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POWER INTEGRAL BASES
IN COMPOSITS OF NUMBER FIELDS

ISTVÁN GAÁL

ABSTRACT. In the present paper we consider the problem of finding power integral
bases in number fields which are composits of two subfields with coprime discriminants.
Especially, we consider imaginary quadratic extensions of totally real cyclic number
fields of prime degree. As an example we solve the index form equation completely in
a two parametric family of fields of degree 10 of this type.

1. Introduction. Let K be an algebraic number field of degree n with integral
basis fb1 = 1Ò b2Ò    Ò bng and discriminant DK. The discriminant of the linear form
L(x) = x2b2Ò    Ò xnbn can be rewritten in the form

DK(x2Ò    Ò xn) =
�
IK(x2Ò    Ò xn)

�2
DK(1)

The index form IK(x2Ò    Ò xn) corresponding to the integral basis fb1 = 1Ò b2Ò    Ò bng of
K is a homogeneous polynomial of degree n(n� 1)Û2 with rational integer coefficients.
Obviously, an algebraic integer

ã = x1 + x2b2 + Ð Ð Ð + xnbn

generates a power integral basis f1Ò ãÒ    Ò ãn�1g if and only if x1 2 Z and (x2Ò    Ò xn)
is a solution of the index form equation

IK(x2Ò    Ò xn) = š1 in x2Ò    Ò xn 2 Z
Hence, to determine power integral bases (cf. Hasse’s problem) one has to solve the
above index form equation.

Algorithms for the resolution of index form equations in cubic fields were given by
Gaál and Schulte [9], and in quartic fields by Gaál, Pethő and Pohst [5], [6]. For certain
sextic fields see Gaál [3], [4] and Gaál and Pohst [7].

It has turned out that for higher degree number fields the resolution of index form
equations becomes very difficult because of the high degree and the number of variables.
For this reason, the results of Section 2 of this paper can be very useful. We consider
index form equations over fields which are composits of two subfields with coprime
discriminants. For such fields we derive an important consequence of the index form
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equation, which throws also some light on the connection of the solutions of the index
form equation in the composite field with the solutions of the index form equation in the
subfields.

In Section 3 we specialize the general results of Section 2 to composits of imaginary
quadratic fields with totally real cyclic fields of prime degree. For such fields we reduce
the resolution of the index form equation in the composite field to the resolution of the
index form equation in the totally real cyclic subfield. Our arguments have something
common with the argument of [4] where we considered composits of imaginary quadratic
fields with totally real cubic fields.

As an application of the explicit results of Section 3, in Section 4 we compose imag-
inary quadratic fields with a totally real cyclic quintic family of fields, first considered
by Emma Lehmer [11]. Recently Gaál and Pohst [8] solved the index form equation
completely in this quintic family. Using their result we solve completely the index form
equation in the composite field of degree 10. We show that none of the fields in this two
parametric family admits a power integral basis.

2. Power integral bases in composits of number fields of coprime discriminants.
Let L be a number field of degree r with integral basis fl1 = 1Ò l2Ò    Ò lrg and discriminant
DL. Denote the index form corresponding to the integral basis fl1 = 1Ò l2    Ò lrg of L
by IL(x2Ò    Ò xr). Similarly, let M be a number field of degree s with integral basis
fm1 = 1Òm2Ò    Òmsg and discriminant DM. Denote the index form corresponding to the
integral basis fm1 = 1Òm2Ò    Òmsg of M by IM(x2Ò    Ò xs).

Assume, that the discriminants are coprime, that is

(DLÒDM) = 1(2)

Denote by K = LM the composite of L and M. As it is known (cf. [12]) the discriminant
of K is

DK = Ds
LDr

M(3)

and an integral basis of K is given by

flimj : 1 � i � rÒ 1 � j � sg(4)

Hence, any integer ã of K can be represented in the form

ã =
rX

i=1

sX
j=1

xijlimj(5)

with xij 2 Z (1 � i � rÒ 1 � j � s).
In this section we formulate a general necessary condition for ã 2 ZK to be generator

of a power integral basis of K.

THEOREM 1. Assume (DLÒDM) = 1. If ã of (5) generates a power integral basis in
K = LM then

NMÛQ

 
IL

� sX
i=1

x2imiÒ    Ò
sX

i=1
xrimi

�!
= š1(6)
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and

NLÛQ

 
IM

� rX
i=1

xi2liÒ    Ò
rX

i=1
xisli

�!
= š1(7)

PROOF. Assume that ã generates a power integral basis in K, that is the coefficients
xij satisfy the index form equation corresponding to the basis (4). We show that in the
present situation the index form corresponding to the integral basis (4) of K factorizes,
and two factors imply equations (6) and (7). The conjugates of ã are given by

ã(pÒq) =
rX

i=1

sX
j=1

xijl
(p)
i m(q)

j

(1 � p � rÒ 1 � q � s). We have

1qjDKj
Y

(1Ò1)�(p1Òq1)Ú(p2Òq2)�(rÒs)
(ã(p1Òq1) � ã(p2 Òq2)) = š1

where the pairs are ordered lexicographically. A factor of the above index form is obtained
by building the symmetric polynomial

sY
n=1

Y
1�iÚj�r

(ã(iÒn) � ã(jÒn)) =
sY

n=1

Y
1�iÚj�r

� rX
p=1

sX
q=1

(l(i)p m(n)
q � l(j)p m(n)

q )xpq

�

=
sY

n=1

Y
1�iÚj�r

 rX
p=1

�
(l(i)p � l(j)p )

sX
q=1

xpqm(n)
q

�!

= (
q
jDLj)sNMÛQ

 
IL

� sX
q=1

x2qmqÒ    Ò
sX

q=1
xrqmq

�!
(8)

Similarly,

rY
n=1

Y
1�iÚj�s

(ã(nÒi) � ã(nÒj)) =
rY

n=1

Y
1�iÚj�s

� rX
p=1

sX
q=1

(l(n)
p m(i)

q � l(n)
p m(j)

q )xpq

�

=
rY

n=1

Y
1�iÚj�s

 sX
q=1

�
(m(i)

q � m(j)
q )

rX
p=1

xpql(n)
p

�!

= (
q
jDMj)rNLÛQ

 
IM

� rX
p=1

xp2lpÒ    Ò
rX

p=1
xpslp

�!
(9)

The factors containing the discriminants DL, DM cancel by dividing by
qjDKj because of

(3). The remaining two polynomials have integer coefficients. Since these two factors,
as well as the remaining factor of the index form attain integer values, and their product
is equal to š1, hence (8) and (9) imply (6) and (7) respectively.
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3. Power integral bases in imaginary quadratic extensions of totally real cyclic
fields of prime degree. In the following p will denote an odd prime. Let L be a
totally real cyclic number field of degree p, with integral basis fl1 = 1Ò l2Ò    Ò lpg, and
discriminant DL. Denote by IL(x2Ò    Ò xp) the index form corresponding to the integral
basis fl1 = 1Ò l2Ò    Ò lpg. Also, let 0 Ú m 2 Z be square free with m 6= 1Ò 3 and let
M = Q(i

p
m). An integral basis of M is given by f1Ò °g with

° =
(

(1 + i
p

m)Û2 if �m � 1 mod 4
i
p

m if �m � 2Ò 3 mod 4
(10)

The discriminant of M is

DM =
(�m if �m � 1 mod 4
�4m if �m � 2Ò 3 mod 4

(11)

As above, we assume that (DLÒDM) = 1. Consider the field K = LM. The integers of K
can be represented in the form

ã = x1 + x2l2 + Ð Ð Ð + xplp + y1° + y2°l2 + Ð Ð Ð + yp°lp(12)

with xjÒ yj 2 Z, (1 � j � p).

THEOREM 2. Assume m 6= 1Ò 3 and (DLÒDM) = 1. If the integer ã of (12) generates a
power integral basis in K = LM, then

IL(x2Ò    Ò xp) = š1Ò(13)

y1 = š1 and y2 = Ð Ð Ð = yp = 0.

In other words, ã must be of the form ã = å š ° with å 2 L, where å generates a
power integral basis in L.

The converse of the assertion is of course not true: elements of the above type do not
necessarily generate a power integral basis in K.

Before proving the theorem, we formulate an important consequence of it:

COROLLARY 1. Let p ½ 5 and assume as above m 6= 1Ò 3 and (DLÒDM) = 1. If L is not
the maximal real subfield of a cyclotomic field, then the composite field K = LM admits
no power integral bases.

PROOF OF THE COROLLARY. In view of a result of M. N. Gras [10], the cyclic field
L of prime degree p ½ 5 can only have power integral bases if L is the maximal real
subfield of a cyclotomic field. Hence equation (13) is unsolvable in other cases.

Now we turn to the proof of Theorem 2.
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PROOF OF THEOREM 2. Assume that ã of (12) generates a power integral basis in K.
Set Xj = xj + °yj for 2 � j � p. As an application of Theorem 1 we have

NMÛQ

�
IL(X2Ò    ÒXp)

�
= š1(14)

NLÛQ(y1 + y2l2 + Ð Ð Ð + yplp) = š1(15)

By our assumption on m, the unit group of M is trivial, hence equation (14) implies

IL(X2Ò    ÒXp) = š1(16)

We shall now show, that the unit groups of K and L coincide. Obviously, the unit
ranks are equal. By considering those n for which ß(n) divides 2p = [K : Q], one can
see, that if m 6= 1Ò 3 and K is not the cyclotomic field of degree 2p, where p1 = 2p + 1
is prime, then apart from š1 there are no other torsion units in K. The assumption
(DLÒDM) = 1 excludes that K is the above cyclotomic field, for in that case both DL and
DM were divisible by p1 = 2p + 1. Denote by ¢1Ò    Ò ¢p�1 the fundamental units in L. It
is sufficient to show that for any ë of the form

ë = š¢a1
1 Ð Ð Ð ¢ap�1

p�1(17)

with 0 � aj � 1 (1 � j � p � 1), the square root of ë is not contained in K. Suppose on
the contrary that

pë 2 K. Then there exist çÒ é 2 L such that

pë = ç + éipm

that is
ë = ç2 � mé2 + 2içépm

By comparing the imaginary parts, it follows that çé = 0. If é = 0 then
pë = ç 2 L

contradicts to the fact, that ¢1Ò    Ò ¢p�1 are fundamental units in L. Assume now that
ç = 0, and let d 2 Z be such that é0 = dé is integer in L. Then we get

ë = �m
é2

0

d2

hence

a = �d2

m
=
é2

0

ë
is an integer in Z because the right hand side is an integer. By taking norm it follows that

ap = š�NLÛQ(é0)
�2

which is impossible for p Ù 2 except for a = š1 in which case ë = šé2
0 contradicts

again to the fact that ¢1Ò    Ò ¢p�1 are fundamental units in L.
Consider now equation (16). As it is known, the index form IL(X2Ò    ÒXp) can be

factorized into linear factors fj(X2Ò    ÒXp) (1 � j � p(p � 1)Û2) with algebraic integer
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coefficients. The field L being cyclic, the coefficients of the linear forms are contained
in L. If ã is a generator of a power integral basis in K, then

p(p�1)Û2Y
j=1

fj(X2Ò    ÒXp) = š1

Hence each linear factor is a unit in K. But the unit groups of K and L coincide, hence
each linear factor is also a unit in L:

fj(X2Ò    ÒXp) = ëj

�
1 � j � p(p � 1)Û2

�
with some units ëj 2 L. Subtracting the conjugate over M of each linear factor from
itself we obtain

fj(y2Ò    Ò yp) = 0
�
1 � j � p(p � 1)Û2

�
As it is known, the rank of the system of linear forms fj , 1 � j � p(p � 1)Û2 is p � 1,
hence the above system of equations implies y2 = Ð Ð Ð = yp = 0. By this and equation (16)
we get (13). Also, y1 = š1 follows from (15).

4. An example. Let n be an integer parameter and consider the family of totally
real cyclic quintic fields L = Q(£) generated by a root of the polynomial

fn(x) = x5 + n2x4 � (2n3 + 6n2 + 10n + 10)x3(18)

+ (n4 + 5n3 + 11n2 + 15n + 5)x2 + (n3 + 4n2 + 10n + 10)x + 1
This family of fields was first considered by Emma Lehmer [11], then by Schoof and
Washington [13] and by Darmon [2]. Let

c = n4 + 5n3 + 15n2 + 25n + 25Ò d = n3 + 5n2 + 10n + 7
In a recent paper Gaál and Pohst [8] proved:

LEMMA 1 ([8]). Assume that c is square-free. Then an integral basis of L is given by
f1Ò £Ò £2Ò £3Ò °5g with

°5 =
1
d

�
(n + 2) + (2n2 + 9n + 9)£ + (2n2 + 4n� 1)£2 + (�3n � 4)£3 + £4

�Ò
the discriminant of L is

DL = c4
For n 6= �1Ò �2 there exist no power integral bases in L. For n = �1Ò �2 we get the same
field. For n = �1 all solutions of the index form equation corresponding to the integral
basis f1Ò £Ò £2Ò £3Ò £4g of L are (x2Ò x3Ò x4Ò x5) = (0Ò 1Ò 0Ò 0), (0Ò 3Ò 0Ò �1), (0Ò 4Ò 0Ò �1),
(1Ò �4Ò 0Ò 1), (1Ò �3Ò 0Ò 1), (1Ò �2Ò �1Ò 1), (1Ò �1Ò �1Ò 0), (1Ò 0Ò 0Ò 0), (1Ò 1Ò 0Ò 0),
(2Ò �1Ò �1Ò 0), (2Ò 0Ò �1Ò 0), (2Ò 1Ò �2Ò �1), (2Ò 1Ò �1Ò 0), (2Ò 3Ò �1Ò �1), (2Ò 4Ò �1Ò �1),
(2Ò 8Ò �1Ò �2), (3Ò �1Ò �1Ò 0), (3Ò 0Ò �1Ò 0), (3Ò 3Ò �1Ò �1), (3Ò 4Ò �1Ò �1), (4Ò �4Ò �1Ò 1),
(5Ò �11Ò �1Ò 3), (5Ò 2Ò �2Ò �1), (5Ò 13Ò �2Ò �3), (11Ò 5Ò �4Ò �2).
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Let 0 Ú m 2 Z be square free with m 6= 1Ò 3 and let M = Q(i
p

m). Let ° and DM be
the same as in (10), (11).

THEOREM 3. Assume that m 6= 1Ò 3. Suppose c is square-free and coprime to DM.
Then the field K = Q(£Ò ipm) contains no power integral bases.

PROOF. Under the above conditions the discriminants of L and M are coprime. An
integral basis of K is given by f1Ò £Ò £2Ò £3Ò °5Ò °Ò °£Ò °£2 Ò °£3Ò °°5g where ° is the
same as in (10).

Denote by IL(x2Ò    Ò x5) the index form corresponding to the integer basis
f1Ò £Ò £2Ò £3Ò °5g of L. By Theorem 2, if

ã = x1 + x2£ + x3£2 + x4£3 + x5°5 + y1° + y2°£ + y3°£2 + y4°£3 + y5°°5

(xiÒ yi 2 Z) generates a power integral basis in K, then

IL(x2Ò    Ò x5) = š1 in x2Ò x3Ò x4Ò x5 2 Z
By Lemma 1 this equation is only solvable for n = �1Ò �2. Hence K can only have
power integral bases for n = �1Ò �2. Since these are the same fields, let us fix n = �1.
Again applying Theorem 2, if ã 2 K generates a power integral basis, then

ã = x1 + x2£ + x3£2 + x4£3 + x5°5 š °
where x1 2 Z is arbitrary and (x2Ò x3Ò x4Ò x5) is listed in Lemma 1. By using KANT
(cf. [1]) we tested these values of ã directly and obtained the assertion.
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