ON THE CHARACTERISTIC WORD OF THE INHOMOGENEOUS BEATTY SEQUENCE

TAKAO KOMATSU

We detail the sequence (f_n) where $f_n = [(n+1)\theta + \phi] - [n\theta + \phi] - [\theta]$. This description of the inhomogeneous Beatty sequence generalises earlier work dealing with special cases in which ϕ is restricted to rational values.

1. Introduction

The Beatty sequence $([n\theta + \phi])$ of integer parts of $n\theta + \phi$, n = 1, 2, ... has been studied extensively. In that context it is natural to consider the sequence of differences $f_1, f_2, f_3, ...$, where

$$f_n = [(n+1)\theta + \phi] - [n\theta + \phi] - [\theta].$$

Plainly each f_n is equal to either 0 or 1. The word $f_1 f_2 f_3 \cdots$ is called the *characteristic* word, or just word of the sequence.

Stolarsky [9] constructs this characteristic word in the case when $\phi = 0$ by using shift operators; and this is generalised by Fraenkel, Muskin and Tassa [3]. On the other hand, van Ravenstein, Winley and Tognetti [8] obtain the word in a special case from the three gap theorem. Danilov [1] had a similar result by a different method. Recently, Nishioka, Shiokawa and Tamura [7] get the word for an irrational θ and a rational ϕ from Mahler functions. However, their result does not match the facts when $\phi \neq 0$ (The correct version is described in [5]). Two other papers dealing with the inhomogeneous case are [4] and [6].

Venkov [10, 65-68] rewrites Markov's method to obtain the characteristic word. We apply Venkov's method with the goal of obtaining the word $f_1 f_2 f_3 \cdots$ in the inhomogeneous case.

Received 30th May, 1994

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

2. The word of $f(n; \theta, \phi)$

We write

$$f_n = f(n; \theta, \phi) = [(n+1)\theta + \phi] - [n\theta + \phi] - [\theta].$$

As always, $[\psi]$ denotes the integer part (floor) of ψ , and $\{\psi\} = \psi - \lfloor \psi \rfloor$ is its fractional part. We shall assume that $0 < \theta < 1$.

Venkov details the characteristic of $f(n; \theta, 0)$ and $f(n; \theta, 1/2)$. We obtain a more general result, that is, with θ and ϕ arbitrary real numbers.

We may take $0 < \theta < 1$ without loss of generality, because the result is trivial if θ is an integer. We also let $0 \le \phi < 1$. We begin by supposing that $\theta + \phi < 1$.

We start from the continued fraction expansion $\theta = [0, a_1, a_2, \dots] = [0, a_1 + \theta_1]$, where $\theta_{n-1} = [0, a_n, a_{n+1}, \dots]$. And we also introduce the expansion of ϕ in terms of the sequence $\{\theta_0, \theta_1, \dots\}$, that is, by using the notation $[\psi]$, the ceiling of ψ

$$\phi = b_0 - \phi_0, \qquad b_0 = \lceil \phi \rceil$$

$$\frac{\phi_{n-1}}{\theta_{n-1}} = b_n - \phi_n, \qquad b_n = \left\lceil \frac{\phi_{n-1}}{\theta_{n-1}} \right\rceil \quad (n \geqslant 1).$$

If for $m = 1, 2, \ldots$ we put $\alpha_m = ma_1 + [m\theta_1]$, then $[\alpha_m \theta + \phi] = m + [\phi - \{m\theta_1\}\theta]$ and $[(\alpha_m + 1)\theta + \phi] = m + [\phi + (1 - \{m\theta_1\})\theta]$. So for any non-negative integer λ_m we have $[(\alpha_m - \lambda_m)\theta + \phi] = m + [\phi - (\lambda_m + \{m\theta_1\})\theta]$.

Noting that $0 \le \{m\theta_1\}\theta < 1$ and that $(1 - \{m\theta_1\})\theta < 1 - \phi$, it follows that

$$[lpha_m heta + \phi] = \left\{egin{array}{ll} m-1, & ext{if } \{m heta_1\} heta > \phi, \\ m, & ext{otherwise}, \end{array}
ight. \ [(lpha_m+1) heta + \phi] = m\,, \ [(lpha_m-\lambda_m) heta + \phi] = \left\{egin{array}{ll} m-1, & ext{if } (\lambda_m+\{m heta_1\}) heta > \phi, \\ m, & ext{otherwise}. \end{array}
ight.$$

If $\{(m+1)\theta_1\}\theta > \phi$, then

$$f_{\alpha_{m+1}} + f_{\alpha_{m+2}} + \dots + f_{\alpha_{m+1}-1} = [\alpha_{m+1}\theta + \phi] - [(\alpha_m + 1)\theta + \phi] = m - m = 0,$$

$$f_{\alpha_{m+1}} = [(\alpha_{m+1} + 1)\theta + \phi] - [\alpha_{m+1}\theta + \phi] = m + 1 - m = 1.$$

Thus,
$$f_{\alpha_{m+1}}f_{\alpha_{m+2}}\cdots f_{\alpha_{m+1}} = \underbrace{00\cdots\cdots0}_{\alpha_{m+1}-\alpha_{m-1}} 1$$
.

And if $\{(m+1)\theta_1\}\theta \leqslant \phi$,

$$[\alpha_{m+1}\theta + \phi] - [(\alpha_m + 1)\theta + \phi] = m + 1 - m = 1,$$

$$[(\alpha_{m+1} + 1)\theta + \phi] - [\alpha_{m+1}\theta + \phi] = m + 1 - (m+1) = 0.$$

Thus in this case

$$f_{\alpha_{m+1}} + f_{\alpha_{m+2}} + \dots + f_{\alpha_{m+1}-\lambda_{m+1}-1} = [(\alpha_{m+1} - \lambda_{m+1})\theta + \phi] - [(\alpha_{m} + 1)\theta + \phi]$$

$$= \begin{cases} m - m = 0, & \text{if } (\lambda_{m+1} + \{(m+1)\theta_1\})\theta > \phi, \\ m + 1 - m = 1, & \text{otherwise}. \end{cases}$$

So, if λ_{m+1} is the least non-negative integer satisfying $(\lambda_{m+1} + \{(m+1)\theta_1\})\theta > \phi$,

$$f_{\alpha_{m+1}}f_{\alpha_{m+2}}\cdots f_{\alpha_{m+1}} = \underbrace{00\cdots\cdots0}_{\alpha_{m+1}-\alpha_{m}-\lambda_{m+1}-1} 1\underbrace{0\cdots0}_{\lambda_{m+1}}.$$

Next, consider $f_1 f_2 \cdots f_{a_1}$, noting that $\alpha_1 = a_1$. Much as above, we have the following:

$$[a_1\theta+\phi]=1+[\phi-\theta\theta_1]=\left\{egin{array}{ll} 0, & ext{if $\theta heta_1>\phi$,} \ 1, & ext{otherwise}. \end{array}
ight.$$
 $[(a_1+1) heta+\phi]=1+[\phi+(1- heta_1) heta]=1.$

For a non-negative integer λ_1 ,

$$[(a_1 - \lambda_1)\theta + \phi] = 1 + [\phi - (\lambda_1 - \theta_1)\theta] = \begin{cases} 0, & \text{if } (\lambda_1 + \theta_1)\theta > \phi, \\ 1, & \text{otherwise.} \end{cases}$$

If $\theta\theta_1 > \phi$,

$$f_1 + f_2 + \dots + f_{a_1-1} = [a_1\theta + \phi] - [\theta + \phi] = 0,$$

$$f_1 + f_2 + \dots + f_a, = [(a_1 + 1)\theta + \phi] - [\theta + \phi] = 1.$$

Thus,

$$f_1 f_2 \cdots f_{a_1} = \underbrace{0 \cdots 0}_{a_1 - 1} 1.$$

If
$$\theta\theta_1 \leqslant \phi$$
, $f_1 + f_2 + \dots + f_{a_1-1} = 1$ and $f_1 + f_2 + \dots + f_{a_1} = 0$. So in this case
$$f_1 + f_2 + \dots + f_{a_1-\lambda_1-1} = [(a_1 - \lambda_1)\theta + \phi] - [\theta + \phi]$$
$$= \begin{cases} 0, & \text{if } (\lambda_1 + \theta_1)\theta > \phi, \\ 1, & \text{otherwise.} \end{cases}$$

So, if λ_1 is the least non-negative integer satisfying $(\lambda_1+\theta_1) heta>\phi$,

$$f_1 f_2 \cdots f_{a_1} = \underbrace{00 \cdots 0}_{a_1 - \lambda_1 - 1} 1 \underbrace{0 \cdots 0}_{\lambda_1}.$$

But $\alpha_{m+1} - \alpha_m = a_1 + h_m$. Thus if we put $h_m = [(m+1)\theta_1] - [m\theta_1]$, then for $m = 1, 2, \ldots$ and $h_0 = 0$,

$$f_1 f_2 f_3 \cdot \cdots = I_1 I_2 \cdot \cdots ,$$

where for $m = 1, 2, \ldots$

$$I_m = f_{\alpha_{m-1}+1}f_{\alpha_{m-1}+2}\cdots f_{\alpha_m} = \underbrace{00\cdots\cdots\cdots0}_{\alpha_1-1-\lambda_m+h_{m-1}}1\underbrace{0\cdots0}_{\lambda_m}.$$

Moreover,

$$\lambda_1 = [\phi/\theta - \theta_1] + 1 = [a_1 - b_1 + \phi_1] + 1 = a_1 - b_1 + 1.$$

And if we put $g_m = h_m - \lambda_{m+1} + \lambda_m$, from $\lambda_m = [\phi/\theta - \{m\theta_1\}] + 1$ we have

$$g_m = -[(a_1 + \theta_1)\phi - (m+1)\theta_1] + [(a_1 + \theta_1)\phi - m\theta_1]$$

$$= -[\theta_1 + \phi_1 - (m+1)\theta_1] + [\theta_1 + \phi_1 - m\theta_1]$$

$$= [(m+1)\theta_1 + (1 - \theta_1 - \phi_1)] - [m\theta_1 + (1 - \theta_1 - \phi_1)],$$

under the assumption $m_1\theta + \phi \neq m_2$ for any m_1 , $m_2 \in \mathbb{Z}$. From now on this is always assumed. Thus, we have the following theorem:

THEOREM 1. Let $f_n = f(n; \theta, \phi) = [(n+1)\theta + \phi] - [n\theta + \phi] - [\theta]$ and suppose the continued fraction expansion of θ is given by $\theta = [0, a_1, a_2, \ldots] = [0, a_1 + \theta_1]$. For $m = 1, 2, \ldots$ let $g_m = [(m+1)\theta_1 + (1-\theta_1 - \phi_1)] - [m\theta_1 + (1-\theta_1 - \phi_1)]$.

If $0 < \{\theta\} + \{\phi\} < 1$, then the characteristic word is

$$f_1f_2f_3\cdots=J_0J_1J_2J_3\cdots,$$

where

$$J_0 = \underbrace{0 \cdots 0}_{b_1-2} 1, \qquad J_m = \underbrace{00 \cdots 0}_{a_1-1+g_m} 1 \quad (m \geqslant 1).$$

REMARK. Our discussion is quite general. When $\theta + \phi > 1$, n = 1, 2, ... the characteristic word of $f = f(n; \theta, \phi)$ coincides with the characteristic word of $f' = f(n; 1 - \theta, 1 - \phi)$ with $(1 - \theta) + (1 - \phi) < 1$, if 0 and 1 are interchanged. When $\theta + \phi = 1$, we can reduce to the homogeneous case, that is,

$$f_1 f_2 f_3 \cdots = h_0 h_1 h_2 \cdots.$$

When $\theta + \phi < 1$, $b_1 - \phi_1 = \phi_0/\theta_0 = (1 - \phi)/\theta > 1$, so $b_1 \ge 2$.

We wish to rewrite this in a different way. Therefore we consider the word $g_1g_2g_3\cdots$ and according as g_m is 0 or 1 we replace each g_m by the rule

$$g_m = \left\{ egin{array}{l} 0 \longrightarrow \underbrace{0 \cdots 0}_{a_1-1} 1 = w_1, \; \mathrm{say}, \ 1 \longrightarrow \underbrace{0 \cdots 0}_{a_1} 1 = w_0 w_1 \, . \end{array}
ight.$$

Here we have set $w_0 = 0$.

Writing $\psi(0,1) = f_1 f_2 f_3 \cdots$ and $\psi_1(0,1) = g_1 g_2 g_3 \cdots$, we have that

$$\psi(0,1) = J_0\psi_1(w_1, w_0w_1).$$

If $\theta_1 + \phi_1 < 1$, we can continue with a similar step. This time we consider θ as θ_1 , ϕ as $1 - \theta_1 - \phi_1$. Then, $\theta_1 + (1 - \theta_1 - \phi_1) = 1 - \phi_1 < 1$. If we put $\theta^{(1)} = \theta_1$ and $\phi^{(1)} = 1 - \theta_1 - \phi_1$, this $\lambda_m \left(= \lambda_m^{(2)}, \text{ say} \right)$ is the least non-negative integer satisfying $\left(\lambda_m^{(2)} + \{ m \theta_2 \} \right) \theta^{(1)} > \phi^{(1)}$. Hence,

$$\lambda_m^{(2)} = \left[\frac{\phi^{(1)}}{\theta^{(1)}} - \{m\theta_2\} \right] + 1 = a_2 - b_2 + [\theta_2 + \phi_2 - \{m\theta_2\}].$$

Writing $h_m^{(2)} = [(m+1)\theta_2] - [m\theta_2]$ and $g_m^{(2)} = h_m^{(2)} - \lambda_{m+1}^{(2)} + \lambda_m^{(2)}$, we obtain

$$g_m^{(2)} = [(m+1)\theta_2 + (1-\theta_2-\phi_2)] - [m\theta_2 + (1-\theta_2-\phi_2)]$$

and

$$a_2 - \lambda_1^{(2)} - 1 = b_2 - 1$$
.

Thus,

$$g_1g_2g_3\cdots=J_0^{(2)}J_1^{(2)}J_2^{(2)}J_3^{(2)}\cdots,$$

where

$$J_0^{(2)} = \underbrace{0 \cdots 0}_{b_2-1} 1, \qquad J_m^{(2)} = \underbrace{00 \cdots 0}_{a_2-1+a_2^{(2)}} 1 \quad (m \geqslant 1).$$

Therefore,

$$f_1f_2f_3\cdots=J_0\psi_1(w_1,w_0w_1)=J_0K_0^{(2)}K_1^{(2)}K_2^{(2)}K_3^{(2)}\cdots$$

where

$$K_0^{(2)} = \underbrace{w_1 \cdots w_1}_{b_2-1} w_0 w_1, \qquad K_m^{(2)} = \underbrace{w_1 w_1 \cdots w_1}_{a_2-1+a_m^{(2)}} w_0 w_1 \quad (m \geqslant 1).$$

If $\theta_2 + \phi_2 < 1$ again, we consider the word $g_1^{(2)}g_2^{(2)}g_3^{(2)}\cdots$ and the rule

$$g_m^{(2)} = \begin{cases} 0 \longrightarrow \underbrace{0 \cdots 0}_{a_2-1} 1, \\ 1 \longrightarrow \underbrace{0 \cdots 0}_{a_2} 1. \end{cases}$$

Writing $\psi_2(0,1) = g_1^{(2)} g_2^{(2)} g_3^{(2)} \cdots$, we have

$$\psi(0,1) = J_0 K_0^{(2)} \psi_2(w_2, w_1 w_2),$$

where $w_2 = \underbrace{w_1 \cdots w_1}_{a_2-1} w_0 w_1$. Ultimately we obtain that for $k = 1, 2, \ldots$,

$$f_1 f_2 f_3 \cdots = J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(k)} \psi_k(w_k, w_{k-1} w_k),$$

where $w_k = \underbrace{w_{k-1} \cdots w_{k-1}}_{a_k-1} w_{k-2} w_{k-1}$ and $K_0^{(k)} = \underbrace{w_{k-1} \cdots w_{k-1}}_{b_k-1} w_{k-2} w_{k-1}$. We there-

fore have the following theorem:

THEOREM 2. Let $f_n = f(n; \theta, \phi) = [(n+1)\theta + \phi] - [n\theta + \phi] - [\theta]$ and suppose the continued fraction expansion of θ is given by $\theta = [0, a_1, a_2, \ldots]$. Let $w_0 = 0$, $w_1 = \underbrace{0 \cdots 0}_{a_1-1} 1$, and $w_k = \underbrace{w_{k-1} \cdots w_{k-1}}_{a_k-1} w_{k-2} w_{k-1}$ for $k \ge 2$.

If $0 < \{\theta\} + \{\phi\} < 1$ and $\theta_k + \phi_k < 1$ for every $k \geqslant 1$, then the characteristic word is

$$f_1 f_2 f_3 \cdots = \lim_{k \to \infty} J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(k)},$$

where $J_0 = \underbrace{0 \cdots 0}_{b_1-2} 1$ and $K_0^{(k)} = \underbrace{w_{k-1} \cdots w_{k-1}}_{b_k-1} w_{k-2} w_{k-1}$.

REMARK. This result matches the Main theorem of [5]. $\theta_k + \phi_k < 1$ leads to $a_k \ge b_k$ because $1 > (1 - \phi_{k-1})/\theta_{k-1} - (a_k - b_k)$ and $0 \le b_k \le a_k + 1$. And if we write $W_0 = w_0$, $W_1 = w_1$, $W_2 = W_1^{b_2-1} W_0 W_1^{a_2-b_2+1}$ and $W_k = W_{k-1}^{b_k} W_{k-2} W_{k-1}^{a_k-b_k}$ for $k \ge 3$, then it is easily seen that for i = 1, 2, ...

$$w_2^i = W_1^{a_2-b_2} W_2^i W_1^{b_2-a_2}$$

and

$$w_k^i = W_1^{a_2-b_2} W_2^{a_3-b_3-1} \cdots W_{k-1}^{a_k-b_k-1} W_k^i W_{k-1}^{b_k-a_k+1} \cdots W_2^{b_3-a_3+1} W_1^{b_2-a_2} \quad (k \geqslant 3).$$

Therefore, we get $K_0^{(2)} = w_1^{b_2-1} w_0 w_1 = W_2 W_1^{b_2-a_2}$ and

$$\begin{split} K_0^{(2)} K_0^{(3)} &= W_2 W_1^{b_2 - a_2} w_2^{b_3 - 1} w_1 w_2 \\ &= W_2 W_1^{b_2 - a_2} W_1^{a_2 - b_2} W_2^{b_3 - 1} W_1^{b_2 - a_2} W_1 W_1^{a_2 - b_2} W_2 W_1^{b_2 - a_2} \\ &= W_2^{b_3} W_1 W_2 W_1^{b_2 - a_2}. \end{split}$$

Generally for $k \geqslant 4$, from

$$K_0^{(k)} = w_{k-1}^{b_k-1} w_{k-2} w_{k-1}$$

$$= W_1^{a_2-b_2} W_2^{a_3-b_3-1} \cdots W_{k-2}^{a_{k-1}-b_{k-1}-1} W_{k-1}^{b_k-1} W_{k-2} W_{k-1}$$

$$W_{k-2}^{b_{k-1}-a_{k-1}+1} \cdots W_2^{b_3-a_3+1} W_1^{b_2-a_2},$$

we obtain

$$K_0^{(2)}\cdots K_0^{(k)}=W_{k-1}^{b_k}W_{k-2}W_{k-1}W_{k-2}^{b_{k-1}-a_{k-1}+1}\cdots W_2^{b_3-a_3+1}W_1^{b_2-a_2}.$$

This W_k is the same as the w_k in that Main Theorem.

3. THE GENERAL CASES

We can see that $g_m^{(i)}$ always has the same form if $\theta_n + \phi_n < 1$ for all n. In this section we shall show that the form of $g_m^{(i)}$ is always the same, even if $\theta_k + \phi_k > 1$ for some k. We introduce $\theta_{k,l}$ and $\phi_{k,l}$ for convenience, satisfying

$$\frac{1}{\theta_k} + \frac{1}{\theta_{k,l}} = l$$
 and $\frac{\phi_k}{\theta_k} + \frac{\phi_{k,l}}{\theta_{k,l}} = l - 1$

for an non-negative integer l. That is,

$$heta_{k,l} = -rac{ heta_k}{1-l heta_k} \qquad ext{and} \qquad \phi_{k,l} = 1 + rac{ heta_k + \phi_k - 1}{1-l heta_k} \,.$$

The case l=1 is known to be the necessary and sufficient condition in order that $\{[n\theta_k + \phi_k]\}_{n=1}^{\infty}$ and $\{[n\theta_{k,1} + \phi_{k,1}]\}_{n=1}^{\infty}$ partition the positive integers (for example, [2]).

Our notation allows us to write that for some integers k and l

$$g_m^{(i)} = -[(m+1)\theta_{k,l} + \phi_{k,l}] + [m\theta_{k,l} + \phi_{k,l}].$$

3.1 CASE 1. Suppose l = 0 and $\theta_k + \phi_k < 1$. Then,

$$g_m^{(i)} = [(m+1)\theta_k + (1-\theta_k - \phi_k)] - [m\theta_k + (1-\theta_k - \phi_k)]$$

for some positive integers i and k. By setting $\theta^{(i)} = \theta_k = -\theta_{k,0}$, $\phi^{(i)} = 1 - \theta_k - \phi_k = 1 - \phi_{k,0}$ and $\alpha_m^{(i+1)} = ma_{k+1} + [m\theta_{k+1}]$, we have

$$\begin{split} \lambda_m^{(i+1)} &= [\phi^{(i)}/\theta^{(i)} - \{m\theta_{k+1}\}] + 1 \\ &= a_{k+1} - b_{k+1} + [\theta_{k+1} + \phi_{k+1} - m\theta_{k+1}] + [m\theta_{k+1}], \\ g_m^{(i+1)} &= [(m+1)\theta_{k+1} + (1-\theta_{k+1} - \phi_{k+1})] - [m\theta_{k+1} + (1-\theta_{k+1} - \phi_{k+1})] \end{split}$$

and $a_{k+1} - \lambda_1^{(i+1)} - 1 = b_{k+1} - 1$. Therefore,

$$g_1^{(i)}g_2^{(i)}\cdots=J_0^{(i+1)}J_1^{(i+1)}J_2^{(i+1)}\cdots$$

where

$$J_0^{(i+1)} = \underbrace{0 \cdots 0}_{b_{k+1}-1} 1$$
 and $J_m^{(i+1)} = \underbrace{00 \cdots \cdots 0}_{a_{k+1}-1+o(i+1)} 1$ $(m \geqslant 1)$.

3.2 CASE 2(1). Let

$$g_m^{(i)} = -[(m+1)\theta_{k,l-1} + \phi_{k,l-1}] + [m\theta_{k,l-1} + \phi_{k,l-1}]$$

for some positive integers i, k and l. Suppose $\theta_k + \phi_k > 1$ and $\theta_k < 1/l$. Put

$$\theta^{(i)} = \theta_{k,l-1} + 1 = [0, 1, a_{k+1} - l, a_{k+2}, a_{k+3}, \dots]$$
 and $\phi^{(i)} = \phi_{k,l-1} - 1$

so that

$$g_m^{(i)} = 1 - [(m+1)\theta^{(i)} + \phi^{(i)}] + [m\theta^{(i)} + \phi^{(i)}]$$

with

$$0 < \theta^{(i)}, \, \phi^{(i)}, \, \theta^{(i)} + \phi^{(i)} < 1.$$

If $a_{k+1} \ge l+1$, from $\theta^{(i)} = [0, 1, a_{k+1} - l + \theta_{k+1}]$ we set $\alpha_m^{(i+1)} = m + [m(-\theta_{k,l})]$. Hence, we have

$$\begin{split} \lambda_{m}^{(i+1)} &= [\phi_{k,l} - 1 - m(-\theta_{k,l})] + [m(-\theta_{k,l})] + 1, \\ g_{m}^{(i+1)} &= -[\phi_{k,l} - 1 - (m+1)(-\theta_{k,l})] + [\phi_{k,l} - 1 - m(-\theta_{k,l})] \\ &= -[(m+1)\theta_{k,l} + \phi_{k,l}] + [m\theta_{k,l} + \phi_{k,l}] \end{split}$$

and

$$1 - \lambda_1^{(i+1)} - 1 = -[\theta_{k,l} + \phi_{k,l} - 1] - 1 = [1 - \theta_{k,l} - \phi_{k,l}] = 0.$$

Noticing that $\theta_k < 1/(l+1)$ and $\theta_k + \phi_k > 1$, we remark that

$$0 < \theta_{k,l} + 1, \phi_{k,l} - 1, \theta_{k,l} + \phi_{k,l} < 1.$$

Therefore,

$$g_1^{(i)}g_2^{(i)}\cdots=J_0^{(i+1)}J_1^{(i+1)}J_2^{(i+1)}\cdots$$
,

where

$$J_0^{(i+1)} = 0$$
 and $J_m^{(i+1)} = \underbrace{1 \cdots 1}_{g_m^{(i+1)}} 0 \quad (m \geqslant 1)$.

3.3. CASE 2(2). Let $g_m^{(i)}$, $\theta^{(i)}$ and $\phi^{(i)}$ be the same as those in the case 2(1). Again suppose $\theta_k + \phi_k > 1$ and $\theta_k < 1/l$.

If $a_{k+1}=l$, from $\theta^{(i)}=[\ 0,\ a_{k+2}+1+\theta_{k+2}\]$ we set $\alpha_m^{(i+1)}=(a_{k+2}+1)m+[m\theta_{k+2}]$. Then we have

$$\begin{split} \lambda_{m}^{(i+1)} = & [\phi_{k,l} - 1 - m\theta_{k+2}] + [m\theta_{k+2}] + 1, \\ g_{m}^{(i+1)} = & - [\phi_{k,l} - 1 - (m+1)\theta_{k+2}] + [\phi_{k,l} - 1 - m\theta_{k+2}] \\ = & [(m+1)\theta_{k+2} + (1 - (b_{k+1} + 1 - l)\theta_{k+2} - \phi_{k+2})] \\ & - [m\theta_{k+2} + (1 - (b_{k+1} + 1 - l)\theta_{k+2} - \phi_{k+2})] \end{split}$$

and

$$a_{k+2} + 1 - \lambda_1^{(i+1)} - 1 = a_{k+2} - \left[\phi_{k,l} - 1 - \theta_{k+2}\right] - 1 = \left[1 - \theta_{k,l} - \phi_{k,l}\right].$$

Note that

$$0 < \theta_{k+2} = -\theta_{k,l} - a_{k+2} < 1$$

and

$$-\phi_{k,l} = -(b_{k+1}+1-l)\theta_{k+2} - \phi_{k+2} - a_{k+2}(b_{k+1}+1-l) + b_{k+2},$$

where $b_{k+1} = l$ or l+1 because $\theta_k + \phi_k > 1$. Therefore,

$$g_1^{(i)}g_2^{(i)}\cdots=J_0^{(i+1)}J_1^{(i+1)}J_2^{(i+1)}\cdots$$

where

$$J_0^{(i+1)} = \underbrace{11 \cdot \dots \cdot 1}_{[1-\theta_{k,l}-\phi_{k,l}]} 0$$
 and $J_m^{(i+1)} = \underbrace{11 \cdot \dots \cdot 1}_{a_{k+2}+g_m^{(i+1)}} 0$ $(m \geqslant 1)$.

3.4. CASE 1'. Let

$$g_m^{(i)} = [(m+1)\theta_k + (1 - (b_{k-1} + 1 - l)\theta_k - \phi_k)] - [m\theta_k + (1 - (b_{k-1} + 1 - l)\theta_k - \phi_k)]$$

for some integers i, k and l with $k \ge 3$ and $l \ge 1$. From the fact in the case 2(2), $b_{k-1} = l$ or l+1. If $b_{k-1} = l$, we are back to case 1. If $b_{k-1} = l+1$,

$$g_m^{(i)} = [m\theta_k + (1 - \theta_k - \phi_k)] - [(m - 1)\theta_k + (1 - \theta_k - \phi_k)]$$

with

$$g_1^{(i)} = \begin{cases} 0, & \text{if } \theta_k + \phi_k < 1; \\ 1, & \text{if } \theta_k + \phi_k > 1. \end{cases}$$

Combining these remarks, we obtain

$$g_1^{(i)}g_2^{(i)}\cdots=J_{-1}^{(i+1)}J_0^{(i+1)}J_1^{(i+1)}J_2^{(i+1)}\cdots,$$

where $J_{-1}^{(i+1)} = \underbrace{00 \cdots 0}_{b_{k-1}-l}$ if $\theta_k + \phi_k < 1$, $\underbrace{11 \cdots 1}_{b_{k-1}-l}$ if $\theta_k + \phi_k > 1$. The others are

the same as those in the previous cases.

4. Together

Suppose that the characteristic word of the sequence $f_n = f(n; \theta, \phi)$ is given by

$$f_1 f_2 f_3 \cdots = J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(i-1)} K_1^{(i-1)} K_2^{(i-1)} \cdots$$

where $K_m^{(i-1)} = u^{c+g_m^{(i-1)}}v$ for $m \geqslant 1$ and

$$g_m^{(i-1)} = [(m+1)\theta_k + 1 - (b_{k-1}+1-l)\theta_k - \phi_k] - [m\theta_k + 1 - (b_{k-1}+1-l)\theta_k - \phi_k]$$

for some positive integer k.

If $\theta_k + \phi_k < 1$, then from the argument in the previous section

$$g_1^{(i-1)}g_2^{(i-1)}\cdots=J_{-1}^{(i)}J_0^{(i)}J_1^{(i)}J_2^{(i)}\cdots,$$

where

$$J_{-1}^{(i)} = \underbrace{00 \cdot \cdot \cdot \cdot \cdot 0}_{b_{k-1}-a_{k-1}}, \qquad J_{0}^{(i)} = \underbrace{0 \cdot \cdot \cdot \cdot 0}_{b_{k+1}-1} 1, \qquad J_{m}^{(i)} = \underbrace{00 \cdot \cdot \cdot \cdot \cdot 0}_{a_{k+1}-1+g_{m}^{(i)}} 1 \quad (m \geqslant 1),$$

and

$$g_m^{(i)} = \left[(m+1)\theta_{k+1} + (1-\theta_{k+1} - \phi_{k+1}) \right] - \left[m\theta_{k+1} + (1-\theta_{k+1} - \phi_{k+1}) \right].$$

Therefore, we have

$$f_1 f_2 f_3 \cdots = J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(i-1)} K_{-1}^{(i)} K_0^{(i)} K_1^{(i)} K_2^{(i)} \cdots,$$

where

$$K_{-1}^{(i)} = (u^c v)^{b_{k-1}-a_{k-1}}, \quad K_0^{(i)} = (u^c v)^{b_{k+1}-1} u^{c+1} v$$

and for $m \geqslant 1$

$$K_m^{(i)} = (u^c v)^{a_{k+1}-1+g_m^{(i)}} u^{c+1} v$$
.

In the case when $a_{k-1} = b_{k-1}$, $J_{-1}^{(i)}$ (so, $K_{-1}^{(i)}$) is omitted.

We can go to the next step by applying the substitutions

$$u \longrightarrow u^c v$$
, $v \longrightarrow u^{c+1} v$ and $c \longrightarrow a_{k+1} - 1$.

Next, let $\theta_k + \phi_k > 1$. We put $a_{k+1} = a(=l)$ and $d_k = [1 - \theta_{k,l} - \phi_{k,l}]$. We use the argument of the previous section repeatedly.

If
$$a_{k+1} \geqslant 2$$
,

$$g_1^{(i-1)}g_2^{(i-1)}\cdots=J_{-1}^{(i)}J_0^{(i)}J_1^{(i)}J_2^{(i)}\cdots,$$

where

$$J_{-1}^{(i)} = \underbrace{11 \cdot \dots \cdot 1}_{b_{k-1}-a_{k-1}}, \qquad J_{0}^{(i)} = 0, \qquad J_{m}^{(i)} = \underbrace{1 \cdot \dots \cdot 1}_{g_{m}^{(i)}} 0 \quad (m \geqslant 1),$$

and

$$g_m^{(i)} = -[(m+1)\theta_{k,1} + \phi_{k,1}] + [m\theta_{k,1} + \phi_{k,1}].$$

Thus, we have

$$f_1 f_2 f_3 \cdots = J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(i-1)} K_{-1}^{(i)} K_0^{(i)} K_1^{(i)} K_2^{(i)} \cdots ,$$

where

$$K_{-1}^{(i)} = (u^{c+1}v)^{b_{k-1}-a_{k-1}}, \qquad K_0^{(i)} = u^c v \quad \text{and} \quad K_m^{(i)} = (u^{c+1}v)^{g_m^{(i)}} u^c v \quad (m \geqslant 1).$$

In the case when $a_{k-1} = b_{k-1}$, $J_{-1}^{(i)}$ (so, $K_{-1}^{(i)}$) is omitted.

Similarly, if $a_{k+1} \geqslant a$, then

$$g_1^{(i+a-3)}g_2^{(i+a-3)}\cdots=J_0^{(i+a-2)}J_1^{(i+a-2)}J_2^{(i+a-2)}\cdots,$$

where

$$J_0^{(i+a-2)} = 0, \qquad J_m^{(i+a-2)} = \underbrace{1\cdots 1}_{a^{(i+a-2)}} 0 \quad (m \geqslant 1),$$

and

$$g_m^{(i+a-2)} = -[(m+1)\theta_{k,a-1} + \phi_{k,a-1}] + [m\theta_{k,a-1} + \phi_{k,a-1}].$$

Thus, we have

$$f_1f_2f_3\cdots=J_0K_0^{(2)}K_0^{(3)}\cdots K_0^{(i-1)}K_0^{(i)}K_0^{(i)}\cdots K_0^{(i+a-2)}K_1^{(i+a-2)}K_2^{(i+a-2)}\cdots,$$

where

$$K_0^{(i+a-2)} = u^c v$$
 and $K_m^{(i+a-2)} = (u(u^c v)^{a-1})^{g_m^{(i+a-2)}} u^c v$ $(m \ge 1)$.

Finally, if $a_{k+1} \not> a+1$ and $a_{k+1} = a$, then

$$g_1^{(i+a-2)}g_2^{(i+a-2)}\cdots=J_0^{(i+a-1)}J_1^{(i+a-1)}J_2^{(i+a-1)}\cdots,$$

where

$$J_0^{(i+a-1)} = \underbrace{1\cdots 1}_{d_k} 0, \qquad J_m^{(i+a-1)} = \underbrace{11\cdots\cdots 1}_{a_{k+1}+a_m^{(i+a-1)}} 0 \quad (m\geqslant 1),$$

and

$$g_m^{(i+a-1)} = [(m+1)\theta_{k+2} + 1 - (b_{k+1} - a_{k+1} + 1)\theta_{k+2} - \phi_{k+2}] - [m\theta_{k+2} + 1 - (b_{k+1} - a_{k+1} + 1)\theta_{k+2} - \phi_{k+2}]$$

where $b_{k+1} = a_{k+1}$ or $a_{k+1} + 1$. Thus, we have

$$f_1 f_2 f_3 \cdots = J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(i-1)} K_0^{(i)} K_0^{(i)} \cdots K_0^{(i+a-1)} K_1^{(i+a-1)} K_2^{(i+a-1)} \cdots,$$

where

$$K_0^{(i+a-1)} = \left(u(u^c v)^a\right)^{d_k} u^c v, \quad K_m^{(i+a-1)} = \left(u(u^c v)^a\right)^{a_{k+2} + g_m^{(i+a-1)}} u^c v \quad (m \geqslant 1).$$

Therefore, we summarise the case when $\theta_k + \phi_k > 1$, including $a_{k+1} = 1$, and we have

$$f_1 f_2 f_3 \cdots = J_0 K_0^{(2)} K_0^{(3)} \cdots K_0^{(i-1)} K_{-1}^{(i)} K_0^{(i)} K_1^{(i)} K_2^{(i)} \cdots$$

where

$$K_{-1}^{(i)} = \left(u^{c+1}v\right)^{b_{k-1}-a_{k-1}}, \quad K_{0}^{(i)} = \left(u^{c}v\right)^{a_{k+1}-1} \left(u(u^{c}v)^{a_{k+1}}\right)^{d_{k}} u^{c}v.$$

For $m \geqslant 1$

$$K_m^{(i)} = (u(u^c v)^{a_{k+1}})^{a_{k+2} + g_m^{(i)}} u^c v$$

and

$$g_m^{(i)} = [(m+1)\theta_{k+2} + 1 - (b_{k+1} - a_{k+1} + 1)\theta_{k+2} - \phi_{k+2}] - [m\theta_{k+2} + 1 - (b_{k+1} - a_{k+1} + 1)\theta_{k+2} - \phi_{k+2}],$$

where $b_{k+1} = a_{k+1}$ or $a_{k+1} + 1$.

In the case when $a_{k-1} = b_{k-1}$, $J_{-1}^{(i)}$ (so, $K_{-1}^{(i)}$) is omitted. We can go to the next step by applying the substitutions

$$u \longrightarrow u(u^c v)^{a_{k+1}}, \quad v \longrightarrow u^c v \quad \text{and} \quad c \longrightarrow a_{k+2}.$$

Furthermore, $\theta_k + \phi_k > 1$ implies $a_{k+1} \leq b_{k+1}$. When $a_{k+1} = b_{k+1}$, we have $d_k = b_{k+2}$ since $1 - \theta_{k,a_{k+1}} - \phi_{k,a_{k+1}} = b_{k+2} + 1 - \phi_{k+2}$. When $a_{k+1} + 1 = b_{k+1}$, we have $d_k = 0$ since $1 - \theta_{k,a_{k+1}} - \phi_{k,a_{k+1}} = 1 - (1 - \phi_{k+1})/\theta_{k+1}$ and $\theta_k < 1/a_{k+1}$.

We obtain the following general theorem which incorporates Theorem 2:

THEOREM 3. Let θ be irrational and ϕ be real, satisfying $0 < \theta, \phi, \theta + \phi < 1$ and $m_1\theta + \phi \neq m_2$ for any $m_1, m_2 \in \mathbb{Z}$. Then the characteristic word of the sequence $f_n = f(n; \theta, \phi)$ is given by

$$f_1f_2f_3\cdots=\lim_{n\to\infty}J_0J_{k_1}J_{k_2}J_{k_3}\cdots J_{k_n}.$$

Here, k_1 , k_2 , k_3 , ..., are determined by

$$k_1 = 1, \qquad k_{n+1} = \left\{ egin{array}{ll} k_n + 1, & ext{if } heta_{k_n} + \phi_{k_n} < 1; \ k_n + 2, & ext{if } heta_{k_n} + \phi_{k_n} > 1 \end{array}
ight. \ (n \geqslant 1) \; ;$$

and $J_0 = \underbrace{0 \cdots 0}_{k_1-2} 1$. For $k = k_1, k_2, k_3, \ldots$, if $\theta_k + \phi_k < 1$,

$$J_k = u_{k+1}^{b_{k-1}-a_{k-1}} u_{k+1}^{b_{k+1}-1} v_{k+1},$$

where $u_1 = 0$, $v_1 = 1$, and for $k = k_n \geqslant 1$

$$u_{k+1} = \begin{cases} u_k^{a_k-1} v_k, & \text{if } k_{n-1} = k-1; \\ u_k^{a_k} v_k, & \text{if } k_{n-1} = k-2, \end{cases} v_{k+1} = u_k u_{k+1}.$$

If $\theta_k + \phi_k > 1$,

$$J_k = (u_k v_{k+2})^{b_{k-1}-a_{k-1}} v_{k+2}^{a_{k+1}-1} u_{k+2}^{d_k} v_{k+2},$$

where $u_1 = 0$, $v_1 = 1$, and for $k = k_n \geqslant 1$

$$\begin{aligned} u_{k+2} &= u_k v_{k+2}^{a_{k+1}}, & v_{k+2} &= \begin{cases} u_k^{a_k-1} v_k, & \text{if } k_{n-1} = k-1; \\ u_k^{a_k} v_k, & \text{if } k_{n-1} = k-2. \end{cases} \\ d_k &= \begin{cases} 0, & \text{if } a_{k+1} + 1 = b_{k+1}; \\ b_{k+2}, & \text{if } a_{k+1} = b_{k+1}. \end{cases} \end{aligned}$$

The underlined parts occur as stated when $k_n = k (\ge 3)$ and $k_{n-1} = k-2$. Otherwise, they are empty.

5. EXAMPLE

Let $\theta = \sqrt{3} - 1$ and $\phi = \sqrt{5} - 2$. Then

$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 1$, $a_4 = 2$, $a_5 = 1$, $a_6 = 2$, $a_7 = 1$, $a_8 = 2$, $a_9 = 1$, ... $b_1 = 2$, $b_2 = 3$, $b_3 = 1$, $b_4 = 2$, $b_5 = 1$, $b_6 = 1$, $b_7 = 2$, $b_8 = 3$, $b_9 = 2$, ...

and

$$\theta + \phi, \ \theta_3 + \phi_3, \ \theta_5 + \phi_5, \ \theta_{10} + \phi_{10}, \ \ldots < 1,$$

$$\theta_1 + \phi_1, \ \theta_2 + \phi_2, \ \theta_4 + \phi_4, \ \theta_6 + \phi_6, \ \theta_7 + \phi_7, \ \theta_8 + \phi_8, \ \theta_9 + \phi_9, \ \ldots > 1.$$

So, $d_1 = 0$, $d_2 = 2$, $d_4 = 1$, $d_6 = 0$, $d_7 = 0$, $d_8 = 0$, Therefore,

$$f_1f_2f_3\cdots=J_0J_1J_3J_4J_6\cdots,$$

where $J_0 = 1$, $J_1 = v_3^{a_2-1}u_3^{d_1}v_3 = 11$ from $v_3 = u_1^{a_1-1}v_1 = 1$ and $u_3 = u_1v_3^{a_2} = 011$, $J_3 = u_4^{b_2-a_2}u_4^{b_4-1}v_4 = 011101110110111$ from $u_4 = u_3^{a_3}v_3 = 0111$ and $v_4 = u_3u_4 = 01110111$,

REFERENCES

- L.V. Danilov, 'Some class of transcendental numbers', Mat. Zametki 12 (1972), 149-154.
 Math. Notes 12 (1972), 524-527.
- [2] A.S. Fraenkel, 'The bracket function and complementary sets of integers', Canad. J. Math.
 21 (1969), 6-27.
- [3] A.S. Fraenkel, M. Mushkin and U. Tassa, 'Determination of [nθ] by its sequence of differences', Canad. Math. Bull. 21 (1978), 441-446.
- [4] Sh. Ito and S. Yasutomi, 'On continued fractions, substitutions and characteristic sequences [nx + y] [(n-1)x + y]', Japan. J. Math. 16 (1990), 287-306.
- [5] T. Komatsu, 'A certain power series associated with Beatty sequences', (Manuscript in preparation).
- [6] T. Komatsu, 'The fractional part of $n\theta + \phi$ and Beatty sequences', J. Théorie des Nombres de Bordeaux (to appear).
- [7] K. Nishioka, I. Shiokawa and J. Tamura, 'Arithmetical properties of certain power series', J. Number Theory 42 (1992), 61-87.

- [8] T. van Ravenstein, G. Winley and K. Tognetti, 'Characteristics and the three gap theorem', Fibonacci Quart. 28 (1990), 204-214.
- [9] K.B. Stolarsky, 'Beatty sequences, continued fractions, and certain shift operators', Canad. Math. Bull. 19 (1976), 473-482.
- [10] B.A. Venkov, Elementary number theory (Wolters-Noordhoff, Groningen, 1970).

Centre for Number Theory Research Macquarie University New South Wales 2109 Australia e-mail: komatsu@mpce.mq.edu.au