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A THEOREM ON STEINER SYSTEMS 

N. S. MENDELSOHN 

1. Definitions and notation. A generalized Steiner system (/-design, 
tactical configuration) with parameters /, \t, k, v is a system (T, B), where T 
is a set of v elements, B is a set of blocks each of which is a ^-subset of T 
(but note that blocks bt and bj may be the same ^-subset of T) and such that 
every set of t elements of T belongs to exactly \ t of the blocks. If we put \ t = u 
we denote by Su(t, k, v) the collection of all systems with these parameters. 
Thus Q G Su(t, k, v) means Q = (T, B) is a system with the given parameters. 
If \ t = u = 1, we write S(t, k, v) instead of Si(t, k, v) and refer to the system 
as a Steiner system. If / = 2, the system is called a balanced incomplete 
block design. If the number of elements equals the number of blocks, we call 
the system symmetric. Except in the trivial cases, k = v and k = v — 1, 
there are no symmetric systems with / > 2 (see [1]). 

2. Some elementary properties of generalized Steiner systems. We 
state here without proof some properties of generalized Steiner systems. 

(i) If Q G Su(t, k, v), where u = \ u then Q G Sw(s, k, v) where w = \SJ 

s ^ t, and 

\t_sJ 
Xs~Xt(k-s 

\t - s 

(ii) The number Xi is the number of times any element appears in a block 
and is often called the replication number. The notation Xi = r is usually 
used. 

(iii) If 5 = 0, the number X0 turns out to be the number of blocks and the 
notation Xo = b is usually used. 

(iv) From (i), (ii), (iii), the system Su(t, k, v) has parameters v, k, X0, 
Xi, . . . , \ t . For a symmetric design v = X0 and k = Xi. 

UR= (T,B) G S(t,k,v), then 

Q = (T - {x}, J5*) eS(t-l,k -l,v - 1), 

where x is a fixed element of T and B* is obtained from B by taking the 
collection of all blocks of B which contain x and then deleting x from these 
blocks. In this case we say Q is embedded in R. 
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3. The intersection numbers. Let Q Ç Su(t, k, v). Let b be a fixed block 
of Q. With respect to the fixed block b we define numbers x0f xh x2, . . . , xk 

as follows: xt is the number of blocks distinct from b, each of which has 
exactly i elements in common with b. In general, the numbers xt will depend 
on the block b but as will be seen shortly this will not be so for ordinary 
Steiner systems S(t, k, v). 

In [1], the following equations which must be satisfied by a set of intersection 
numbers were given: 

(2) XQ + Xi + 

Xi + 2x2 + 

+ (»' + A 
Ci ~r \ • JXi+i + 

X, + \ Î Jx'+l + 

+ 

+ 

xk = (Xo - l)(^0 j 

+ 

+ 

(î)** = *< ~ 1)( •) 

In the particular case of an ordinary Steiner system, \ t = 1, and since 
the Xi are non-negative integers, xt = xt+i = . . . = xk = 0. The system of 
equations (2) read, in this case, as follows: 

(3) *o + * i + • • • + *, = (Xo - 1 ) ( Q ) 

*I + 2x2 + • • • +txt= (Xi - l ) ( y 

x* = 0 

The equations (3) are / linear equations in t variables and obviously are 
uniquely solvable for 

In particular, we can solve for x0 in (3) by multiplying the equations 
alternately by 1 and — 1 and adding. 

Substituting for the values of X*, and manipulating the binomial coefficients 
yields 

(4) Xo ^{s<-><îX;:i)}-s<-»<î)-
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Equation (4), of course, is only valid for \ t = 1, the ordinary Steiner system 
S(t,k,v). 

4. The systems S(t - 1, t, 21 + 1) and S(t, t + l,2t + 2). 

LEMMA 1. If S(t — 1, /, 2t + 1) exists, then t is odd. 

Proof. Computing X _̂2 we obtain 

and since A*_2 is an integer, t is odd. 

LEMMA 2. If S(t — 1, t, 2t + 1) exists, then for any Q 6 S(t — 1, t, 2t + 1) 
every pair of blocks in Q has a non-null intersection. 

Proof. In equation (4) for x0, replacing t by t — 1, and putting k = t, 
v = 2t + 1, we obtain 

*-rh{s'-i><5X*r-1ri)}-s<-i><0-
Replacing i by t — 7 and using the facts that t is odd and 

we have 

-r^{§(-HX,+}+0}+5(-»<;)-
Now, using [2, p. 9, formula (6)] to reduce the first member of the right 
side and noting that the second member has the value — 1, we obtain 

1 (t + l \ , 1 , „ 

This implies that every two blocks have a non-null intersection. 

LEMMA 3. Suppose that S(t, t + 1, 2£ + 2) is non-null and that 

Q e S(t, t + 1, 2t + 2). 

JT^n if b is a block of Q, the set b which is complementary to b is also a block 

ofQ. 
Proof. Since the system Q is based on 2t + 2 elements and its blocks are 

(t + 1)-subsets, the sets complementary to blocks are also (t + 1)-subsets. 
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If we now apply the same computation as was done in Lemma 2 for this 
case, we obtain x0 = 1. Hence for every block b G Q there is exactly one 
block b G Q which does not intersect it. But the only (2 + 1)-subset which 
does not intersect b is the complementary set. 

THEOREM 1. The system S(t — 1, t, 2t + 1) is non-null if and only if the 
system 5(2, t + 1, 2t + 2) is non-null. If Q G S(t — 1, 2, 22 + 1), there exists 
exactly one system R G 5(2, t + 1, 2t + 2) m which Q is embedded. 

Proof. Suppose that S(t, t + 1, 2t + 2) is non-null. Then if 

R G S(t, t + 1, 2t + 2), 

the blocks of R which contain a fixed element x determine a 

<2 G 5(2 - 1, 2, 2t + 1) 

where the blocks of Q are obtained by deleting x from the above set of blocks. 
Now suppose that S(t — 1, 2, 2t + 1) is non-null and let 

<2= (T,B) eS(t- l , / f 2 / + 1). 

Let T = {1, 2, . . . , 22 + 1} and £ = {bi, b2, . . . , &x0î- A direct calculation 
of Xo in each case shows that if 

Q e S(t - 1, t, 2t + 1) and R G S(t, t + 1, 2t + 2), 

then R must have exactly twice as many blocks as Q. Define R = (T*, 5*), 
where 

T* = {1,2,3, . . . , 2 / + 1,22 + 2} 

and 

5 * = { ^ 1 * , & 2 * , . . . , 6 X o * , 5 1 * , 5 2 * , . . . , 5 x 0 * } , 

where bt* = bt\J {2t + 2} and it* = T* - bt* for i = 1, 2, . . . , X0. We 
show that R G 5(2, t + 1, 22 + 2). First note that the number of 2-tuples 
which can be obtained from the blocks of J5* is exactly the number of 2-tuples 
which can be formed from the elements of T*. Hence it is sufficient to show 
that no 2-tuple appears in twro different blocks of B*. We distinguish three 
cases. 

Case 1. b* and b* have a common 2-tuple. In this case when the element 
22 + 2 is deleted from b* and b* the elements bi and bj would have a common 
(2 - l)-tuple which contradicts the fact that Q G 5(2 - 1, 2, 22 + 1). 

Case 2. b* and b* have a common 2-tuple, say {1, 2, 3, . . . , 2}. Then 
b? = {1, 2, 3, . . . , 2, z;} and hj* = {1, 2, 3, . . . , 2, w}. Then 

bt = {2+ 1,2 + 2, . . . , 2 2 + 2} - {v} 

and 6jr = {2 + 1, 2 + 2, . . . , 22 + 2} — {w} have a common 2-tuple which 
reduces to Case 1. 
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Case 3. b* and b* have a common /-tuple. In this case we may take b* to be 
{1,2, . . . , / , 2t + 2} and 5 / = {1, 2, 3 , . . . , t,v], where t + 1 ^ */^ 2/ + 1 ;then 
6 / = {/ + 1,* + 2 , . . . , » - l,v+ 1, . . . , 2 / + 1}. Hence 6 f = { 1 , 2 , . . . , / } 

and 6̂  = {/+ I, t + 2, . . . , v — l,v + 1, . . . , 2/ + 1}. Hence bt and bj are 
two non-intersecting blocks of Q. By Lemma 2, this yields a contradiction. 
The fact that the embedding of Q in R is unique follows from Lemma 3 and 
from the fact that R has exactly twice as many blocks as Q. 

5. Examples and extension. Actual examples of Theorem 1 are the 
embedding of 5(2, 3, 7) in 5(3, 4, 8) and of 5(4, 5, 11) in 5(5, 6, 12), the 
latter systems being associated with the Mathieu groups Mu and Mi2. The 
next possible case would be an embedding of 5(8, 9, 19) in 5(9, 10, 20) if 
either of these designs exist. 

Suppose now we consider the generalized Steiner system Su(t, k, v) with 
u = \ t . Equations (2) no longer need have a unique solution. However, if 
we restrict ourselves to generalized Steiner systems in which no two blocks 
intersect in more than t points it is true that equations (2) have a unique 
solution and we can proceed as before. 

LEMMA 4. Suppose that Q G Su(t, k, v) and that no two blocks of Q intersect 
in more than t points. Then 

<» - 7^?i {s'-'KOC; : ; ) } - s <-"<?)• 
\v-kj 

Proof. Same as that for equation (4). 

LEMMA 5. If Q G Su(t — 1, /, 2/ + 1) and Q has no repeated blocks, then 
Xo = U — 1. 

Proof. Substitute into equation (5) and simplify. 

LEMMA 6. / / R G Su(t, t + 1, 2t + 2) and R has no repeated blocks, then 
Xo = 1. 

Proof. Substitute into equations (5) and simplify. 

THEOREM 2. The system Su(t — 1, t, 2t + 1) contains designs without repeated 
blocks if and only if the system Su(t, t + 1, 2/ + 2) contains designs without 
repeated blocks. Any such Q 6 Su(t — 1, t, 2t + 1) is uniquely embeddable in 
an R G Su(t, t + 1, 2/ + 2) as follows. Adjoin a new symbol to each of the 
blocks of Q and then the design R consists of the augmented blocks and their 
complements. 

Proof. Use the results of Lemmas 5 and 6 and argue along lines similar to 
those used in Theorem 1. 
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The following example illustrates Theorem 2. In 52(2, 3, 7) there exists the 
system Q whose blocks are: 

1 2 4 
2 3 5 
3 4 6 
4 5 7 
5 6 1 
6 7 2 
7 1 3 
1 2 6 
2 3 7 
3 4 1 
4 5 2 
5 6 3 
6 7 4 
7 1 5 

Note here that by Lemma 5 each block has exactly one other block which 
does not intersect it; e.g., 12 4 and 5 6 3. Then Q is embedded in R £ 52(3, 4, 8) 
as follows: 

1 2 4 8 3 5 6 7 
2 3 5 8 1 4 6 7 
3 4 6 8 1 2 5 7 
4 5 7 8 1 2 3 6 
5 6 1 8 2 3 4 7 
6 7 2 8 1 3 4 5 
7 1 3 8 2 4 5 6 
1 2 6 8 3 4 5 7 
2 3 7 8 1 4 5 6 
3 4 1 8 2 5 6 7 
4 5 2 8 1 3 6 7 
5 6 3 8 1 2 4 7 
6 7 4 8 1 2 3 5 
7 1 5 8 2 3 4 6 

An examination of this example shows how the argument in Theorem 1 
should be modified to obtain Theorem 2. 
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