lemmas 13 and 16, for all l # g e G and all

Proof. This proceeds in the same way as the proof of Lemma 12, using Lemmas 14
and 16 together with Lemma 7, and details are omitted. •

Proposition 4. Under the hypotheses of Lemmas 13 and 16, for all X^geG and all
x e X, d (x, gx) ^ c. Hence the action of G on X is properly discontinuous. Further, s and t
freely generate G.

Proof. Again this is proved by an argument like that used in Lemma 10, and
Proposition 3, using Lemma 17 in place of Lemma 9, and using Lemma 5(1) in [3] to
see s and t are free generators. •

We now consider the situation of Lemma 5(2) in [3]. This involves a somewhat
different approach from that used in Propositions 3 and 4, and is simpler.

Lemma 18. Let G=<s,t> be a group acting on a A-tree (X,d) with / ( t )>0 and
assume s,t meet coherently, and that AsnA, has both a left and right-hand endpoint
(denoted by L, R respectively). Let A = A(s,t) and suppose that £(f)<Afor all integers r
and A<t(s). Let u = sm'tr"...s""'tn'', where the m, and n, are integers, /ckl and only nk is
allowed to be zero. Then\L, R~\ n u[L, /?] = 0, and the bridge between [L, K] and u\L, /?]
contains one of the following points:
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sn"R,smitn'R(with nj <O),s""L,sn"f"L (with nx >0)

and all the listed points are at distance at least f(s) — Afrom [L,/?].

Proof. First note that all the listed points lie on As and if w is one of them, either
w<ss~1R<sL or R<ssL<sw, and since d(s~1R,L) = d(R,sL) = S(s) — A, the last part of
the lemma follows. The rest of the lemma is proved by induction on k. Suppose that
k=\. If n , ^0 , then t"lRe\_L,R~], tn'L^tL, and the bridge joining [L,R] to u[L,R] is
[/?,sm'L] if mx >0, and is [smitniR,L] if m^O.

If «!>0, then t"'Le\_L,R] and /?<,t"'/?, and the bridge joining [L,K] to u[L,R~} is
[/?,s""£niL] if m,>0, and is [s""/?,L] if m^O. Thus the lemma is true when fc=l.

Now assume the result is true for k — \. Put u' = sm2t"2 ...smkt''k. Then the bridge
joining [L,/?] to w'[L,/?] contains one of the listed points with m2, n2 in place of m1,n1.
Denote such a point by w', so as noted at the beginning either R<sw' or w'<sL.
Suppose that R<sw\ so that the bridge joining [L,R~\ to u'[L,R~\ is of the form
[/?,w',p] for some peu'[L,R]. Ifnl>0 then the bridge joining [L,R] to u[L,i?] has the
form [R,smiR,smttntR,smit'"w',s""t'"p] if m^O, and the form
[L,s""R,smit'"R,smit''lw',smtt''lp] if m!<0, so contains sm'K. If nt <0, the bridge joining
[L,R] to u[L,/r| has the form [R,smitniR,smit'Iiw',smitnip'] if m^O, and if m ^ O it has
the form [L,s""('"R,s""t'"w',s'"1t'"p], so it contains smitn'R. The case w'<sL is dealt with
similarly, by replacing s, t with their inverses, interchanging the roles of L and R. •

Lemma 19. Under the hypotheses of Lemma 18, the bridge joining [R, sL] to M[R, SL]
contains one of the points listed there and d([R,sL],u[R,sLy}^f(t).

Proof. The proof is similar to the proof of Lemma 18 and the details are left to the
reader. There is one point to note. All the listed points are at distance at least *f(r) from
[R,sL], except, of course, sL. However, this only arises in the case k>\, the bridge
joining «'[/?,sL] to {_R,sL~\ contains a point w' on the list with w'<ss'iR<sL, and
«,<(), ml = \. But then the bridge joining u[R,sL~\ to \_R,sL~] contains the segment
lsL,stniL,sf"w'1 of length at least d(sL,stn'L)= |nx \S(t)£S(t). •

Lemma 20. Under the hypotheses of Lemma 18, suppose l^geG and Qe[L,sL]. Let
c = min{,f(s)-A,•(*)}. Then d(Q,gQ)^c.

Proof. Note that [L,sL] = [L,R] u [/?,sL]. If g = u, where u is as described in
Lemma 18, the result therefore follows by Lemmas 18 and 19. Suppose g = fu, when
n#0. If Qe[L,K], take a point w in the list in Lemma 18 which belongs to the bridge
between [L,/?] and w[L,R]. If sL^sw, then the bridge between [L,K] and g[L,R~\
contains the segment [_t"R, t"w], regardless of the sign of n, and this segment has length
d(R,w)^<f(s) — A. The other possibility is that w^ss~lR. In this case we similarly find
that the bridge joining [L,/?] to g[L,J?] contains the segment [*"L,fV], of length
d(L, w)^f(s) — A. The argument in case Qe[R,sL] is similar.

The only other possibility is that g=t" with n#0, in which case d(Q,gQ)^ \

https://doi.org/10.1017/S0013091500018885 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018885


PROPERLY DISCONTINUOUS ACTIONS ON A-TREES 437

Proposition 5. Under the hypotheses of Lemma 18, and with c defined as in Lemma 20,
so that c>0, we have d(x,gx)^.c for all xeX and l^geG. Hence the action of G on X
is properly discontinuous. Also, s and t freely generate G.

Proof. Let Y=\JgeG[L,gL'], a G-invariant subtree of X. By Lemma 1 we may
assume xeY, and arguing as in Lemma 10 with L in place of R, every point of Y is in
the orbit of a point in [L,sL]v[L,tL] = [L,sL]. By Lemma 2, we may assume that
xe[L,sL], and the action is properly discontinuous by Lemma 20. It follows from
Lemma 5(2) in [3] that s and t are free generators of G. •

The final case is that of Lemma 6 in [3]. Although we do not have the complication
in the previous case that sL $ [L, R], the fact that sL = R gives new complications, and a
somewhat longer analysis than that in Lemma 18 is necessary.

Lemma 21. Let G= <s,t> be a group acting on a A-tree {X,d) with <f(t)>0, assume
s, t meet coherently, and that As n A, has both a left and right-hand endpoint {denoted by
L, R respectively). Let A = A(s, t) and suppose that <f(tr) < <f(s) for all integers r, and that
/(s) = A. Assume that sts~lt has no fixed point in X. Let P be the projection ofst~lL onto
A,. Let u = sm't"'...smkt"1', where the mt and nt are integers, only nk is allowed to be zero,
and k^l. Put c = d(P,tR) and / = [L,/?]. Then if k^2, Inul = 0, d(I,ul)^c>0 and the
bridge joining I to ul contains one of the following points:

Proof. The proof is by induction on k. As noted at the beginning of the proof of
Lemma 6 in [3], c>0, and since d(R,st~iL) = t(t) = d(R,tR), c = d(P,st~1L) and c<t(t).
It will be helpful to refer to Figure 2 in [3]. It suffices to show that the bridge joining /
and ul contains one of the four listed points, for they are all at distance at least c from
/. Suppose that k = 2. We shall denote the bridge between closed subtrees Y, Z of X by
B(Y,Z).

Assume that n2 ^ 0. We consider three possibilities for m2.
Case 1. Suppose m2>0. Then sm2f"2/n/ = 0 and the bridge joining these segments is

[/?,smit"2L], which is a subset of /is, except in the case n2 = 0, m2= 1, when si r\I = {R}.
If M ^ O , then B{I,f"smH"2l) is \_R,tniR,tn'sm2tn2L], and B{I,ul) is thus

[K)s""R,smir'"K,uL] if mt>0, and is [L,s""K,s""r/"K,uL] if m,<0. Further, if m, = - l ,
B{l,ul) contains the point s'hR, while if mi>0, sts~lPsB(l,uI), and if mi < - 1 then
s-lrlPeB(I,uI).

If n,<0, then B(I,tl"sm2tn2I) = \_tn'R,ta'smHn2L], except in the case n2 = 0, m2 = l, when
lntn>sm2t"2I = {tn>R}. Thus if m^O, we have B(/,u/) = [L,smitn'R,uL], so
s~lt~lP€B{I,uI) since sm' tn i /?^ss"1t"1R<; J s~lt~ 1P. If m,>0, then we have B(l,ul) =

in/.
Case 2. Suppose m 2 = - l . Then /ns"1rB 2/ = {L}, and if n 2 / 0 , s'lt"2l =

[s-1t"2L,L,s"1P,s-1rn2/?]. Suppose n,>0. Then
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{tn'L} ifn2#0
hence

P] ifm,>Oand n2^0
/,u/) = <{ [R,sm'tn'L]

[L,sm'tn'L] ifm,<0.

Now if m^O, R<ssts~lP<s smit'"s~lP<ss
mitniL, so sts'^eBduI); if m^O,

sm'tniL<ss~1t"lL<ss~lt~1P<sL, because tn>L<sC
lR<st~

1P, again because A>

Suppose nt<0. Then B(/,r"'s"lr"2/) = [t"1L,L], and it follows that if m,<0, then
s-h'iPeBi^uI), if w, = l then srxLeB(l,ul) and if m^X then sts'l Pe B(I,ul).

Case 3. Suppose that w i 2 < - l . Then B(I,sm2tn2I) = [L,sm2K]. If n ^ O , then
B(I,tr"sn"t"2I) = [t'"L,t''lsm2K], hence (as in the previous case)

[\_R,sts-lP,sm'tn'L,sm't'"sm2R']

If nt<0 then B(I,tnis""tn2I) = [L,tnism2K] and

f[L)s
miL,sm'tn'L,sm't"1sm2/?]

and as in the previous case, if m,<0, then s"1t"'PeB(/,M/), if m ^ l then
s f ^ e B ^ . w / J a n d if w, > 1 then sts'lPeB(I,ul).

This completes the proof for the case /c = 2 when n2^0. But the case /c = 2, n 2 ^0 now
follows by symmetry, replacing s,t by s~l,t~l, which interchanges L and /?, and
interchanges P with s - 1P.

Now suppose fc;>3 and the result is true for u'=sm2t"2...sn"'t'"'. Then B(/,u/) contains
one of the four listed points.

Case 1. Suppose sts~lPeB{I,u'I). If «i>0, then B(I,tn'u'I) = [R,t"lK] u tn'B{I,u'I),
hence if mt>0 then [R.sts"^] £ B(I,uI), if m! = - l then [L.s"1!/?] £ B(/,u/) and if
m ! < - l then [L.s- 'r- 'P] £B(/,U/).

If n,<0, then B(/,tniu7) = t"'B(/,u/). Thus if m^O, we have lyr1/?,*""1*-'P.L] £
B(/,u/), while if m, >0, we have lsm't"lR,sts~iP,R] £ B(/,u/).

Case 2. Suppose st~lLeB{I,u'l). If n^O, then \_R,P,tniP,tnist~lL] s B(I,tniu'I), and
again if m,>0 then [ ^ s t s "^ ] c B(I,uI), if m ^ - 1 then [L.s-'rR] c B(/,u/) and if
m i < - l then [ L . s - ' r ' P ] ^ B(I,uI).

If /i!<0, then B(I,f"u'I) = t'"B(I,u'I) and we are finished as in the previous case. The
remaining cases (s~ltReB(I,u'I), s~lt~lPeB(I,u'I)) follow by symmetry just as in the
case k = 2. This completes the proof. •
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Lemma 22. Under the hypotheses of Lemma 21, for any l # g e G and any

Proof. Suppose that g = u as in Lemma 21. Then the result follows from Lemma 21
if /c^2, so we may assume fc=l. If g = t"u where k^.2 then the result follows from the
arguments used in the inductive step in Lemma 21 (in all cases B(I,t"'u'I) contains an
interval of length at least c). Also, if g = t", with n#0, then d(gQ,Q)^S(g) = \n\f(t)^c,
for any QeX. There remains the case g = fsmt"i where m/0 . Again using symmetry as
in Lemma 21 we may assume that nt ^0 . Put u = smta>. We consider two cases.

Case 1. Suppose that tniQeI. If ^ = 0 , then d(Q,gQ)= \m\£(s)±nt(t)>e(t)>c.
Assume n ^ O . If m>0, then since tL^stQ^st"'Q, we have [Q,MQ] =
lQ,f'Q,R,stL,uQl and d(Q,uQ) = d(Q,tn>Q) + d(tn'Q,uQ) = mf(s) + nlf(t)>c. If n^O,
then d{Q,gQ)=d(Q,uQ) + nt(t)>c, while if n<0 then [Q,gQ] = [Q,t"R,tStL,gQ], so

If m<0, then since tQ^sf'QSs^ we have Q^r 1 / ? , hence [Q,uQ~\ =
[Q,L,s-lrlR,uQ], and d(6,u0 =-m/(s)-n/(0^(s)-n/M>A0>c. If n^O, then

k c If «>0, then [_Q,gQ\ = lQ,tnL,fs-h-'R,uQ-], so

Case 2. Suppose that t"lQ$I. Then d(Q,R)^nlS{t). Using arguments similar to those
in Case 1, we see that if m<-\, [_Q,gQ~\ contains [t"L,t"s~2R~\, and if w>0, [Q,gQ]
contains [t"R, fsR'], so that d(Q,gQ)^f(s)>c. If m=-l, then [Q,gQ] = [Q,L,gQ} if
«<0, and \_Q,gQ] = [Q,t"L,gQ] if M^O. Thus d(Q,gQ)^d(trL,Q) for some r^O. But

and d(trL,Q)>t(t) since A>(n! + r+ l)/(t). D

Proposition 6. Under the hypotheses of Lemma 21, for all xeX and all 1 /geG we
have d(x,gx)^.c. Hence the action of X on G is properly discontinuous. Also, s and t
freely generate G.

Proof. As in the previous three propositions, this follows from Lemmas 7 and 22,
together with Lemma 6 in [3]. •

We are now in a position to prove the main theorem, which we restate, giving more
detail in Case (iv).

Theorem 1. Let G=<s,t> act on a A-tree (X,d). Then one of the following
possibilities occurs:

(i) G acts freely and properly discontinuously on X, and s,t freely generate G.

(ii) By a finite succession of elementary Nielsen transformations, s and t can be
transformed into new generators u and v such that at least one of t(u), ((u) is zero.

(iii) <f(s)>0, <f(t)>0 but sts'^'1 has a fixed point.

(iv) By a finite succession of elementary Nielsen transformations, s and t can be
transformed into new generators u and v such that £{u) > 0, /(u) > 0, u and v meet
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coherently, Aur\Av is a segment of length /(u), t(if)<S(u) for all integers n, and
uvu~lv has a fixed point.

If A is archimedean then one of(i), (ii), (iii) occurs.

Proof. If one of <?(s), <f(t) is zero then (ii) occurs, so we may assume <?(s)>0 and
<?(t) > 0. We consider several cases. In some cases we shall make use of results in Section
8 of [1], where it is assumed that the action is without inversions, and we note that the
conclusions we draw are valid without that assumption.

Case 1. AsnA, = 0. By Proposition 2, s and t act freely and properly discontinuously
on X, and s and t freely generate G. Thus Case (i) occurs.

In the following cases, we put A = A(s, t).
Case 2. A<min{i?(s),<f(t)}. Replacing t by t'1 if necessary, we assume that s and t

meet coherently. Then similarly using Proposition 1, Case (i) occurs.
In the remaining cases we can assume that £{t) ^ /(s).
Case 3. A = t{t)^£{s). Again replacing t by t'1 if necessary, we assume that s and t

meet coherently.
If A = 0, then *f(t) = O and Case (ii) occurs, so assume A>0. We are then in Case 4 of

(8.3) in [1]. Define e and d as in Case 4 of (8.3). Referring to the proof of (8.3) (but with
minor modifications to allow for the possibility of an action with inversions), we see
that if /(s) = <f(t) = A, then tf(st~ ^ = 0, so Case (ii) occurs. Assume A =/(r) < <f(s). If e^d,
then again /(st"1) = O, so assume e>d. If d=0, then A(st~i,t) = O, so by Case 2, st'1

and t generate a free group, hence so do s and t, and the action is free and properly
discontinuous, so Case (i) occurs. If d>0, then As,r~l nAt = 0, similarly reducing to
Case 1.

Case 4. f(t)<A, £{t)^{s) and A<S(s)+t(t). In this case we also assume that s and t
meet coherently, replacing t by t~l if necessary. Then from [1], (8.3)(c) and the table
given in the proof of (8.3), we see that <?(st~l) = <f(s)-<?(t), A(st'l,t) = A-tf(t), and st~\ t
meet coherently. If <?(st~l)>t(t), put tt=t and s^st'1, while if t{st~l)^f{t), put
tt^st'1 and si = t. Also, let A1 = A(s1,t1) = A-tf(t). Thus A, <«f(s,) + f(ti), <f(t,)^(f(t),
if(s,)^/(s) and ^ ( t ^ A s i ) - Also, we have «f(s) + <f(t)-A = <f(s1) + (f(r1)-A1. If /(t1)=0,
then Case (ii) occurs and we stop. Otherwise if a previous case applies to st, tt in place
of s,t, either Case (i) or Case (ii) occurs and again we stop. Otherwise, s^^ satisfy the
hypotheses of Case 4, and we can then repeat this procedure on su tx to obtain s2, t2,
and again we stop if «f(r2) = 0 or a previous case applies, otherwise we remain in Case 4
and we repeat the procedure to obtain s3,t3 etc. If this procedure stops after finitely
many steps, then for some n, we can apply a previous case to sn, tn to see that either (i)
or (ii) occurs.

Suppose the procedure does not stop. Let A be the subgroup of A generated by <f(s),
<f(t) and A, and let M be the subgroup generated by f(s) and <f(r). Inductively, M is
generated by <f(sn) and <f(£n), and (̂ (*„))»£ i> (/(sn))nai a r e decreasing sequences of
elements of M with 0</(tn)</(sn) for all n. We put An = A(sn, £„), so inductively
An+1=An—<f(tn), and (A,,),,^ is a decreasing sequence of positive elements of A.
Since (Asn)+AO)nai is a strictly decreasing sequence of positive elements of M,
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it follows that M is not cyclic, hence /(s) and /(t) are Z-linearly independent.
Suppose that M is archimedean, and put c = ((s) + £{t) — A. Let D be the intersection
of all convex subgroups of A containing /(s), and let C be the union of all convex
subgroups of A not containing f(s). For d eD let 3 denote the image of d under
the canonical map D^D/C. Now 0</ ( t )^ ( s ) implies that /(t)eD, and
O^A^<f(s) + /"(t) implies Ae£>, hence ceD, and D = A. Also, by their definition, there are
no convex subgroups of A strictly between C and D, hence D/C = A/C is archimedean,
so may be viewed as an additive subgroup of U. It follows that, under the canonical
map, M embeds in D/C. _For if m = <x/f(s) + /?<?(t) 6 C, where a, /? are integers, then since
£(s)$C we have Q = km<£(s) for all integers k, so km<£(s) for all such k, hence m = 0
since M is archimedean.

Let an = <f(rn), bn = S{sn) and cn = An. Then we have three decreasing sequences of real
numbers, (an)ngi, (&„)„£! and (cj,,^,. They are bounded below by 0, so we may define
a = limn^0Oan, f} = \\mn^a>bn and y = \imn^aocn. Thus y^O, and since 0<an^bn for all n,
O^ot^/J. Also, for all n, cn+!=(?„ — am so taking limits gives y = y—a, i.e. a=0.

If /?>0, we can therefore choose n such that 0<an<p. Then sn+1 cannot be tn since
bn+l^p, so sn+,=sBtl,"

1 and tn+1 = tn. Inductively tn+r = tn for all r^O, so an = a=0, a
contradiction. Hence a = /? = 0.

Inductively, c = an + bn — cn^0 for all n, and taking limits gives c= — y^O, hence c=0,
that is, ceC. It follows that A = M@C with the lexicographic ordering, and that C is
the cyclic subgroup generated by c. Hence c is the smallest positive element of A.
Further, A ̂  M. By Proposition 3 the action of G is free and properly discontinuous, and
s and t freely generate G, so Case (i) occurs.

If M is non-archimedean, by an easy special case of a result of Zaitseva [6] (see
Lemma 1 in [2]), M is isomorphic to Z x Z with the lexicographic ordering. There is a
non-trivial order-preserving homomorphism <f> from M to Z whose kernel is infinite
cyclic. For some n, we have </><?(rn) = 0, otherwise (#(Asn) + AO))/.ai would be a strictly
decreasing sequence of positive integers. Also, <£/(sn) > 0, since M is non-cyclic. It follows
that tn+r = tn, and so An+r = An—rf(tn) for r^O, hence An>nf(tn) for all r^O. By
Propositions 4, 5 and 6, either the action is free and properly discontinuous, and sn,tn

freely generate G, hence so do s, t, and (i) occurs, or else (iv) occurs with u = sn, v = tn.
Case 5. A^/(s) + <f(t). Then AsnA, contains a closed segment of length at least

<f(s) + <?(t), say [P,6] where P^SQ. If s,t meet coherently, s~1t~lQe[P,Q], at distance
^(s) + <?(t) from Q, and so sts"1f~1g = 2, because s and t act as translations on their
axes. If s and t do not meet coherently, then s~lt~l(sP)e[P,Q], at distance <f(t) from P,
so ts~lt~l(sP) = P, hence si3 is a fixed point of sts ' 1!"1 . Thus we have conclusion (iii).

Finally, note that if A is archimedean, the procedure in Case 4 stops after finitely
many steps (otherwise the argument shows A is non-archimedean) so one of (i), (ii), (iii)
occurs. •

As an application of Proposition 1 we shall show that an analogue of Theorem 2.8 in
[4] holds for arbitrary A-trees. However, we shall adopt the terminology of [1]. Thus if
G is a group acting on a A-tree X, we say that the action is abelian if t(gh)^£(g)+t(h)
for all g, heG, where £ denotes hyperbolic length. The action is called dihedral if it is
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non-abelian and £(gh)^£(g) + £(h) for all hyperbolic g, heG. An action which is neither
abelian nor dihedral is said to be of general type. In [4], abelian actions are the same as
those described as "fixed end" and actions of general type are the same as irreducible
actions. However, to justify this and to establish our analogue of Theorem 2.8, we first
need to observe that there are analogues of Cor. 2.4 and Theorem 2.6 in [4]. (Also, for
general A there is the possibility of an abelian action of cut type; see Theorem 7.5 in
[1]). We note that in [4], the notation Cg is used instead of Ag to denote axes.

First, observe that 1.7 in [4] is valid for arbitrary A-trees, provided that the notion of
closed subtree is defined as in 2.7 and 2.10 in [1], and we assume the isometry g is not
an inversion. This follows using 6.1 and 6.3 in [1]. Any A-metric space (X,d) has a
topology with basis the open balls B(x,r) = {yeX; d(x,y)<r], where xeX and re A,
r>0, just as in the case A = R. It follows at once from the Bridge Proposition [1; 2.17]
that any closed subtree of a A-tree, in the sense of [1], is closed in this topology, but the
converse is false in general. For example, let A = Z x Z with the lexicographic ordering,
let X = A with d(x,y)= \x—y\, and let /4 = {0} x Z. Then A is a subtree of X closed in
this topology, but is not convex closed.

We use [g,h] to denote the commutator ghg~lh~l; this should not cause confusion
with the notation for segments. We begin with the analogue of [4; Cor. 2.4].

Proposition 7. Let G be a group acting on a A-tree (X,d). The following are
equivalent:

(1) The action is abelian.
(2) The hyperbolic length function is given by t{g) = |p(g)| for S^G where p:G—*A is a

homomorphism.
{3)Forallg,heG,f([g,K}) = 0.

Proof. It follows from Theorem 7.6 in [1] that (1) implies (2), and it is obvious that
(2) implies (3), so we assume (3) and show the action is abelian. If the action is without
inversions, the argument of Cor. 2.4 in [4], using 7.4 of [1] in place of 1.5 in [4], shows
that for all g,heG, Agr\ Ah^0, so the action is abelian by Theorem 7.4 in [1].

Suppose there is an inversion heG. Assume that geG and <?(g)>0. By (7.1) in [1],
there is an action of G on the A-tree X' = jA<g) AX, without inversions and with the
same hyperbolic length function. By what has already been proved, A'g n A'h # 0 , where
the dashes denote axes in X'. But by 6.3 in [1], A'h = {p}, a single point, so
Aghg-,=gA'h = {gp}. By &A in m,

a contradiction. Thus S(g) = 0 for all geG and the action on X is abelian. •

Next we have the analogue of Theorem 2.6 in [4]. Readers should be aware of the
classification of isometries of A given in 2.5 of [1].
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Proposition 8. Let G be a group acting on a A-tree (X,d). The following are
equivalent:

(1) The action is dihedral.
(2) The hyperbolic length function is given by f(g) = | p(g) \ for geG, where p:

G-»Isom(A) is a homomorphism whose image contains a reflection and a non-
trivial translation, and the absolute value signs denote hyperbolic length for the
action of Isom(A).

(3) For all hyperbolic g,heG, <f([g,h~\) = O, but there exist g,heG such that

Proof. Assume the action is dihedral. Again there is an induced action on
X'=jA® AX without inversions and with the same hyperbolic length function, so this
action is also dihedral. By 7.15 in [1], the minimal invariant subtree for the action on
X', which we denote by A, is linear. By 7.13 of [1], the action of G on A has the same
hyperbolic length function as the action on X, and by 6. l(a)(ii) in [1], if /(g) = 0, g has a
fixed point in A. Since there is some geG with <f(g)/O, A has at least two elements, so
by 2.5 in [1], the action of G on A extends to an action as isometries on ^A. If tf(g)>0,
g acts as a translation, either x*->x + <f(g) or xh-*x — £(g), and /(g) e A. If t{g) = 0, then g is
a reflection with a fixed point, say c, so g: xy-*2c — x, and 2c e A. Thus the action of G on
|A restricts to an action on A, still with the same hyperbolic length function, and it
follows that (1) implies (2).

The rest of the proof is similar to that of Theorem 2.6 in [4] and details are omitted.
As in proof of Prop. 7 use (7.4) in [1] for the proof that (3) implies (1). •

Finally, we have the analogue of Theorem 2.8 in [4].

Proposition 9. Let G be a group acting on a A-tree (X,d). The following are
equivalent:

(1) The action is of general type.
(2) There exist hyperbolic elements g,heG such that <f([g,/i])#0.
(3) There exist hyperbolic elements g,heG such that Ag n Ah is a segment of length less

(4) G contains a free subgroup of rank 2 which acts freely and properly discontinuously
onX.

Proof. By the previous two propositions, (1) implies (2). Assume (2) and let g, h be
hyperbolic elements of G such that t([g,h])^0. If Agr\ Ah^0, then arguing as in Case
(5) of the Main Theorem, this intersection is a segment of length less than <?(g) + /(/i). If
AgnAh = 0, then by 8.1 in [1], AghnAh is a segment and gh is hyperbolic. Also,
Lgh, h] = [g, hi], so again this segment is of length less than £{gh) + ({h), hence (3) holds.

Assume (3), and take hyperbolic g,heG with AgnAh^0 such that A = A(g,h)<
(f(g)+/(/i). We may assume g,h meet coherently and <!(h)St(g). By Prop. 8.3(a) in [1],
A': = A(gh,g) = A + S(g) and £{gh) = ((g) + £(h) (and for this we need not assume the action
of G is without inversions). Thus A'<2«f(g)+/(/i)^3/(g) = <f(g3) and 2f(g) + t(h)<
2S(gh)=t(gh)2). Also, g3 and {gh)2 have the same axes as g and gh, so by Prop. 1, g3
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and (gh)2 freely generate a free group of rank 2 which acts freely and properly
discontinuously on X and (3) implies (4).

Finally, if g, h freely generate a free group acting freely and properly discontinuously
on X, the action is of general type just as in the proof of Theorem 2.8 in [4], using
Propositions 7 and 8 above. •

Condition (3) in Prop. 9 is not an exact analogue of the corresponding condition in
Theorem 2.8 of [4], because of the condition on the length of the intersection. As noted
in [4], if Ag n Ah is a single point, we can replace g by gh and so we can add the
condition that the intersection has positive length. However, we have not been able to
remove the restriction that the length is less than /(g) + <f(/i), because of the possibility
that both S(g")<b. and <?(/in)<A for all integers n.
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