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TAUBERIAN CONDITIONS FOR THE EQUIVALENCE
OF WEIGHTED MEAN AND POWER SERIES
METHODS OF SUMMABILITY

BY
DAVID BORWEIN

1. Introduction. Suppose throughout that {p,} is a sequence of non-negative
numbers with py,>0, that

n
=) p—o
k=0

and that {s,} is a sequence of real numbers. Let

oo

p@= Y pat,  P()= 3 P,

k=0
k
Z DrSiX 5

1 ¢ 1
L e )
and suppose that
(1) p(x)<w for 0<x<1.
Then
2) (1-x)P(x)=p(x) for O0<x<1.

The weighted mean summability method M, and the power series method J,
are defined as follows:

s,—>s(M,) if t,—s,

s, —> s(J,) if o(x) is convergent for 0<x <1 and o(x)—>s as x = 1—.
Both methods are known to be regular (see [3, pp. 57, 81]). It is also known
(see [4]) that s, — s(M,) implies s, — s(J,).

The purpose of this paper is to establish results concerning Tauberian

conditions sufficient for s, — s(J,) to imply s, — s(M,). In §2 we prove the
following two theorems:

TueoreM 1. Let s, —s(J,), let s,>—H for n=0,1,..., where H is a
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constant; and let p(x) satisfy either

. p(x?)
3 lim —=1
( ) x—1— p(x)
or
m+1
4 lir{l_ p(;(x) )_ wn >0 form=0,1,..., where {u,.} is totally monotone.

Then s, — s(M,).

THEOREM 2. Let

(5) np, =o(P,),
let s, — s(J,) and let s, >—v,, where v, =0 forn=0,1,..., and
(6) np. Y, = O(P,).

Then s, — s(M,).

Note that (1) is a consequence of (5) and (2), since (5) implies that
P,_,/P,—1.

The Abel-type method A, (a>-—1) is the J, method given by p(x)=
(1—x)"*"! (see [1] and [2]) which satisfies (4) with u,, =(m+1)">"'. Theorem
1 thus yields a Tauberian result for A,. The case a =0 of this result, which is
well-known (see [3, Theorem 13] and [6, Theorem 2(A,)]), states that

if s, > s(A)and s,>—H for n=0,1,..., then s, — s(C, 1),

A being the standard Abel method and (C, 1) the Cesaro method of order 1.

The logarithmic methods L and [ are respectively the methods J, and M,
given by p,=(n+1)"". Since p,=(n+1)"", y,=—plog(n+1) satisfy the
conditions of Theorem 2, we get as a corollary of that theorem a result proved
by Kochanovski [5], namely

if s, > s(L)and s, >—u log(n+1)forn=0,1, ..., then s, — s(l).

In §3 we prove two theorems which set out simple conditions sufficient for
(3) or (4) to hold.

2. Proofs of Theorems 1 and 2. We introduce some additional notation. Let

1

= =x=
b(x)=1x forc=x=1,

0 otherwise,

where 0<c¢ <1, and let
1 =
(x)=—— sxkp(xk).
¢ p(x) kgo DiSkX P
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Observe that

c X 1 x
7 1_c+1_cs¢(x)sl+c . for O=x=1.

Proof of Theorem 1. Suppose without loss in generality that H =0, i.e., that
5,=0 for n=0,1,....

Casg 1. Suppose (3) holds. Then, by (7),
2
lim sup Y(x) = <1+1) lim a'(x)—1 lim —= p(x) o(x?)= (1+1)s—£=s;
x—>1- x—1— C x—>1— ( ) C C

and similarly liminf,_,,_ ¢(x) =s. It follows that lim,_,,_ (x)=s, and there-
fore that

_1 5
p(c'™) S
Taking s, =1 for k=0, 1,..., we obtain

P,
p(c™ ™ 1

Plc™)=

DiSk = S.

(8)

Consequently ¢, — s.

CasE 2. Suppose (4) holds. Then (see [3, Theorem 207]),
1
y.m=L tmdx(t) for m=0,1,...,

where the function x is non-decreasing and bounded on [0, 1]. Further, since
w; >0, we can choose c €(0, 1) to be such that x is continuous at ¢ and

d
azj 2. (O
.t
Then, for m=0,1, ...,
1 ¢ Kk mk _ p(XMH) 1
Sx x ox"HY->u,s as x—>1-;
p(x) 2 P p(x) Hom

and so, for any polynomial a(x)=ay+a;x+---+a,x™,

1

p( ) = Z DrSicX a(xk)—)(aoﬂo‘*"hﬂl CF A )S

= sLla(t) dx(t) as x—1—.

Since yx is continuous at c it is readily demonstrated that given £ >0, there are
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polynomials a(x), b(x) such that
a(x)=¢(x)=b(x) for 0=x=1 and L (b(t)—a(®)) dx(t)<e.

It follows that

1 1
lim ¢(x)= sL & (t) dx(t) = sj de(t) = sa.
x—>1— c
Hence
1
Plc'™) =p(C1/n) Z DicSic = S

and, taking s, =1 for k=0,1,...,
P
p(clln)
Thus t, — s.
This completes the proof of Theorem 1.

Proof of Theorem 2. First we note that, for 0<x <1, m =1 we have, by (5)
and (2),

0<p(x)—p(x™*")= Z px“(1-x*)=m(1-x) Z kp,x*

k=0

= o((1—x)P(x))
=o(p(x)) as x—1-—.

Since p(x) — o as x — 1—, it follows that

. p(xm+1)
) xl_l)l’{l_ _(x) 1 for m=1.

Further, by (7), we have that, for 0<x <1,

1 =

Ylx)=——= (%) .= Pic (S +i)x ¢(xk)"——_ Z D YiX <b(xk)
YU\ W U T RS S -
= (142)o 0= o T e &, P (=Y

- 1 1, p(x) 1-x
= (14 Jotw- ot B o o

Therefore, by (2), (6), and (9), there is a constant M such that

lim sup Y(x) =< (1+1)s—E+M=s+M<oo.
c

x—1—
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Similarly

lim inf (x) > —oc;

x—1—

and hence ¢(x) = O(1) for 0<x <1. It follows that

1 n
vle") =2 2 Z pis = O(1),
and hence, since (8) is a consequence of (9), that
(10) t.=0();

Since

(1-x) Y, Px*= Y pesx* for 0<x<1,
k=0

k=0

we have, by (2), that

(11) a-(s)-—m Z Pitx*—>s as x—1-.

Next, by (2) and (9),

. P(x™Y . p(x™) 1-x 1
(12) xlil?— P(x) <ow p(x) 1-x™" m+1

It follows from (10), (11) and (12), by Case 2 of Theorem 1, that

form=0,1,....

(13) u, - L Z P, —s, where Q.= Z P..
an =0 k=0

Further, by (5), (6) and (10), we have that, for n=1,

Pn Dn YnPn Y
_ —q I _ s _r
=158, "p_ [ 1Pn P — b 1P n

for some positive constant vy. Thus, for m >n>1,

btz —y 3, E>—710g—

k=n+1

and so

14 lim inf(t,, —t,)=0 when m>n-—>o and %—» 1.
Now, by (5),
nP,—(n—-1)P,_,=P,+(n—1)p,~P,
and therefore nP, ~ Q,.
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It follows that, for m >n(1+8§), §>0,

Q, 1 & P, énP,
15) ===— P+1=z-"(m—n)+1=z—"+1—>1+6 as n—ox
. QZ =g, mm Q
Suppose without loss in generality that s =0, i.e., u, — 0. It follows from
(14) that, given £ >0, there are positive numbers n,, 8 such that t, —t,>—¢
when m>n>n, and (m/n)<1+28. Consequently if m, n satisfy these condi-
tions we have, by (13), that

n

(t,—#) Z P = Z Pt = u,,Q,, —u,Q, =(t,, +¢) Z Py

k=n+1 k=n+1 k=n+1
and hence that
u,,Q,, —u,Q, U, — U,
16 t,—e=—m=m m—y, +— =t, +e.
(16) *=70.—a, "' o)-1- "

Letting m, n — o subject to 1+ 8 <(m/n)<<1+28, it follows from (15) that

1

@Jja)-1- 0w

and hence from (16) that
limsupt,<e and liminft, =—e¢.

Therefore ¢, — 0.
This completes the proof of Theorem 2.

REMARK. A trivial modification of the proof of Theorem 1, and of the part of
the proof of Theorem 2 up to and including (10), shows that the theorems
remain valid if in each the hypothesis “s, — s(J,)” is replaced by “o(x) = O(1)
for 0<x<1” and the conclusion “‘s, — s(M,)” by “t, = O(1)”.

3. Other theorems. The following two theorems give simple conditions
sufficient for (3) or (4) to hold.

THEOREM 3. Let

(17) Pn - Pn+1'
@) If
(18) Pn -~ P2n7
then (3) holds.
(i) If
(19) lim lf“ =Um_1>0 form=1,2,..., where {u,,} is totally montone,

n—o L nm

then (4) holds.
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TueoREM 4. Let p, >0 for n=0,1,..., and let
(20) Dn ™~ DPn+1-
@ If
(21) Pn ™~ 2D2n
then (3) holds.
(i) If
(22) lim e _ Miy_1>0 form=1,2,..., where {u,,} is totally monotone,

n—w Dpm

then (4) holds.

Proof of Theorem 3. We shall prove Part (ii). By (17) and (19), we have
that, when x — 1—,

o

Pa™=Y 2np x oy, Y Pox™

n
n=0 an n=0

~Er Yy P =—“'r';l'1 P(x).

Hence, by (2),

tim 200 _ gy PO 12xT
x—>1— p(x) x—1— P(x) 1—x

= Km-1-

This establishes Part (ii). The proof of Part (i) is similar but simpler.

Theorem 4 can be proved in the same way, or by first establishing the
following simple implications: (20) = (17); (20) and (21)=> (18); (20) and
(22) = (19).

Added December 15, 1980. It has been brought to the author’s attention that
Case 1 of Theorem 1 appears as Theorem 6 in a paper by B. Kwee, “On
generalized logarithmic methods of summation”, J. Math. Anal. Appl. 35
(1971), 83-89. His proof is somewhat more complicated than the one herein
and should be corrected by the replacement of certain instances of ‘“lim” by
“lim sup” or “lim inf”.
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