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THE MAXIMAL IDEAL SPACE OF SUBALGEBRAS
OF THE DISK ALGEBRA

BY
BRUCE LUND

1. Introduction. Let X be a compact Hausdorff space and C(X) the complex-
valued continuous functions on X. We say 4 is a function algebra on X if A is a
point separating, uniformly closed subalgebra of C(X) containing the constant
functions. Equipped with the sup-norm || f|=sup{|f(x)|:x € X} for fe 4, A is
a Banach algebra. Let M, denote the maximal ideal space.

Let D be the closed unit disk in C and let U be the open unit disk. We call
A(D)={fe C(D):f is analytic on U} the disk algebra. Let T be the unit circle
and set CY(T)={fe C(T):f'(t) e C(T)}.

In this paper we discuss conditions on a function algebra 4 on D contained in
A(D) which imply that M = D. Our main result is the following.

THEOREM 1. Let A be a function algebra on D such that A< A(D). Suppose there
is f € A such that f(t) € CX(T) and Q,={t € T:f’'(t)=0} is countable. Then M ,=D.

The following closely related result is due to Bjork ([2], Theorem 2.1).

THEOREM (Bjork). Let A be a function algebra on D such that A< A(D). Suppose
there is a set Ay< A such that A, | r<CY(T) and A, is uniformly dense in A. Then
MA"—".D.

The hypothesis in Bjork’s result that 4, is uniformly dense in 4 can be replaced
by the hypothesis that 4, separates points on D. To see this, let [4,] be the smallest
function algebra on D containing 4, where we suppose now that 4, separates
points on D. By a result of Bjork ([2], Lemma 2.3) [4,] has a regular peak point
« € T. (We say that « € T is a regular peak point for [A,] if there is f € [4,] with
f € CYT)such that f'(«)#0, {a}={t € T:f(t)=f(«)}, and f(«) belongs to the boun-
dary of the unbounded component of C\f(7). But then « is also a regular peak
point for 4. This is precisely Bjork’s condition for showing that M= D. (See
[2]; p. 47)

Hence, we may state the following more general result which is useful in appli-
cations. (See example 1.)

THEOREM 2. Let A be a function algebra on D such that A< A(D). Suppose there
is a set Ay< A such that A, separates points on D and A, ]TC CV(T).Then M 4=D.
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In §3 we give an example which shows that Theorem 1 does not contain Theorem
2. Also, we give an example which shows that the countability of @, in Theorem 1
can not be replaced by the condition that Q, have measure zero in 7. In §4 we
give an application of Theorem 1.

In proving Theorem 1 we apply results of Gamelin [3] in the theory of function
algebras on an arc. See Stout [9] for an exposition of this theory. We also use
results of Bjork [2] on the structure of the maximal ideal space of a function algebra.

2. Main result. If 4 is a function algebra, let S, be the Shilov boundary. Let
f stand for the Gelfand transform of f€ A and give M, the Gelfand (weak-star)
topology. If fe 4 and zeC, let o, (2)={® € M;:f(®)=z} and let #; (z)
denote the cardinality of w}'l(z).

LemMmA 1 ([1] p. 240). Let A be a function algebra on X and let f€ A. Let I be a
closed Jordan curve in C with interior V. Suppose I' contains an open subarc J such
that #w;"(z)<n for all z€J and that w;" (V)< M_\S. Then #u7; (z2)<n for all
zeV.

Let 4 be a function algebra on X and suppose K is a compact subset of M ,.
We set Hull ,(K)={® € M_;:| f(?)|<| fllx for all fe A} and let 4 | K denote the
function algebra on K which is generated by the restriction to K of functions in
A. Then M g g=Hull,(K). If V'€ C, we let 9V be the topological boundary of V.

Proof of Theorem 1. Let FFT be compact. Let I be a proper closed subinterval
of T containing F. Since there is f € 4 with f € C}(T) and Q, countable, it follows
by [3], Theorem 5 that 4 | I=C(I). Hence, A | F=C(F). In particular, S,=T.

Let A=M_\D and assume A @. We show this leads to a contradiction. Let
bA be the topological boundary of A in M. By [2], Theorem 1.2 we have A<
Hull,(bA N T). If bA N T5 T, then 4 | (bA N T)=C(bA N T). This implies that
A ¢ Hull,(bA N T)=bA N T. Hence, bA N T=T.

By [9], Lemma 30.29 there is a compact, totally disconnected set J<f(T') such
that the following conditions hold.

(i) At each point of f(T)\J, f(T) has the structure of an open arc.
(i) If K< f(T)\J is compact, then f maps f~2(K) in a finite to one way onto K.

Let the bounded components of C\f(7) be denoted by V; for k=0,1,2,...
and let ¥, be the unbounded component. Then 9V, is not simply connected since
f(U) is contained in the polynomial hull of 9V ,,. Consequently, 0V, is not totally
disconnected ([7], Theorem 14.3, p. 123), and so 0V, ¢ J.

Suppose a, € 0V, \J. By (ii) there are ¢, ..., t, € T satisfying f(t,)=a,. Using
(i) and (iii) we can find an open arc L’ passing through a, which is contained in
JS(T) and a subarc L= L’ with the following properties: L contains a, and the closure
of L in C is contained in L', L is relatively open in f(T’) (that is, there is a connected
open set Q in C such that Q N f(T)=L), and there are pairwise disjoint open
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intervals I; about ¢, for i=1,...,n such that f(I,)=f(I,) for all i and j and
{teT:fH)e}=UiL. L.

Next we show that L& dV,,. Let Q be a connected open set in C such that
Q Nf(T)=L. Then (Q N oV, )<L. Since a,€ L N 9V, it follows that Q\L
meets both ¥, and some bounded component ¥V, of C\ f(T). From this we may con-
clude that Q\L is not connected. As a result, Q\L has exactly two open components
which we will call E, and E, and L is contained in the boundaries of both E, and
E, ([7], Theorem 11.7, p. 118 and Theorem 16.3, p. 127). Moreover, we have
E,cV, and E,<V,,.

If Q N OV,,#L, then there is b € L and an open disk B about 4 with B=Q
and B N 0V, =g. In this case we can find an arc from a point in ¥, to a point
in ¥, which does not pass through 0¥, and this gives a contradiction.

We have just seen that w}l(w) N T contains » elements for each w € L. Since L
is also in the boundary of the unbounded component of C\f(T), it follows that
7, (W)= T. An elementary proof of this may be given, but the result also follows

from a more general theorem of Bjork ([1], theorem 1.7).
P
Let f(D) be the polynomial hull of f(D). The components of the interior of
N
f(D) are simply connected. Let G be the component which contains f(U). Then

f(D)=G and L is an open arc contained in 9G. Moreover, 0G <f(T).

Furthermore, since L is open in f(T), there is no w, € L with the property that
a sequence {w,} <0G\L converges to w,. Let ¢(z) be a conformal map of G onto
U. From the previous remark it follows that ¢(z) extends continuously to L and
maps L homeomorphically into T ([5], p. 44). Consequently, F(z)=¢ o f(z) maps
I; into T. By the Schwartz reflection principle F(z) extends analytically across
I, fori=1,...,n.

Let N be an open disk about ¢(a,) where N is chosen to be so small that N N
T<¢(L) and 6 1(N N U) N f(T)=g. Since ¢ 1(N N U) is connected, we must
have ¢~1(N N U) contained in the single component ¥, of C\f(T). Since f(U)
meets V,, it follows that ¢=2(N N U)< V,<f(U). By reducing the radius of N,
we can also find pairwise disjoint open sets W; in C for i=1, ..., n such that
t; € W; and N F(W,). It follows that f(W; N D)> ¢ (N N D) for each i.

The domain ¢=X(N N U) is bounded by the closed Jordan curve I where I' is
the image under ¢~ of d(NV N U). Also, a subarc of L lies in I'. Lemma 1 implies
that #w?l(z)gn for ze¢1(N N U). We have just noted that W;I(Z)Zn for
z€ ¢ }(N N U), and so =, (z)=n for z € $~1(N N D).

Since b A N T=T, there is a net {¥,}=A which converges to #,. Then we have
limit f(¥,)=a, and consequently there is some a, so that f(¥,) € Q for a>a,.
Since f(Y,) ¢ L U V,,, we have f(¥,) € ¥, for a>a,. Now ¢(f(¥,)) converges to
#(a,). Hence, there is some ¥, € {¥,} so that ¢(f(¥,)) € N N U. In this case
f(‘Fo) € $~1(N N U). This contradicts the equation #n7\( f(‘I" 0)=n and we must
conclude that A=g.
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3. Examples. Example 1 shows that Theorem 1 does not contain Theorem 2.

ExaMPpLE 1. There is a function algebra 4 on D with 4 < A(D) with the following
properties:

(i) If fe A4 satisfies f | 7 € CY(T), then Q, is uncountable.

(ii) There is 4,< 4 such that 4, separates points on D and 4, [p< CX(T).

Proof. Let {z,} be a Blaschke sequence in U which accumulates to a closed
uncountable set K of T of measure zero. Define A={f e 4(D):f"(z,)=0 for all k}.
Let B(z) be a Blaschke product with zeros at the z;, and let g(z) € A(D) be equal
to zero precisely on K. If we set A,={F(z): F(z)={3 f(D)g({)B({) d{ for f € A(D)},
then 4,<=A4 and 4, | < CY(T). We show that 4, separates points on D.

Given a and b in D with a#b, consider f(z)=(z—a)(z—b)g(z)B(z). Define
F,(z) € A4y by F,(2)=[sf(QexpQmn({—a)/(b—a)) d{ for n=0, +1, £2,....
Since f(a)=f(b), we can regard f as a continuous periodic function on the interval
from a to b. If O=Fn(b)—Fn(a)=jabf(i_,')exp(27-r'n(C—a)/(b—a)) d{ for all n, then
all the Fourier coefficients of f are zero. This implies that f is zero on a line
segment in D which is a contradiction.

Finally, if fe 4 satisfies flT € C(T), then f'(z) € A(D) and hence f'(z) is
equal to zero on K. q.e.d.

ExAMPLE 2. We use an example of Glicksberg [4] to show that the countability
of Q, in Theorem 1 cannot be replaced by the condition that Q, have measure
zero in T.

Proof. Let EC T be a Cantor set of measure zero with the following property.
If T\E=U,_; I, where the I,’s are disjoint open intervals and ¢,=the length of
I, then —o0<>7 ; ¢,log¢,. Let K be a Cantor set in C having positive planar
measure and let ¢ be a homeomorphism of E onto K. Let S? be the Riemann
sphere. If Ax={f € C(K):f € C(S?) and f'is analytic on S?\K}, then A={f e A(D):
fo ¢t e Ax} is a function algebra on D with maximal ideal space properly con-
taining D ([4]). However, there are functions f(z) € 4 such that fe CY(T) and

S(t)=f"(t)=0 precisely on E ([8], p. 85).

4. Application. Let 4 be a function algebra on D with A<A(D). In [6] it
is shown that if 4 contains an ideal J of A4(D) such that {z € D:f(z)=0 for all
feJ}is a countable set, then M ,=D. The converse is not true. That is, there is a
function algebra 4 on D with A< A(D) and M =D but such that 4 contains no
nonzero ideal of A(D). To see this let f;(z)=(z—1)exp((z+1)/(z—1)) and f3(z)=
(z—1%xp((z+1)/(z—1)). Then f; and f, generate a function algebra 4 on D
and 4 < A(D). By applying Theorem 1 (or the proof of Theorem 2), we see M = D.
It is straightforward but lengthy calculation to show that 4 contains no nonzero
deal of A(D).
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