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ABSTRACT. The last decade has seen the development of a range of new statistical and computational techniques for
analysing large collections of radiocarbon (*4C) dates, often but not exclusively to make inferences about human
population change in the past. Here we introduce rcarbon, an open-source software package for the R statistical
computing language which implements many of these techniques and looks to foster transparent future study of
their strengths and weaknesses. In this paper, we review the key assumptions, limitations and potentials behind
statistical analyses of summed probability distribution of '“C dates, including Monte-Carlo simulation-based tests,
permutation tests, and spatial analyses. Supplementary material provides a fully reproducible analysis with further
details not covered in the main paper.
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INTRODUCTION

The last few years have seen a dramatic increase in the number of research projects constructing
proxy time series of demographic change out of large lists of archaeological radiocarbon (14C)
dates. Put simply, this approach assumes that, given a large enough set of '“C dates taken on
anthropogenic samples, then the changing frequency of dates through time will preserve a
signal of highs and lows in past human activity and, by extension, in human population.
Rick’s (1987) work was pioneering in this regard, being the first to propose the key
assumption that more people in a given chronological period would typically lead to more
anthropogenic products entering the archaeological record in that period, implying more
potential samples to date and ultimately more published '“C dates. He also already noted
the presence of biases that were likely to distort such a signal (1987: fig.1). While early
experiments with such methods sometimes considered a histogram of uncalibrated
conventional '*C ages, researchers have since turned to the summation of the posterior
probability distributions of calibrated dates, and the result has become commonly known
as a summed probability distribution (hereafter SPD, although there have also been
alternative names and formulations).

The sharply increasing popularity of SPDs over the last decade or so has rightly also prompted
criticism, not only with regard to the overall inferential assumptions behind the idea, but also
with respect to the viability of particular SPD-based analytical methods. For example, several
researchers have emphasised the fact that the sampling intensity of '*C dates might not be
constant over time. A good example is the difference between the popularity of '“C
sampling in early Mediterranean prehistory (e.g. Mesolithic-Neolithic) versus its almost
complete avoidance for the Greek or Roman periods of the same region, even though
the latter was manifestly a period of considerable population (Palmisano et al. 2017).
In addition to the impact of this differing prioritisation of absolute versus relative dating by
archaeologists working on different time periods, researchers have further suggested that
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Figure 1 Summing, thinning, and binning: (a) a summed probability distribution of
dates from one site only (n =130 dates), with a slightly smoothed version also shown,
as well as three example dates, followed by comparison of the smoothed raw density
with (b) a randomly “thinned” dataset of just 10 dates from the same site, (c—¢)
binned datasets at clustering cut-offs of h =50, 100 and 200 respectively.

different kinds of societies (of otherwise roughly similar population size, for instance) might
conceivably produce different “C footprints and/or that, even if a correlation between dates
and population exists, that these might not scale in a linear fashion (Freeman et al. 2017).
Others have noted that there might be a taphonomic bias towards the preservation of more
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anthropogenic material from sites of later periods (Surovell and Brantingham 2007,
Surovell et al. 2009), again implying that over extended periods of thousands of years, we
should probably assume a non-linear scaling to human activity. Such critiques are often valid
to some degree and focus on how we should interpret summed probability distributions of
4C dates in the first place (see discussions in Contreras and Meadows 2014; Mokkonen
2014; Tallavara et al. 2014; Attenbrow and Hiscock 2015; Hiscock and Attenbrow 2016;
Smith 2016; Williams and Ulm 2016) Indeed, some of these very same issues also apply to
other attempts to reconstruct past population (e.g. settlement counts where again it is
sometimes difficult to compare evenly across periods and regions).

SPDs, however, also face a further challenge at a more fundamental level with regard to how
best we might measure the changing frequencies of '“C dates through time. Because calibrated
14C dates comprise probability distributions spread across multiple calendar years and not
discrete single estimates, the visual interpretation of aggregated SPDs becomes challenging
and very often misleading at multiple scales. Peaks and troughs in SPDs might reflect
changes in date intensity through time (and hence interpreted as population “booms” or
“busts”), but they might also be a consequence of the changing steepness of the calibration
curve, the size of the dates’ associated measurement errors and/or just a statistical fluke
from small sample sizes. In response to these challenges, a number of studies (Shennan and
Edinborough 2007; Shennan et al. 2013; Timpson et al. 2014; Crema et al. 2016, 2017;
Bevan et al. 2017; Bronk Ramsey 2017; Brown 2017; Edinborough et al. 2017; Freeman
et al. 2018; McLaughlin 2019; Roberts et al. 2018) have developed new techniques to
address some of these issues. Most notably, they have offered new approaches to the
problem of discerning genuine fluctuations in the density of '“C dates as opposed to
statistical artifacts arising from sampling error, the calibration process or taphonomic
histories. Even so, replication and reuse of such methods remains limited, due both to an
understandable experimentation across multiple software packages for calibration and
statistical analysis (e.g. OxCal, CalPal, and in various forms via the R statistical environment,
see Supplementary Figure 1) and to only patchy provision, so far, of transparent and
reproducible workflows.

With a view to exploring and alleviating some of these issues, as well as with an eye to an
increasing emphasis across archaeology and many other subjects on reproducible research
(see Marwick 2017; Marwick et al. 2017), we have recently developed rcarbon as an
extension package for R (R Core Team 2018), one of the most popular software
environments for statistical computing. The rcarbon package provides basic calibration,
aggregation, and visualisation functions comparable to those that exist in other software
packages, but also offers a suite of further functions for simulation-based statistical
analysis of SPDs. This paper will discuss the main features of rcarbon, will highlight
technical details and their implications in the creation and analyses of SPDs, and will
offer some additional thoughts on the strengths and weakness of SPD-based methods
overall.!

'Readers interested in applying these techniques on their own data are encouraged to read the R vignette associated
with the package (https://cran.r-project.org/web/packages/rcarbon/vignettes/rcarbon.html). The supplementary
material contains additional commentary and scripts for reproducing the analysis in the main paper. A copy of the
supplementary material can also be accessed from the following repositories: https://github.com/ercrema/
rcarbon_paper_esm (github); https://doi.org/10.5281/zenod0.3986695 (zenodo archive).
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CALIBRATION AND AGGREGATION
Basic Treatment: Calibration and Summation

In its most basic form, an SPD extends the idea of a plotting a simple histogram of either
uncalibrated '*C ages or median calibrated dates to represent changing density of '“C
samples over time. Hence, the construction of an SPD involves two steps: (1) '*C dates are
calibrated so that for each sample we obtain a distribution of probabilities that the sample
in question belongs to a particular calendar year; and (2) all of these per-year probabilities
are summed.” The resulting curve thus no longer represents probabilities, but instead is
taken as a measure of date intensity. The rationale is thus not dissimilar to intensity-based
techniques such as a univariate kernel density estimate (KDE), although with a crucial
difference. In the case of KDE, individual kernels associated to each sample have all the
same shape defined by the kernel bandwidth, itself mathematically estimated. In contrast,
in the case of SPDs, the probability distributions associated with each '“C date have different
shapes depending on measurement error and the particularities of the relevant portion of the
calibration curve. Consequently, SPDs are not explicitly and straightforwardly an estimate of
the underlying distribution from which the observations are sampled from, and its absolute
values cannot be directly compared across datasets. It follows that their visual interpretation
within and across datasets is intrinsically biased.

Basic calibration in rcarbon is conducted with reference either to one of the established marine
or terrestrial calibration curves or to a user-specific custom curve (in what follows, IntCal20 is
used throughout: Reimer et al. 2020). The arithmetic method is for all intents and purposes
identical to the the one adopted by OxCal (Bronk Ramsey 2008; leaving aside for a
moment the more sophisticated Bayesian routines the latter package uses for more complex
phase modelling), and very similar to that used by most other calibration software
(Weninger et al. 2015; Parnell 2018). Some of the terminology used by rcarbon’s standard
routine has also been made consistent with Bchron, a well-known R package for handling
14C dates and modelling pollen core chronologies and other age-depth relationships (Haslett
and Parnell 2008; Parnell 2018; see also the clam package; Blaaw 2019). In rcarbon, the
raw data stored for any given calibrated date consists of probability values per calibrated
calendar year BP (but convertible to other calendars such as BC/AD), and it is these per-
year probabilities that get summed to produce an SPD. For example, Figure la shows the
result of adding up 130 dates from the Neolithic flint mines of Grimes Graves, Norfolk
with three individual dates shown on top (for a full set and and more recent dates from the
site, see Healy et al. 2014). A final point to note is that many studies apply a final
‘smoothing function’ to the SPD (e.g. Kelly et al. 2013, Timpson et al. 2014, Crema et al.
2016, etc.), such as a running mean of between 50 and 200 years, to limit possible artifacts
resulting from sampling error (but also from the effects of the calibration process) and
discourage over-interpretation of the results (in Figure la an example with a 50-year
running mean is shown). We return to the pros and cons of such smoothing in what follows.

Phase or Site Over-Representation: Thinning and Binning

In most instances, rather than the single site example provided above, an SPD is constructed
across a wider region and using more than one site. As a result, there are further potential biases
arising from the fact that not all sites (or indeed site phases) may have received equivalent levels of

’In some software (e.g. CalPal), these two steps can be reversed (uncalibrated dates are summed and then the resulting
aggregate is calibrated in one go), and we discuss the implications of this further below.
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investment in '“C dating. The Neolithic flint mining site of Grimes Graves in southeastern England,
for instance, is associated with an unusual number of radiocarbon dates compared to other British
prehistoric sites, but such differences do not accurately reflect a site’s relative size or longevity of use.
The cumulative effect of these differences in inter-site sampling intensity, and in particular the
presence of abnormally high levels of sampling intensity of particular contexts, could thus
generate artificial signals in the SPD. While the ideal approach to the problem is to select only
samples referring to specific types of events (e.g. the construction of residential features) and
control for sampling intensity via Bayesian inference (e.g. using OxCal’s R_Combine function),
the use of larger datasets with heterogeneous samples makes this solution unfeasible.

There are two alternative approaches to account for heterogeneity in sampling intensity. The
first one involves manually going through a list of '*C dates and choosing only a maximum
number of better (e.g. short-lived, low-error) dates per phase or per site. In rcarbon, this
thinning approach can also be achieved (in a less attentive but more automatic manner)
using the thinDates function which either selects a maximum subset of dates at random
or with a mixed approach that allows for some prioritisation of dates with lower
errors (Figure 1b). This approach effectively replaces a set of '*C dates referring to the
same “event” with a smaller subset with user-defined size and inclusion criteria. As a
consequence, the potentially biased contribution to the SPD of events associated with a
larger number of '*C dates can be reduced. A second solution to reduce the potential effect
of such bias is to aggregate samples from the same site that are close in time, sum their
probabilities, and divide the resulting SPD by the number of dates. Such site or phase-level
“binning” was introduced by Shennan et al. (2013) and discussed in detail by Timpson
et al. (2014). The rationale is effectively to generate a local SPD referring to a particular
occupation phase and to normalize this curve to unity to reduce the impact of heterogeneous
sampling intensity. The rcarbon package provides a routine (binPrep), similar but not
identical to the ones used in those two discussions, whereby dates from the same sites are
grouped based on their (uncalibrated or median calibrated) inter-distances in time, defined by
the parameter /4, and then put into bins. Dates within the same bins are then aggregated to
produce a local SPD that is normalized to sum to unity before being aggregated with other
dates (and local SPDs) to produce the final curve.

Different authors have already used different values for / (or comparable parameters) ranging
anywhere from 50 t0200 years (e.g. Shennan et al. 2013; Timpson et al. 2014; Crema et al. 2016;
Bevan et al. 2017; Roberts et al. 2018). These choices can have a considerable effect on the
resulting shape of the within site or within-phase local SPD, with higher values effectively
leading to a more spread-out distribution of probabilities (Figures 1c—) and we recommend
exploring the implications of this empirically (e.g. via the binSense routine in rcarbon
package (see for example Riris 2018). It is also worth noting that there has been little or no
discussion on what exactly constitutes a bin (or the “event” on which the thinning procedure
is based), and how this might differ as a function of 4, and ultimately affect the inter-
pretation of SPDs. For example, bins generated from larger values of / effectively lead to an
equal contribution of (potentially differently sized) sites to the SPD, effectively making this a
proxy of site density rather than population size.

Normalized vs. Unnormalized Dates

It is well-known that the shapes of individual calibrated probability distributions vary
depending on the steepness or flatness of the calibration curve at that point in time. Less
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Figure 2 Comparisons of unnormalized and normalized dates and their consequences: (a) a single date at a flat
portion of the calibration curve (area under the probability histogram: 1.337), (b) a single date at a steep portion of
the calibration curve (area under the probability histogram: 0.452), (c) Southern Levantine SPD (ngaes = 657,
Ngjtes = 119, npins =413; data from Roberts et al. 2018), (d) Sahara SPD (ngaes = 643, Ngjes = 233, Npins = 551;
data from Manning and Timpson 2014), and (e) Brazil SPD (ngaies = 173, Ngjtes =97, npins = 171; data from
Bueno et al. 2013).The orange bar highlights time-intervals associated with steeper portions of the IntCal20
(Reimer et al. 2020) and SHCal20 (Hogg et al. 2020) calibration curves.

well-known is the fact that the area-under-the-curve of a date, calibrated in the usual arithmetic
way, will not immediately sum to unity, but instead is typically normalized to ensure that it
does (i.e. by dividing by the total sum under the curve for that date). Figures 2a—b provide
two examples of dates at flat and steep portions of the calibration curve respectively which
produce dramatically different areas-under-the-curve before normalization. Weninger et al.
(2015) first noted that the presence of this normalizing correction explains the “artificial
spikes” noted by several different studies of SPDs, in which such spikes occurred in
predictable ways at steep portions of the calibration curve (and which sometimes prompted
attempts to smooth them away via fairly aggressive moving averages and/or various forms
of kernel density estimate (see Williams 2012; Shennan et al. 2013; Timpson et al. 2014;
Brown 2015, 2017; Ramsey 2017; McLaughlin 2019). Figures 2c—e provide three globally
wide-ranging examples from the literature of datasets where spikes have been observed,
with those spikes being particularly pronounced in early Holocene time series. In contrast,
when unnormalized dates are summed, such spikes are not present. On first consideration,
it is tempting to deem the normalized dates more theoretically justifiable, regardless of the
spikes, because each date is seemingly “treated equally” (i.e. each has a weight of 1 in the
summation). However, because the summing a set of unnormalized calibrated dates (with
varying post calibration areas under the curve) produces exactly the same result as first
summing a set of uncalibrated Gaussians conventional '*C age distributions (each of unity
weight) and then calibrating them in one go (the process in CalPal, and also achievable in
rcarbon, although not the default: see Supplementary Figure 2), this theoretical premise of
the “equal treatment” of each sample (i.e. the issue of unnormalized dates yielding an area
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under the curve equal to unity) can in fact be argued both ways (see Weninger et al. 2015 for
extensive discussion). Regardless, these issues urge a basic caution not to over-interpret SPD
results without considerable attention to how individual highs and lows in the data may have
arisen.

STATISTICAL TESTING

While it is tempting to treat the SPD itself as an unproblematic end goal with which to make
interpretations about past population dynamics, this is rarely true, and it is almost always
important to pay additional analytical attention to a host of uncertainties that come with
it. For example, aside from the concerns often voiced about whether the density of '*C
dates can be regarded as a reliable proxy (see above), it is also worth noting at least two
more issues. First, an ordinary SPD does not depict the uncertainty associated with the fact
that certain calendar years are more likely to accrue a more narrowly defined dated sample
than others (see Supplementary Figure 3 for a worked through example). Nor does it
depict the further uncertainty associated with larger or smaller sample sizes of dates or
their measurement errors. A large number of '“C dates for a given study may well improve
the chance of a good signal, but there is no magic threshold, as this depends very much on
the scope and goals of the analysis (e.g. inferences about multi-millennial trends versus
those about sub-millennial trends, inferences about perceived growth rates through time or
instead about regional differences across geographic space).

Model Fitting and Hypothesis Testing

There have been various attempts so far to address these uncertainties, most of them leveraging
the flexibility of Monte Carlo-type conditional simulation in some fashion, although more
formally Bayesian models have also been proposed (see final section). Perhaps the most
well-known approach was introduced by Shennan et al. (2013) and compares an observed
SPD with a theoretical null hypothesis of population change, where the latter might for
instance imply stability (e.g. a flat, uniform theoretical SPD), growth (e.g. an exponential
theoretical model) or initial growth-and-plateau (e.g. a logistic model) to name just a few
of the most common (e.g. Shennan et al. 2013; Crema et al. 2016; Bevan et al. 2017,
Fernandez-Lopez de Pablo et al. 2019). The usual workflow involves (1) fitting such a
theoretical model to the observed SPD, (2) drawing s dates proportional to the shape of
this fitted model (where s matches the number of observed dates or the number of bins if
the dates have been binned), (3) back-calibrating individual dates from calendar time to '“C
age, and assigning an error to each by randomly sampling (with replacement) the observed
14C age errors in the input data, (4) generating a theoretical SPD from the simulated data
obtained in steps 2 and 3, (5) repeating steps 2-4 n times and generating a critical (e.g. 95%)
envelope for the theoretical SPD given the sample size, and (6) computing the amount that
the observed SPD falls outside the simulation envelope compared to the randomised runs
to produce a global p-value (as extensively described by Timpson et al. 2014). These general
steps have separately implemented by several authors (Crema et al. 2016; Por¢i¢c and
Nikoli¢ 2016; Zahid et al. 2016; Silva and Vander Linden 2017) with some minor differences
(e.g. the formula for calculating the p-value, screening for false positives, etc.), and effectively
treats the observed SPD as something comparable to a test statistic.

This approach has had the great virtue of grappling with the uncertainties associated with SPDs
directly, but it is worth noting nevertheless that the choice, fitting and simulation of a null

https://doi.org/10.1017/RDC.2020.95 Published online by Cambridge University Press


https://doi.org/10.1017/RDC.2020.95
https://doi.org/10.1017/RDC.2020.95

30 E R Crema & A Bevan

model of this kind is not straightforward. First, there are non-trivial technical niceties to do
with how such a model is fitted in terms of the error model (e.g. log-linear or non-linear),
or the time interval over which the model is fitted versus the interval over which it is
simulated (given that all SPDs suffer from edge effects at their start and end dates). Second
and more importantly, a particular model of theoretical population change or stability has
to be selected and justified on contextual grounds, with perhaps the idea of exponential
growth carrying the most straightforward demographic assumptions (all other things being
equal and in light of the very long-term trend towards higher global population densities
that seems to support this), but with other models often providing better fit to data or
allowing certain kinds of extrapolation (e.g. Silva and Vander Linden 2017). A final point
to stress regards the general limitations associated with the whole null hypothesis-testing
approach: with a large enough sample, it will always be possible to produce a “significant”
result, but this may not warrant the kind of interpretation archaeologists and others are
often looking for (e.g. about population “booms” and “busts”). It is also worth noting that
intervals identified as positive or negative deviations from the null model are based on the
density of dates and not on the trajectory of growth or decline even though the latter may
be more interpretatively relevant in many situations. This means that, for example,
intervals with positive deviations might well include instances of a decline in the density of
14C dates. The Monte-Carlo simulation framework can be easily adapted to take this into
account, allowing for testing against growth rates (see Supplementary Figure 4). Finally,
the 95% critical envelopes produced for assessments of localised departure of the observed
SPD from a theoretical pattern or a second SPD (see below, figures 3-4 for examples) are
indicators only and should not be read as a set of formal significance tests for all years as
this runs the well-known risk of multiple testing (see Loosmore and Ford 2006: 1926, for
similar issues associated with the Monte Carlo envelopes produced for spatial point pattern
analysis).

Many existing implementations of this technique both fit and sample from their theoretical
models in calendar time. A set of individual calendar years are first drawn proportional to
the fitted model, then these are back-calibrated individually to become a set of
conventional (uncalibrated) '*C ages with small errors deriving from those associated with
the calibration curve itself. Then, larger plausible error terms are added to mimic the
instrumental measurement errors of the observed dates and each age (typically now a
Gaussian probability distribution) is then calibrated back into calendar time before all of
the simulated dates are then finally aggregated into an SPD. This procedure can be
formally described by a marginal probability with the assumption of a discretized calendar
timeline:

p(r) =Y T Pr(t) x p(r|p, 0?) (1)

where p(r) is the probability of selecting a random sample with a '“C age r, Pr(¢) is the
probability obtained from the fitted theoretical model at the calendar year ¢ within T points
in time across the temporal window of analysis, 1, and o, are their corresponding date in
4C age and the associated error on the calibration curve, and p(r|p,o,) refers to the
Gaussian probability density function. Thus, if we ignore binning, given an observed
dataset with k '“C dates and a theoretical model Pr(t), one could apply Equation (1) to
obtain k C ages, to which we can assign random instrumental measurement errors by
resampling from the observed data.
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Figure 3 The relationship between observed data and simulations envelopes for four different methods
(using the same data as in Figure 2¢): calsample realizations of (a) normalized and (b) unnormalized
dates, and uncalsample realizations of (c) normalized and (d) unnormalized dates. Temporal ranges
highlighted in red and blue represent intervals where the observed SPD show a significant positive
or negative deviation from the simulated envelope (they do not necessarily imply the onset point of
significant growth or decline).

The term Pr(?) is generally obtained by (1) fitting a curve (via regression) to an observed SPD
over a defined temporal window; and (2) transforming the fitted values (e.g. for each discrete
calendar year) so they sum to unity. Shennan et al. (2013) initially fitted an exponential curve
(as a null expectation for population with a constant growth rate), but other models have also
been applied subsequently (cf. Crema et al. 2016; Bevan et al. 2017). It is also worth noting that
Pr(f) does not have to be based on observed SPDs and could potentially be derived from
theoretical expectations or other demographic proxies (see Crema and Kobayashi 2020 for
an example).

The assumption behind this sampling and back-calibration procedure (referred to in rcarbon
as the calsample method, due to its sampling in calendar time) is that it will directly emulate
both the kinds of uncertainty associated with a given observed sample size, and the impact on
an SPD of the non-linearities in the calibration curve itself. However, the relationship between
calendar years and '“C ages is not commutative in the way such an approach implies

https://doi.org/10.1017/RDC.2020.95 Published online by Cambridge University Press


https://doi.org/10.1017/RDC.2020.95

32 E R Crema & A Bevan

Southern Levant

o
@
> O
£3
g o
0
2
o w
T S
(3]
£ S
E ©
3
@
o
(=]
o
=] T T T T \ T
©16000 14000 12000 10000
Years cal BP
= Northern Levant
©
<
P
5 A
_CDU Hiavs hﬂ.‘
9 g II -‘\1
n_ u]J_ ,l i
B «
E
E =
3
w N - =
=" )
S B
& T T T T T T
o

16000 14000 12000 10000
Years cal BP

Figure 4 Example of mark permutation test
(Crema et al. 2016), comparing the SPDs from the
Southern  (Ngaes = 657, Ngjes = 119, Npjps =413)
and Northern Levant (ngues= 589, nges=41,
Npins = 296). Temporal ranges highlighted in red
and blue represents intervals where the observed
SPD show a significant positive or negative
deviation from the pan-regional null model. Data
from Roberts et al. (2018).

(in agreement with Weninger et al. 2015), and major problems are encountered in certain
narrow parts of the calendar timescale, coincident with the same zones of artificial spiking
first described above. Figures 3a—b depict the problem for the later Pleistocene and earlier
Holocene time-frame using the same dated as in Figure 2c. As before, we can note the
difference in terms of spiking observed at predictable portions of the calibration curve
where such spikes are present if we normalize individual dates but absent if we do not.
However, the simulated envelopes created by the calsample approach exhibit quite different
statistical artifacts at these locations (slight, offset dips if dates are normalized and
dramatic dips if they are not). In neither case, do they seem to emulate the observed patterns.

In contrast, one alternative for generating theoretical SPDs is to back-calibrate the entire fitted
model in one go and then to weight the result p(r) by the expected probability of sampling r
under a uniform model:
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>_1 Pr(t|null) x p(r|p, of)

v(r) = S-I Pr(t|uniform) x p(r|p;, 07)

)

Here Pr(z|null) is the fitted model under the null hypothesis, and Pr(¢|uniform) is the
probabilities associated with a uniform distribution covering for the same temporal range
T. v(r) is then normalized to unity:

v(r)
= 3
I T ©
with R being all the '“C ages examined, most typically the range covered by the calibration

curve.

Simulations following this approach then draw samples of uncalibrated ages from the back-
calibrated model and calibrate these, before summing (this is therefore referred to in
rcarbon as the uncalsample method, see also Roberts et al. 2018; Bevan et al. 2017 for
applications). The adjustment of the probability of sampling specific '“C ages according to
a baseline uniform model allows for much better simulation of the presence and amplitude
of artificial peaks in the SPD at steeper portions of the calibration curve when dates
are normalized, and their absence when dates are left unnormalized (Figures 3c—d).
However, we note that neither approach is likely to be ideal, and we discuss some
promising alternatives in the sections below.

Comparison and Testing of Multiple SPDs

A key advantage of SPDs over more traditional proxies of prehistoric population change, such
as settlement counts, is the greater ease with which trajectories across different geographical
regions can be compared, without the analytically awkward frameworks imposed by
different relative artifact-based chronologies. With this in mind, Crema et al. (2016)
developed a permutation-based test to statistically compare two or more SPDs. While the
null hypothesis for the one-sample models discussed above is a user-supplied theoretical
growth model (e.g. we should expect exponential population growth all other things being
equal), the null hypothesis of the multi-sample approach is that the SPDs are samples
derived from the same statistical population (e.g. there is no meaningful difference between
the shape of the SPD for region A and the one for region B). As for the one-sample
approach p-values are obtained via simulation, but in this case rather than generating
samples from a theoretical fitted model, the label defining the membership of each date
(or bin if binning is being used) is permuted (e.g. we shuffle which dates belong to group A
and which ones belong to group B, then produce a new SPD for each group, and repeat
many times). This approach can be used to compare SPDs from different regions (as in
Crema et al. 2016; Bevan et al. 2017; Riris 2018; Roberts et al. 2018) in order to infer
where local population dynamics differ significantly through time, but it can also be used
to consider other groupings of dates, such as those taken on different kinds of physical '4C
sample (Bevan et al. 2017). Such a mark permutation test will generate simulation envelopes
for each SPD whose width proportional to the sample size (i.e. the overall number of dates
per region, or the overall number of bins if binning has been applied; Figure 4). Similar to
the case of the one-sample approach, both one global and a set of local p-values can be
obtained, the former assessing whether there are significant overall differences between sets
and the latter identifying particular portions of the SPD with important differences in the
summed probabilities.
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While there are certainly still ways to mis- or over-interpret the results of this kind of mark
permutation test, one major strength is that they do not face quite the same problems
associated with model selection, fitting and simulation that the one sample approach does.

SPATIAL ANALYSIS

A regional mark permutation test such as described above already offers one way to compare
different geographic regions, but its application requires a crisp definition of these regions from
the outset and it is thus not a particularly flexible way to explore variation across continuously
varying geographic spaces. Early extensions of the SPD approach already had further spatial
inferences in mind when they made use of weighted kernel density estimates (KDE) to infer
regions of high or low concentrations of dates across multiple temporal slices, occasionally
using animations (e.g. Collard et al. 2010; Manning and Timpson 2014). Such visual
inspection can be the basis for developing specific hypotheses, but suffers from the same
limitations as a non-spatial SPDs: it is hard to know what to interpret as interesting
variation in date intensity, through time and space, versus variation introduced by the
calibration process, by sampling error or by investigative bias. Recent spatio-temporal
analyses of '“C dates have tackled this issue in two distinct ways, and we consider each one
in turn below.

Flexible Timeslice Mapping

In rcarbon, for instance, it is possible to map the spatio-temporal intensity of observed '“C dates
as relevant for a particular “focal” year (using the stkde function). This is achieved by first
computing weights associated with each sampling point x given the “focal” year f and
temporal bandwidth b using the following equation:
w(x,f,b) = Z?pi(x)e% (4)
where p;(x) is the probability mass associated with the year i obtained from the calibration
process. In other words, a temporal Gaussian kernel is placed around a chosen year and
then the degree of overlap between this kernel and the probability distribution of each date
is evaluated. Each georeferenced date also has a Gaussian distance-weighted influence on
spatial intensity estimate at a given location on the map (with the help of the R package
spatstat. Baddeley et al. 2015): in other words, a spatio-temporal kernel is applied, with
both the spatial and the temporal Gaussian bandwidths defined by the user. The choice of
appropriate spatial and the temporal bandwidth can arise from data exploration which
suggests combinations that are both empirically-useful (e.g. for the particular problem or
question of interest) and practically-aware (e.g. of the positional and temporal uncertainties
in the underlying data), or it can be made via one of several automatic bandwidth selectors
(see Davies et al. 2018 for a specific review tailored to spatio-temporal analysis). While the
latter option has the advantage of avoiding somewhat arbitrary values for the kernel
bandwidth, it is worth noting that the choice of different bandwidth selectors can lead to
very different result, particularly in the context of spatio-temporal analysis where there is
no single agreed algorithm®. Figure 5a shows an example of the resulting surface for the

3Users interested in applying these different bandwidth selectors are advised to consult the R packages spatstat
(Baddeley et al. 2015) and sparr (Davies et al. 2018). For an archaeological review of univariate and bivariate
bandwidth selectors see Baxter et al. (1997). See also Bronk Ramsey (2017) for an alternative approach to
univariate KDE for radiocarbon dates.
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Figure 5 Example output of one focal year of a kernel density map of English and Welsh dates from the Euroevol
Neolithic dataset (Ngages = 2327, Ngjres = 653, Npins = 1461, data from Manning et al. 2016): (a) the spatio-temporal
intensity for the focal year 6000 cal BP, (b) the overall spatial intensity for Neolithic dates (8000-4000 cal BP), (c) the
proportion of (a) out of (b), and (d) a measure of the spatial pattern of change, mostly growth, from 6200 cal BP to
6000 cal BP.

focal year 6000 cal BP, while Figure 5b shows an unchanging overall surface where all samples
are treated equally regardless of their actual date (i.e. an ordinary kernel density map).

Figure 5c¢ shows the result of dividing one by the other which offers an indication of the
proportion of local dates belonging to the focal, target time period, thereby to some extent
detrending for any recovery biases present in the overall sample. This is analogous and
consistent with the idea of relative risk mapping (Kelsall and Diggle 1995; Bevan 2012) and
such an approach has been used by Chaput et al. (2015) and Bevan et al. (2017) to
investigate spatial variation in the '*C density North America and in the British Isles
respectively. Figure 5d shows a further and final useful measure is of “change” between
the focal year and some earlier reference or backsight year (e.g. 200 years before, with
various options for how “change” or growth/decline is expressed). Color ramps can be
standardized to allow comparison across time-slices and thus also animation through
multiple timeslices.

Spatial Testing

The above spatial mapping emphasises flexible visualisation, but a complementary second
approach to spatial analysis or georeferenced '“C lists instead prioritises the testing of
any observed spatial trends, via an extension of the permutation method described above.
It compares local SPDs (i.e. SPDs created at each observation point by weighting the '4C
contribution of neighboring sites as a function of their distance to the focal point) to the
expected local SPD under stationarity (i.e. all local SPD showing the same pattern),
obtained via a random permutation of the spatial coordinates of each site. The result
(Figure 6) provides a significance test for each site location, highlighting regions with
higher or lower growth rates compared to the pan-regional trend (see also Crema et al. 2017).

CONCLUSION

As the above should make clear, we continue to see great promise in the aggregate treatment of
14C dates as proxies for activity intensity, and it is interesting to note that similar conclusions
have been made in other fields that do not focus on human population, but instead use such lists
to explore, amongst other things, alluvial accumulation, volcanic activity or peat deposition
(Michczyriska and Pazdur 2004; Surovell et al. 2009; Macklin et al. 2014). The basic notion
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(a) * (-0.00747 (b) positive deviation (p<0.05)
® -0.00747 t0-0.00388 ® positive deviation (q<0.05)
—0.00388 to-0.00028 * negative deviation (p<0.05)
-0.00028 to 0.00331 * negative deviation (q<0.05)

0.00331 to 0.00691
0.00691 t0 0.0105
® 0.0105t0 0.0141
® >0.0141

] ..‘.

100km

Figure 6 Spatial permutation test for the same data as Figure 5 showing: (a) the local mean geometric
growth rates mean geometric growth rate between 6300-6100 to 6100-5900 cal BP; and (b) results of the
spatial permutation test for the same interval showing local significant positive and negative significant
departures from the null hypothesis.

behind an SPD remains relatively easy to understand and in part this is probably the reason for
its widespread appeal, even if some of the ensuing testing methods become more complicated.
The rcarbon package is an attempt to provide a working environment within which to explore
both the strengths and weaknesses of such an approach. There is also a useful transferability
of SPD approaches to proxy time series constructed from other kinds of evidence, such as
dendrochronological dates (Ljungqvist et al. 2018) or even traditionally dated artifact
datasets. Even so, there continues to be a real need to consider how alternatives, for
example Gaussian mixtures (Parnell 2018), might offer superior and theoretically more
coherent frameworks, and to grapple further with quantisation and calibration curve effects
(Weninger and Clare 2018).
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