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A COMPACTIFICATION WITH ¢-CONTINUOUS
LIFTING PROPERTY

D. C. KENT AND G. D. RICHARDSON

1. Let X be a topological space, and let X’ be the set of all non-convergent
ultrafilters on X. f A C X, let A’ = {F € X':4 € F },and 4* =
A\U A’ If & is a filter on X such that & ' # @ for all F € &%, then
let & ' be the filter on X* generated by {F/:F € % };let % * be the
filter on X* generated by {F*:F ¢ % }. If % ' exists then % * =
F N F ’; otherwise, F * = F.

A convergence is defined on X* as follows: If x € X, then a filter
A —x in X* if and only if & =¥ x(x)* where Vy(x) is the X-
neighborhood filter at x; if ¥ € X', then & — % in X* if and only if
A = 9* The resulting space X* is a pretopological space and the X*-
neighborhood filter of « is denoted by ¥ x«(a); if @ = x € X, then
YV xs(e) = ¥ x(x)* and if a = G € X/, then ¥ x+(a) = 9* The
space X* is not topological in many standard examples. It is shown in
[3] that the space X* is compact (meaning that each ultrafilter is con-
vergent) and X is a subspace of X*. Indeed, X* is a convergence space
compactification of X (see (3]).

In this paper, we obtain a toplogical compactification X* of X by
taking the ‘‘topological modification’” of X* (i.e., XA and X* have the
same underlying set, and XA has the finest topology coarser than X*).
The open sets for XA are obtained as follows: 4 © X* is open if and only
if @« € A implies 4 € ¥ x+«(a). We shall now show that XA is a com-
pactification of X, and give an explicit construction for an open base
for XA in terms of the open sets in X.

LeEMMA 1.1. If U is an open subset of X, then U* is open in XA, If
x € X, then ¥ xx(x) = ¥ x~(x) = ¥ x(x)*

Proof. Let a € U*. If a = x € U, then U € ¥ x(x) implies U* €
YV x@)*. Ifa =% € U, then U € G implies U* € ¥* Thus U* is an
X*-neighborhood of each of its elements, and hence open in XA, and the
first assertion is proved.

Since XA is coarser than X*,

Y xa(x) < Pxex) = ¥V x(x)*

But the first assertion of the lemma implies ¥ x~(x) = ¥ x(x)*, and
hence the second assertion is established.
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THEOREM 1.2. XA 1s a compactification of X.

Proof. Since X* is known to be a compactification of X, XA is com-
pact and X is dense in X’. The fact that X is a subspace of XA is an
immediate consequence of Lemma 1.

Sets of the form U* for U open in X will not, in general, form a base
for XA. We next describe another class of open sets in XA which enable
us to form a base for this topology.

If 4 is a non-empty subset of X, we define a neitghborhood function for A
to be a function s such that, for each x € 4, s(x) is an open neighborhood
of x in X. Let N(A) be the set of all neighborhood functions for 4. If
s € N(A4), define

W) = 4*U (U {s@x)*:x € 4}).
ProposITION 1.3. Under the assumption of the preceding paragraph
W(A) is open in XA,

Proof. Leta € W (A). lf a = x € W,(4) N X, then clearly x € s(y)*
for some y € A4, which is an X*-open subset of W (4) by Lemma 1. If
a=9 € W, (4)NX', and a € s(y)* for some y € A, then again
W,(4) is an XA-neighborhood of . Otherwise, ¥ € A*, which implies
A€ G and 4* € G* = ¥ x+(a); thus W, (4) € ¥ x+(a) and the
proof is complete.

ProposiTION 1.4. The collection
W ={W,(4):ACS X, 4 #0,sc N4)}
is a base for the topology of XN.

Proof. Let B < XA beopenanda € B. Ifa € BN X, then by Lemma
1 there is an X-open set U such thata € U*C B. Ifa = 9 ¢ BN X/,
then let A = B /M X. Since B is open in X?, there is for each x € 4 an
open neighborhood s(x) of x such that s(x)* C B. Also, since ¥ € B,
there is G € ¥ such that ¥* C B. Since G C 4, then if s’ denotes the
restriction of the neighborhood function s to G, it follows that a €
Wx' (G) g B.

COROLLARY 1.5. If a = G € X', then sets of the form
{(W(G):G € F,sc NG)}
form an open base for ¥ x~(a).
THEOREM 1.6. If X is T, then XN is T'.

Proof. Let « € XA and B= XA —{a}. If a=x€ X, then U =
X — {x} is X-open, and so B = U* is XA-open. Suppose « = G € X'.
If x € X, then there is an X-open neighborhood U of x such that U ¢ ¥,
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and x € UXC B. If = # € BN X', then choose F € # such that
F ¢ 9. 1f x € F, then as before there is an X-open neighborhood s(x)
of x such that s(x)* C B. Also, F ¢ G implies F* C B. Thus g8 ¢
W(F) C B, and B is X*-open.

2. We next consider f : X — V, where X and Y are topological spaces
and f is a continuous function. We first show that f can fail to have any
continuous extension to the respective compactification spaces, but that
a #-continuous extension always exists.

A function f: X — V is said to be 6-continuous (see [1]) at x € X if,
for each closed neighborhood W of f(x), there is a closed neighborhood
V of x such that (V) € W. Note that continuity always implies 6-con-
tinuity, and if ¥ is regular these concepts are equivalent.

Given f: X — ¥V, let A € X and B C Y. To minimize confusion, we
shall use A* to denote the ‘‘*-operation’’ relative to X, and B** to
denote the same operation relative to ¥; a similar convention will apply
to filters on X and Y, respectively.

Example 2.1. Let X be the set R of real numbers equipped with the
discrete topology. Let ¥ be the set R with a topological base consisting
of all open sets in the usual topology of R along with the set {{x}:x a
rational number}. Let f: X — ¥ be the identity map. We shall show that
there is no continuous function F:XA — YA which is an extension of f.

Let N be the set of natural numbers, and let 4 = {n7r:n € N}. For
each n € N, let (¥,m)men be a sequence of rational numbers which con-
verges in the usual topology on R to nw. Let B, = {x,,:m € N}, and
let % be a free ultrafilter on R which contains the set B = \U {B,:n € N}
and has the property that each F € % has an infinite intersection with
infinitely many B,’s (e.g. let % be an ultrafilter contaning {B —
U1 4, B — B,:n € N, 4, is a finite subset of B,}). Note that # ¢ Y7,
and since # has a filter base of Y-open sets, it follows from Corollary
1.5 that ¥ ya(F ) = F **

Suppose F:XA — YA is a continuous extension of f. From the fact
that ¥ y~(F ) = F ** it follows necessarily that F(% ) = %.If
U= R — A, then U* is XA-open, U* ¢ % * and ¥ * — % in XA,
It is also true that U** is YA-open and # € U**. But U** ¢ F(% *).
For by construction of %, (clyF) VA # @ for all F € %, and so
F(D*) N A** 5 @ for all D € #. It follows that F(.# *) does not
VA-converge to F(# ) = &, and so F is not continuous.

TueOREM 2.2. If f: X — Y is continuous, then there is a 6-continuous
extension F: XN — YA,

Proof. Let F:XAN — YA be any extension of f with the following
properties:
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(@) If ¥ ¢ X', and f(& ) converges in V, then F(% ) =y, where
y is any limit in ¥ of f(& ).

(b) If F € X' and f(&F ) € Y/, then F(F ) = f(F ).

Next, observe that if 4 is a closed subset of X, then 4* = X* —
(X — A)*is closed in X* by Lemma 1.1. This result, along with Propo-
sition 1.4, enables us to deduce that sets of the form (clyU)*, where U
is X-open and x € U, form a base of XA-closed neighborhoods at x € X,
and sets of the form (clxU)*, where U € ¥ is X-open, form an XA-
closed neighborhood base for 4 € X'.

Let « € XA and F(a) = 8. If «a = x € X, then F(a) = f(x) =y =
B € V;if Visany Y-open neighborhood of y, then (clyV)** is a basic
YA -closed neighborhood of ¥ in ¥A by our preceding discussion. By con-
tinuity of f, there is an X-open neighborhood U of x such that f(U) C V,
and it is easy to verify that

F((clxU)*) C (clyV)*-

Thus 6-continuity is established at all points @ in X.

If« = % € X', then 8 may belong to ¥ or ¥’, depending on whether
or not f(%) converges in V. If 8 =y ¢ V, and (clyV)** is a basic
VA-closed neighborhood of y in YA as described above, then 1V € f(%);
if U=/ f"1(V), then (clyU)* is a closed X?-neighborhood of « in XA
and, as before,

F((clx)*) € (cly V)**.

If 8 = f(%) € Y, then V can be chosen to be any Y-open set in f(%),
and the same argument repeated.

It follows that F is 6-continuous for all « € XA, and the proof is
complete.

CoROLLARY 2.3. If f:X — YV s continuous, and YN 1is regular, then
there is a continuous extension F: XN — YA,

COROLLARY 2.4. If XA is T, then XA = BX.

Proof. If V is a compact, T space, and f:X — V is continuous, then
Y = YA and, by Corollary 2.3, there is a continuous extension F':
XN — V. This extension is unique because YV is 7%, and so XA is the
largest T'» compactification of X; i.e., XA = 8X.

A T topological space X is defined to be a G-space if each non-con-
vergent ultrafilter has a filter base of closed sets. This condition (but
not the terminology) is due to Gazik [2], who showed that the pre-
topological compactification X* of a 7T's-topological space X is equivalent
to BX if and only if X is a G-space. When X* is a topological space,
X* = XA, Thusif X is a G-space, it follows from [2] that XA is equivalent
to BX.
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THEOREM 2.5. For a T topological space X, the following statements
are equivalent:

(1) X 15 a G-space.

(2) If & and G are distinct non-convergent ultrafilters on X, then there
are disjoint open sets U, V such that U € F, ¥V € G .

(3) XA is T,.

(4) XN s equivalent to BX.

Proof. (3) < (4). This was established in Corollary 2.4.

(1) = (4). This was established in the paragraph preceding the
theorem.

(3) = (1). If X is not a G-space, then there is # € X’ such that
cly F # F,andso thereisan ultrafilter ¥ 2 cly # suchthat ¥ = %
If & is the filter on XA generated by % , then # — % in XA, If G is
the filter on XA generated by ¥, then, because X7 is regular, ¥ — %
in XA. But either 9 € X', in which case ¥ — & = %, or else there is
x € X such that ¥ — x in X, in which case ¥ — x in XA; either way
there is a contradiction, since X? is assumed to be 7.

(3) = (2). Let &#, 9 ¢ X'. Since XA is T, it follows by Corollary
1.5 that there are disjoint sets of the form W (F) and W, (G), where
FEF,GeG. If U=W(F)NX and V = W,(G) N\ X, then U
and V satisfy the conditions of (2).

(2) = (3). Let a, B8 be distinct elements of XA. If @, 8 € X, then there
are disjoint X-open neighborhoods U and V of a and B, respectively,
and U*, V* are disjoint XA-open neighborhoods of these elements. If
a € X, 8 € X', then because X is T; there are disjoint X-open sets U
and V such that « € U and V € ¢ = 8, and again it follows that U*
and V* are disjoint XA-open neighborhoods of @ and 8. Finally, if « = #
and 8 = ¥ and both in X, then the sets U, V given in (2) yield disjoint
XM-open neighborhoods of a and 8. Thus X? is T.
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