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TAUBERIAN CONDITIONS FOR THE EQUIVALENCE 
OF WEIGHTED MEAN AND POWER SERIES 

METHODS OF SUMMABILITY 

B Y 

DAVID BORWEIN 

1. Introduction. Suppose throughout that {pn} is a sequence of non-negative 
numbers with p 0 > 0 , that 

n 

Pn= I Pk-+°°, 
k=0 

and that {s^} is a sequence of real numbers. Let 

oo oo 

P(x)= I Pkx
k, P(x)= X Pkx\ 

k=0 

k 
^ n 1 °° 

tn=— Z PkSk, 0"(X)=—— X PkSkX 
Pn k=0 P\X) k=0 

and suppose that 
(1) p(x)<oo for 0 < J C < 1 . 

Then 

(2) ( l - x ) P ( x ) = p(x) for 0 < x < l . 

The weighted mean summability method Mp and the power series method Jp 

are defined as follows: 

sn-»s(Mp) if tn-^s , 

sn -> s(/p) if o-(x) is convergent for 0 < x < 1 and cr(x) - ^ s a s x - > 1—. 

Both methods are known to be regular (see [3, pp. 57, 81]). It is also known 
(see [4]) that sn -» s(Mp) implies sn -» s(Jp). 

The purpose of this paper is to establish results concerning Tauberian 
conditions sufficient for sn -> s(Jp) to imply sn -> s(Mp). In §2 we prove the 
following two theorems: 

THEOREM 1. Let ^ - ^ s U p ) , let sn>-H for n = 0 , 1 , . . . , where H is a 
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constant; and let p(x) satisfy either 

(3) l i m ^ l 
x - l - p(x) 

or 
p(xm+1) 

(4) lim ——- = jULm > 0 for m =0,1,..., where {fxm} is totally monotone. 
x - i - p(x) 

Then sn —> s(Mp). 

THEOREM 2. Let 

(5) npn = o(Pn), 

let sn —> s(Jp) and let sn > —yn, where yn > 0 for n = 0 , 1 , . . . , and 

(6) npn 7 n - 0(Pn). 

Then sn -» s(Mp). 

Note that (1) is a consequence of (5) and (2), since (5) implies that 
Pn^/Pn -> 1. 

The Abel-type method A a ( a > - l ) is the Jp method given by p(x) = 
( l - x ) - " - 1 (see [1] and [2]) which satisfies (4) with jutm = (m 4-1) -" - 1 . Theorem 
1 thus yields a Tauberian result for Aa. The case a = 0 of this result, which is 
well-known (see [3, Theorem 13] and [6, Theorem 2(Aa)]), states that 

if sn —> s(A) and sn > -H for n = 0 , 1 , . . . , then sn —> s(C, 1), 

A being the standard Abel method and (C, 1) the Cesàro method of order 1. 
The logarithmic methods L and / are respectively the methods Jv and Mp 

given by pn = (n + l ) _ 1 . Since pn = (n + l ) - 1 , yn = —fx log(n-f l ) satisfy the 
conditions of Theorem 2, we get as a corollary of that theorem a result proved 
by Kochanovski [5], namely 

if sn —» s(L) and sn > -JUL log(n 4-1) for n = 0 , 1 , . . . , then sn —> s(Z). 

In §3 we prove two theorems which set out simple conditions sufficient for 
(3) or (4) to hold. 

2. Proofs of Theorems 1 and 2. We introduce some additional notation. Let 

<t>(x) = < 
- for c < x < l , 
x 
0 otherwise, 

where 0 < c < 1, and let 

ilf(x) = --— X pkskx
k<l>(xk). 

P W k - 0 
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Observe that 

(7) - - ^ - + - £ - < < ^ ( x ) < l + i - - for 0 < x < l . 
1—c 1—c c c 

Proof of Theorem 1. Suppose without loss in generality that H = 0, i.e., that 
s n > 0 for n = 0 , 1 , 

CASE 1. Suppose (3) holds. Then, by (7), 

l i m s u p i K x ) < ( l + - ) lim cr(x)— l i m ^jL4cr(x2)= \l+-)s--= s; 

and similarly lim infx_>!_ ij/(x) > s. It follows that limx_^!_ ijj(x) = s, and there­
fore that 

1 n 

^ 1 / n ) = - 7 - [ Â r T Z p k s k -^s . 

Pvc ; k=o 

Taking sk = 1 for fc = 0 , 1 , . . . , we obtain 

(8) ZTihr^ !• p(c1M) 

Consequently ^ -> s. 

CASE 2. Suppose (4) holds. Then (see [3, Theorem 207]), 

*-=I tmdx(t) for m = 0 , 1 , . . . , 

where the function x is non-decreasing and bounded on [0,1]. Further, since 
fi1 > 0, we can choose c e (0,1) to be such that x is continuous at c and 

- J 
Then, for m = 0 , 1 , . . . , 

1M)>0. 

P(x)k=0 P(*) 

and so, for any polynomial a(x) = a0 + a1x + - • • + amxm, 

- 7 - 7 Z P k ^ k « U k ) " ^ ( « 0 M ' 0 + a i M ' l + - - < + ami^m)S 

PWk=o 

" l , , ( *(0 d^(0 as x —> 1 - . 

Since x is continuous at c it is readily demonstrated that given e > 0 , there are 
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polynomials a(x), b(x) such that 

a(x)<<^(x)<6(x) for 0 < x < l and | (b(t)-a(t))dx(t)<e. 

It follows that 

9ldX(t) 
lim i/r(x) = s <f>(t) d\(t) = s 

x-*i- ^ JC 

sa. 
x->i- Jo ' ~ Jc * 

Hence 
1 n 

Pl c Jk=0 

and, taking sk = 1 for k = 0 , 1 , . . . , 

p(c1M) 
Thus k —> s. 

This completes the proof of Theorem 1. 

Proof oi Theorem 2. First we note that, for 0 < x < 1, m > l w e have, by (5) 
and (2), 

oo oo 

0<p(x)-p(xm+1)= X p f c x f c ( l - x k m ) < m ( l - x ) £ kpfcx
k 

lc=0 k=0 

= o( ( l -x)P(x) ) 
= o(p(x)) as x — » 1 - . 

Since p(x) —> oo as x —» 1—, it follows that 

(9) lim P l , , ; = 1 for m > 1. 
x-*i- p(x) 

Further, by (7), we have that, for 0 < x < l , 

j ^ OO -I OO 

^ w = ^ 7 ^ £ Pk(sk + 7k)*k<M*k)—7-T I pkykx
k<t>(xk) 

PWk=0 PWk=0 

< ( l + - W ) - - a ( x 2 ) ^ + \ £ p k 7 k x k ( l - x k ) 
V c / c p(x) c ( l - c ) p ( x ) k f 0 

< ( l + - W ( x ) - - a ( x 2 ) ^ - f + — —— X fepk7kx
k. 

v c) c p(x) c ( l - c ) p ( x ) k r 0 

Therefore, by (2), (6), and (9), there is a constant M such that 

lim sup i/f(x)< ( l + - )s— + M = s + M<oo. 
x^ i - V cJ c 
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Similarly 

lim inf i/r(x) > -oo; 
x - * l -

and hence ij/(x) = O(l) for 0 < x < 1. It follows that 

^ 1 / n ) = - 7 ^ Z P ^ = 0(l), 
p\c )k=0 

and hence, since (8) is a consequence of (9), that 

(10) t„ = 0 ( l ) ; 

Since 
oo oo 

(1 —x) £ Pktkx
k= X PkSkx

k for 0 < x < l , 
k=0 k=0 

we have, by (2), that 

(11) o-(s) = - f - J Pkfkxk-^5 as x - * l - . 
P(x)k=0 

Next, by (2) and (9), 

P(xm+1) = p(xm+1) 1 —x 1 
xZT- P(x) , ™ - p(x) l - x m + 1 m + 1 

(12) lim £ ^ 7 7 r i = I™ ^ , \ , w + 1 = r T T f o r m = 0 , 1 , . 

It follows from (10), (11) and (12), by Case 2 of Theorem 1, that 

(13) K n = 7 ^ - £ i V k - > * where Q n = î ? k . 
^n k=0 k=0 

Further, by (5), (6) and (10), we have that, for n > 1, 

fn «n-1 - Sn p *n-l p ^ p *n-l p ^ 
*n ^n rn rn n 

for some positive constant 7. Thus, for m > n > 1, 

k=n+l^ n 

and so 

(14) l iminf ( t m - t n )>0 when m > n - » o ° and » 1. 
n 

Now, by (5), 

nPn-(n-l)Pn_1 = Pn + (n-l)pn-Pn 

and therefore nPn ~ Qn. 
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It follows that, for m > n ( l + ô), ô > 0 , 

Q n Q n fc=n + l Qn Qn 

Suppose without loss in generality that s = Q, i.e., u„ —>0. It follows from 
(14) that, given e > 0 , there are positive numbers n0, 8 such that tm-tn>-e 
when m>n>n0 and (m/n)< 1 + 26. Consequently if m, n satisfy these condi­
tions we have, by (13), that 

(tn-e) £ pk^ I Pktk = utnQm-unQn<(trn + e) £ Pk 
k = n + l k = n + l k = n + l 

and hence that 

1 } n Q . - Q . ^ ( Q J Q J - l - ^ 

Letting m, n—>o° subject to 1+ 6 < ( m / n ) < 1 + 26, it follows from (15) that 

( Q m / Q J - l = 0 ( 1 ) ' 

and hence from (16) that 

lim sup ^ < e and lim inf t^ > - e. 

Therefore t„ —> 0. 
This completes the proof of Theorem 2. 

REMARK. A trivial modification of the proof of Theorem 1, and of the part of 
the proof of Theorem 2 up to and including (10), shows that the theorems 
remain valid if in each the hypothesis "sn -> s(Jp)" is replaced by "cr(x) = O(l) 
for 0 < x < 1" and the conclusion "sn -> s(Mp)" by '% = O( l )" . 

3. Other theorems. The following two theorems give simple conditions 
sufficient for (3) or (4) to hold. 

THEOREM 3. Let 

(17) p _ p 

0)1/ 

(18) Pn~P2n, 

then (3) holds. 

(ii) If 
P 

(19) lim —— = jLLm_! > 0 for m = 1,2,..., where {ju,m} is totally montone, 
n—>oo - T n m 

then (4) holds. 
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T H E O R E M 4 . Let pn > 0 for n = 0 , 1 , . . . , and let 

(20) P n ~ P n + l-

0) If 

(21) Pn~2p2 n , 

rhen (3) fio/ds. 

(ii) If 

(22) lim —— = m/xm_! > 0 /or m = 1 ,2 , . . . , where {jutm} is totally monotone, 
n-*<*> p n m 

then (4) holds. 

Proof of Theorem 3. We shall prove Part (ii). By (17) and (19), we have 
that, when x -> 1 - , 

n=0 ^nm n=0 

m —1 oo 

I l L + / m + k = - P W . 

Hence, by (2), 

m k = 0n=o m 

p(xm) P(xm) l - x m 

x _ i _ p(x) x-*i- P(x) 1 -x 

This establishes Part (ii). The proof of Part (i) is similar but simpler. 
Theorem 4 can be proved in the same way, or by first establishing the 

following simple implications: (20)=>(17); (20) and (21 )^ (18) ; (20) and 
(22)=» (19). 

Added December 15, 1980. It has been brought to the author's attention that 
Case 1 of Theorem 1 appears as Theorem 6 in a paper by B. Kwee, "On 
generalized logarithmic methods of summation", J. Math. Anal. Appl. 35 
(1971), 83-89. His proof is somewhat more complicated than the one herein 
and should be corrected by the replacement of certain instances of "lim" by 
"lim sup" or "lim inf". 
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