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POWER INTEGRAL BASES
IN COMPOSITS OF NUMBER FIELDS

ISTVAN GAAL

ABSTRACT. Inthe present paper we consider the problem of finding power integral
basesin number fieldswhich are composits of two subfieldswith coprime discriminants.
Especially, we consider imaginary quadratic extensions of totally real cyclic number
fields of prime degree. As an example we solve the index form equation completely in
atwo parametric family of fields of degree 10 of this type.

1. Introduction. Let K be an algebraic number field of degree n with integral
basis {b; = 1,by,..., b,} and discriminant Dk. The discriminant of the linear form

L(X) = xoby, .. ., Xnbn can be rewritten in the form

o Di(¥e. - - %) = (Ik(¥e. - - - . %)) Dk

Theindex form Ik (xz, . . . . Xn) corresponding to theintegral basis{b; = 1, by, ... . by} of

K is ahomogeneous polynomial of degree n(n — 1) /2 with rational integer coefficients.
Obviously, an algebraic integer

a =Xy +xbo+--- +x,b

generates a power integral basis {1, a, ..., o} if and only if x; € Z and (%o, . . ., %)
is asolution of the index form equation

Ik(X2,.... %) ==£1 inxy,..., X € 7.

Hence, to determine power integral bases (cf. Hasse's problem) one has to solve the
aboveindex form equation.

Algorithms for the resolution of index form equations in cubic fields were given by
Gaal and Schulte[9], and in quartic fields by Gaal, Peth6 and Pohst [5], [6]. For certain
sextic fields see Gaal [3], [4] and Gaal and Pohst [7].

It has turned out that for higher degree number fields the resolution of index form
equationsbecomesvery difficult because of the high degree and the number of variables.
For this reason, the results of Section 2 of this paper can be very useful. We consider
index form equations over fields which are composits of two subfields with coprime
discriminants. For such fields we derive an important consequence of the index form
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equation, which throws also some light on the connection of the solutions of the index
form equation in the composite field with the solutions of theindex form equation in the
subfields.

In Section 3 we specialize the general results of Section 2 to composits of imaginary
guadratic fields with totally real cyclic fields of prime degree. For such fields we reduce
the resolution of the index form equation in the composite field to the resolution of the
index form equation in the totally real cyclic subfield. Our arguments have something
common with the argument of [4] wherewe considered compositsof imaginary quadratic
fields with totally real cubic fields.

As an application of the explicit results of Section 3, in Section 4 we compose imag-
inary quadratic fields with a totally real cyclic quintic family of fields, first considered
by Emma Lehmer [11]. Recently Gadl and Pohst [8] solved the index form equation
completely in this quintic family. Using their result we solve completely the index form
equation in the composite field of degree 10. We show that none of the fieldsin thistwo
parametric family admits a power integral basis.

2. Power integral basesin composits of number fieldsof coprimediscriminants.
Let L beanumber field of degreer withintegral basis{l; = 1.1, . ..., } and discriminant
D.. Denote the index form corresponding to the integral basis {l; = 1,1,...,I;} of L
by IL(X2,....%). Similarly, let M be a number field of degree s with integral basis
{my =1, mp,....ms} and discriminant Dy. Denote the index form corresponding to the
integral basis {m; = 1, Mg, ....m} of M by Iy(Xz, . . . . Xs).

Assume, that the discriminants are coprime, that is

) (DL.Dw) = 1.

Denote by K = LM the composite of L and M. Asit isknown (cf. [12]) the discriminant
of Kis

() Dk = DDy,

and an integral basis of K is given by
(4) {im:1<i<r1<j<s}h
Hence, any integer o of K can be represented in the form
r S
(5) a =302 Xilim
i=1 j=1

withx; € Z(1<i<r,1<j<ys).
In this section we formulate a general necessary condition for o € Z to be generator
of apower integral basis of K.

THEOREM 1. Assume (D, Dy) = 1. If « of (5) generates a power integral basisin
K =LM then

(6) NM/Q(lL(;me ..... ;xﬂm)) =+1
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and

@) NL/Q(|M (Izr; xioliv ... Zx.sl ))

PrROOF. Assumethat o generates a power integral basisin K, that is the coefficients
xij satisfy the index form equation corresponding to the basis (4). We show that in the
present situation the index form corresponding to the integral basis (4) of K factorizes,
and two factorsimply equations (6) and (7). The conjugates of « are given by

r s
oPa = > Xij|i(p) rq(q)

i=1j=1
A<p<r,1<g<s).Wehave

1

- I (oPra) — o(P2%R)) = 47
IDk] (1L)<(pr.a)<(p2: ) <(r.9)

wherethe pairsare ordered lexicographically. A factor of the aboveindex formisobtained
by building the symmetric polynomial

0T 0 —at =[] T (33096 —19m))

n=11<i<j<r n=11<i<j<r ‘p=1¢=1
= £111<£[;<r(§1((lg) - |(J))pr ”m)
(8) = (M)SNWQ(IL(;xzqu ..... gxrqmq))
Similarly,

[ TT @ —a®) =11 T (X090 —10m)x)

n=11<i<j<s n=11<i<j<s ‘p=1¢=1
- El<g<s(q 1<(mg) n‘ﬂ))ZXp I(”)))
9) = (M)WL/QOM(Z Xpolp. - . ,jjxpslp))
p=1 =1

Thefactors containing the discriminants D, , Dy cancel by dividing by /| Dk | becauseof
(3). The remaining two polynomials have integer coefficients. Since these two factors,
aswell asthe remaining factor of the index form attain integer values, and their product
isequal to 1, hence (8) and (9) imply (6) and (7) respectively. ]
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3. Power integral basesin imaginary quadratic extensions of totally real cyclic
fields of prime degree. In the following p will denote an odd prime. Let L be a
totally real cyclic number field of degree p, with integral basis {l1 = 1,15.....ly}, and

discriminant D,_. Denote by I (X2, . .., X%o) the index form corresponding to the integral

basis {l, = 1.1,,..., Ip}. Also, let 0 < m € Z be square free with m # 1,3 and let

M = Q(iy/m). Anintegral basisof M is given by {1, w} with

_[@+iym/2 if -m=1mod4
(10) B { iy/m if —-m=2.3mod4

Thediscriminant of M is

—m if —m= 1mod4

(11) Du = { —4m if —-m= 2,3mod4

As above, we assumethat (D, Dy) = 1. Consider the field K = LM. The integers of K
can be represented in the form

(12 a=xXp+Xolo+ - +Xlp + y1w +Yowly + - - + Ypwlp
withx.y, € Z, (1 <j <p).

THEOREM 2. Assumem # 1,3 and (D, Dy) = 1. If theinteger o of (12) generatesa
power integral basisin K = LM, then

(13) ||_(X2 ..... Xp) =+1,
yl:j:landyzz :yp:()_

In other words, o must be of the form o = 8 + w with 3 € L, where 3 generates a
power integral basisin L.

The converse of the assertion is of course not true: elements of the above type do not
necessarily generate a power integral basisin K.

Before proving the theorem, we formulate an important consequence of it:

COROLLARY 1. Letp > 5and assumeasabovem # 1, 3and (D, Dy) = 1. If Lisnot
the maximal real subfield of a cyclotomic field, then the composite field K = LM admits
no power integral bases.

PROOF OF THE COROLLARY. In view of aresult of M. N. Gras[10], the cyclic field
L of prime degree p > 5 can only have power integral bases if L is the maximal real
subfield of a cyclotomic field. Hence equation (13) is unsolvablein other cases. ]

Now we turn to the proof of Theorem 2.
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PROOF OF THEOREM 2. Assumethat o of (12) generates apower integral basisin K.
Set X; = x; + wy, for 2 <j < p. Asan application of Theorem 1 we have

(14) Ny o(IL(Xa, .. .. Xp)) = £1
(15) Ny joyr +VYala +- -+ +yplp) =£1

By our assumption on m, the unit group of M istrivial, hence equation (14) implies
(16) (X2, ..., Xp) = 1.

We shall now show, that the unit groups of K and L coincide. Obviously, the unit
ranks are equal. By considering those n for which ¢(n) divides 2p = [K : Q], one can
see, that if m # 1, 3 and K is not the cyclotomic field of degree 2p, wherep; = 2p+1
is prime, then apart from +1 there are no other torsion units in K. The assumption
(DL, Dwm) =1 excludesthat K is the above cyclotomic field, for in that case both D; and
Dm were divisible by p; = 2p + 1. Denoteby ey, . .. , ep—1 the fundamental unitsin L. It
is sufficient to show that for any 5 of the form

(17) n=de- 52”_’;

with0 < g <1(1 <j < p— 1), thesquareroot of 1 isnot contained in K. Suppose on
the contrary that , /17 € K. Thenthereexist 7,é € L suchthat

Vi1 =7 +6iy/m
that is
7 =72 — mb% + 2iv8/m.

By comparing the imaginary parts, it follows that 76 = 0. 1f = Othen /s =7 € L
contradicts to the fact, that 1, ..., ep—1 are fundamental units in L. Assume now that

v =0,andletd € Z be such that 6o = db isinteger in L. Then we get

hence
_E_%
m-
isan integer in Z becausethe right hand sideis an integer. By taking norm it follows that

= (N, o0

which is impossible for p > 2 except for a = +£1 in which case = +63 contradicts
again to thefact that ¢4, . . . , ep—1 are fundamental unitsin L.

Consider now equation (16). As it is known, the index form I (Xo, ..., Xp) can be
factorized into linear factorsf;(Xo. . ... Xo) (1 <j < p(p— 1)/2) with algebraic integer
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coefficients. The field L being cyclic, the coefficients of the linear forms are contained
inL. If o isagenerator of apower integral basisin K, then

p(p—1)/2

H fj(Xz....,Xp) =+1.

=1

Hence each linear factor is a unit in K. But the unit groups of K and L coincide, hence
each linear factor isalso aunitin L:

i(Xe..... %) =n (1<j<pp—1)/2).

with some units n; € L. Subtracting the conjugate over M of each linear factor from
itself we obtain

fiyz.....¥p) =0 (1<j<p(p—1)/2).
Asit is known, the rank of the system of linear formsfj, 1 <j < p(p—1)/2isp—1,
hence the above system of equationsimpliesy, = - - - =y, = 0. By thisand equation (16)
we get (13). Also, y; = +1 follows from (15). ]

4. An example. Let n be an integer parameter and consider the family of totally
real cyclic quintic fields L = Q(«4) generated by aroot of the polynomial
(18)  fa(¥) = x> + ¢ — (2n® + 6n? + 10n + 10)x®
+(n* +5n% + 11n? + 15n + 5)x? + (n° + 4n? + 10n + 10)x + 1.

This family of fields was first considered by Emma Lehmer [11], then by Schoof and
Washington [13] and by Darmon [2]. Let

c=n*+5n°+15n°+25n+25, d=n°+5n°+10n+7.

In arecent paper Gaél and Pohst [8] proved:

LEMMA 1 ([8]). Assumethat c is square-free. Then an integral basis of L is given by
{1, 9,92, 93, ws} with

ws = %((n +2) +(2n° +9n +9)Y + (2 + 4n— 1)9° + (—3n — 4)0° + 9%,

thediscriminant of L is
D = C4.

For n # —1, —2 thereexist no power integral basesin L. For n = —1, —2 we get the same
field. For n = —1 all solutions of the index form equation corresponding to the integral
basis {1, 9,92, 9%, 9%} of L are (Xp. Xa, X4, Xs) = (0,1,0,0), (0,3,0,—1), (0,4,0,—1),
1,-4.0,1, (1,-3,0,1), (1,—-2,-1.1), (1,-1,—-1,0), (1.0.0.0), (1,1,0,0),
(2,-1,-1.0), (2,0.—-1.0), (2,1,—-2.-1), (2,1,—-1,0), (2,3,—1,-1), (2,4,—1,-1),
(2,8,-1,-2),(3,—-1,-1,0),(3.0.—1.0),(3,3,—1,-1), (3.4, —1,-1), (4, —4, -1, 1),
(5,—11,-1.3), (5.2, —2,-1), (5.13,—2,—-3), (11,5, —4, —2).
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Let 0 < m € Z be square freewith m # 1, 3 and let M = Q(i,/m). Let w and Dy be
the sameasin (10), (11).

THEOREM 3. Assume that m # 1, 3. Suppose ¢ is sguare-free and coprime to Dy.
Then the field K = Q(9. i,/m) contains no power integral bases.

PrOOF. Under the above conditions the discriminants of L and M are coprime. An
integral basis of K is given by {1, 9, 92, 93, ws, w, wi, w2, WI3, wws} where w is the
sameasin (10).

Denote by I (X2,...,%) the index form corresponding to the integer basis
{1.9, 92,93, ws} of L. By Theorem 2, if

a = X+ X0 + Xg0? + Xa0° + Xows + Yaw + Yowd) + yzwi? + Yaw® + Yswiws
(%, Vi € Z) generates a power integral basisin K, then
IL(X2, ..., %) =%1 inXp, X3, X4, X5 € Z

By Lemma 1 this equation is only solvable for n = —1, —2. Hence K can only have
power integral basesfor n = —1, —2. Since these are the samefields, let us fix n = —1.
Again applying Theorem 2, if o € K generates a power integral basis, then

a = Xg + X0 + Xg9? + Xq9° + Xsws + w

where x; € Z is arbitrary and (X2, X3, X4, Xs) is listed in Lemma 1. By using KANT
(cf. [1]) we tested these values of « directly and obtained the assertion. ]
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