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Abstract

Spatial econometric models allow for interactions among cross-sectional units through spatial weight
matrices. This paper parameterizes each spatial weight matrix in the widely used spatial Durbin model
with a different instead of one common distance decay parameter, using negative exponential and inverse
distance matrices. We propose a joint estimation approach of the decay and response parameters, and
we investigate its performance in a Monte Carlo simulation experiment. We also present the results of
an empirical application on military expenditures. Indirect effects in particular appear to be sensitive to
different parameterizations.
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1. Introduction

In a spatial econometric model, the behavior of one cross-sectional unit is co-determined by spatial lags
on other cross-sectional units through their coefficients and the specification of spatial weight matrices.
Overview papers, book chapters, and monographs in political science discussing spatial econometric
models are of Cook, Hays, and Franzese (2020), Darmofal (2015), Di Salvatore and Ruggeri (2021) and
Harbers and Ingram (2019). One prominent model, advocated by LeSage and Pace (2009) as it stands out
as superior in a wide number of empirical applications, is the spatial Durbin (SD) model that contains
a spatial lag in the dependent variable and each of the explanatory variables. This model has been used
to study different topics in political science, economics, and beyond. Examples are Karahasan, Pinar,
and Deniz (2023) on political climate and regional well-being, Pantera, Bémelt, and Bakaki (2023, Table
A.2) on the attitude to disasters, Lewbel, Qu, and Tang (2023) on peer and contextual effects on student’s
performance in mathematics, De Siano and Chiariello (2022) on women’s political empowerment, Juhl
(2021) on search strategies for spatial model specifications in general and voting in particular, Borsky
and Kalkschmeid (2019) on corruption, and Ingram (2014) on homicide rates.

Although the literature formally allows for different spatial weight matrices in models with multiple
types of spatial lags, empirical applications and Monte Carlo simulations tend to use one common
specification for all spatial lags being considered. Both from a theoretical and practitioner viewpoint,
this is rather restrictive as the distance decay of each spatial lag is likely to be different for different
regressors. Furthermore, using wrong spatial weight matrices may lead to biased estimation results.
Our study develops an improvement upon this practice and contributes to the existing literature in
the following ways. We parameterize each spatial weight matrix in the SD model with a different
rather than one common distance decay parameter for two frequently used functional forms of
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distance decay, the negative exponential and the inverse distance form. We provide mathematical
expressions for the direct and indirect effects and their standard errors, which represent useful summary
statistics of the parameter estimates in a spatial econometric model. Finally, we show that our approach
makes the spatial range of the indirect effects more flexible than the traditional approach that uses the
same pre-specified matrix, which is prone to misspecification.

A (quasi) maximum likelihood ((Q)ML) estimator is used to jointly estimate the decay and response
parameters of the SD model. This estimator is applicable to the common large N and fixed T framework
and extends previous work of Lee and Yu (2010). R and MATLAB functions of the proposed estimator
and the determination of the direct and indirect effects will be made available to give other researchers
the opportunity to apply it to their own empirical setting.'

Monte Carlo experiments show that our approach works well in estimating not only the parameters
but also direct and indirect effects. Importantly, especially the indirect effects appear sensitive to an
incorrect choice of the spatial weight matrix. This finding throws another light on the work of LeSage
and Pace (2014), who consider the notion of the estimated direct and indirect effects being sensitive
to the specification of a particular spatial weight matrix “as the biggest myth about spatial regression
models” (p. 218). In contrast to the direct effects, this does not apply to the indirect effects.

An empirical application on military expenditures from Yesilyurt and Elhorst (2017) is utilized to
show the usefulness of the proposed parameterization approach for applied researchers. While these
authors fail to find significant empirical evidence in favor of the SD model and the existence of indirect
effects, we succeed because we estimate and allow for different rather than one common pre-specified
distance decay parameter on which the spatial weight matrix of each lag is based. This extension also
reveals that the spatial range of each regressor is no longer the same, which we both demonstrate
mathematically and illustrate graphically.

This paper is organized as follows. In Section 2, we review previous studies that parameterized the
spatial weight matrix or suggested alternative estimation approaches. In Section 3, we set out the SD
model with parameterized weight matrices and explain how the parameters and direct and indirect
effects can be estimated. In Sections 4 and 5, we present the results of a Monte Carlo experiment and
discuss the results of an empirical analysis. Finally, we draw conclusions.

2. Related Work

Specifying the spatial weight matrix has been recognized as difficult and controversial (Bavaud, 1998;
Corrado and Fingleton, 2012; Neymayer and Plimper, 2016). Researchers generally agree that spatial
weights should decrease with some generalized distance, but a consensus specification is still missing.
According to Franzese and Hays (2008), Corrado and Fingleton (2012), and Neymayer and Plimper
(2016), the spatial econometric model and the specification of the spatial weight matrix, commonly
symbolized by W, should be theory-driven. While several studies develop a theoretical model that
leads to a certain type of spatial econometric model, research containing a theoretical derivation of the
spatial weight matrix is scarce. Bavaud (1998) provides a systematic overview of the general theoretical
properties of spatial weight models, but he does not explain how to apply the theory in practice. The
author even apologizes for this omission (p. 154). Instead, practitioners tend to adopt one of the many
popular specifications and use it for all spatial lags in the model: (i) binary contiguity matrices, (ii)
negative exponential or inverse distance decay matrices (with or without a cutoff point), (iii) nearest
neighbor matrices, and (iv) block diagonal or group interaction matrices.

To justify the chosen spatial weight matrix, some researchers estimate the same model with different
spatial weight matrices and then select the one that yields the highest log-likelihood value or Bayesian
posterior model probability (Juhl, 2020). However, specifying and checking all potential spatial weight

'Programming code of all simulations in R and of the empirical application to military expenditures in R and MATLAB are
made available in Harvard Dataverse (Elhorst, 2024).
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matrices is time-consuming, while the researcher runs the risk to pick the wrong one if the choice set is
limited. Recent research deviates from pre-specified spatial weight matrices and proposes approaches
to estimate them.

Several research papers infer W from the data using various (geo)statistical modeling techniques,
provided that the number of observations over time (T) exceeds the number of observations across
space (N) (Ahrens and Bhattarchajee, 2015; Lam and Souza, 2019; also see Chapter 4 of Beenstock
and Felsenstein, 2019, for an overview). However, this approach does not address the majority of
empirical studies based on N >> T. Instead of assuming that T is sufficiently large, recent studies
in the social interactions literature propose to estimate W assuming that the number of unknown
elements is sufficiently small (Lewbel, Qu, and Tang, 2023). However, whether this assumption makes
sense can only be determined by first estimating the strength of the distance decay effect and then
the most plausible cutoff point. This can be achieved by specifying a functional form for the elements
of W that depends on a distance decay parameter. The two most popular forms are the inverse and
negative exponential distance decay matrices. However, many studies utilizing parameterized spatial
weight matrices eventually use pre-specified values for the distance decay parameters (Fingleton and
LeGallo, 2008; Murdoch, Rahmatian, and Thayer, 1993). The reason is that parameterizing W leads
to an econometric model that is nonlinear in its parameters and thus requires nonlinear estimation
techniques enhancing the complexity of the analysis. There are a few studies that estimate the distance
decay parameter, albeit with limitations.

Fischer, Scherngell, and Reismann (2009) study knowledge spillovers employing a spatial error
model (SEM) that uses a parameterized exponential distance decay matrix based on geographic
distance. It contains a detailed description of the estimation of the response parameters but not of
the distance decay parameter. Dubin (1988) provides the concentrated log-likelihood function of the
distance decay parameter in a SEM and then explains that the optimization can be performed with a
sophisticated though unspecified optimization routine, or with a simple grid search. Kakamu (2005)
uses Bayesian techniques to estimate a spatial autoregressive (SAR) model in which the spatial weight
matrix is specified as a parameterized inverse distance matrix. In a short numerical example in which the
distance decay parameter is set to —8, an estimate of —26.322 is found, pointing to a serious estimation
bias. Halleck Vega and Elhorst (2015) estimate a model with spatially lagged regressors, all with the
same parameterized inverse distance spatial weight matrix. Boehmbke et al. (2023) adopt an exponential
distance decay matrix to measure the impact of “black live matter” protests, a spatially lagged regressor,
on the public opinion of individuals and vary this decay parameter in a pre-specified interval (0.5-0.9)
by steps of one-tenth. In sum, the aforementioned studies on parameterized spatial weight matrices
focus on at most one type of spatial lag, one form of parameterization of the spatial weight matrix, and
only one distance decay parameter. However, in empirical research models containing multiple forms
of spatial lags and different spatial weight matrices for dependent variable and regressors are plausible.
Therefore, our fully parameterized SD model is more general than existing work.

Another approach is to adopt a multiple-spatial-weights specification for each spatial lag in the model
(Hays, Kachi, and Franzese, 2010; Juhl, 2020; Neymayer and Plimper, 2016). Debarsy and LeSage (2021)
examine this in detail for a model with a spatially lagged dependent variable, where the spatial weight
matrix is specified as a convex combination of several underlying unscaled matrices. The contribution
of each submatrix to the overall matrix is estimated together with the other model parameters using
Bayesian estimation. Although promising since Neymayer and Pliimper (2016) argue that “geographical
proximity is a poor proxy for connectivity” (p. 180), one limitation is that only one spatial lag with such
an overall spatial weight matrix is considered. If the number of submatrices to construct the overall
matrix is M and the number of spatial lags would be extended to K + 1, as in an SD model, then
M(K + 1) additional parameters need to be estimated, which could potentially lead to over-
parameterization problems. In contrast, only K + 1 additional (distance decay) parameters need to be
estimated when adopting a parameterized distance decay matrix for each spatial lag in the model.
Furthermore, when these parameters are estimated, their levels of significance explicitly provide
information on the amount of uncertainty of the spatial weight matrices (Vande Kamp, 2020).
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To the best of our knowledge, there is no paper that allows for different parameterized spatial weight
matrices for all spatial lags of the model and that enables estimating the distance decay parameters jointly
with the response parameters in a unified framework. We aim to fill this gap, noting that it shares
resemblance with multiscale geographically weighted regressions (MGWRs). This approach recognizes
that the relationships between the dependent variable and the regressors may operate at different spatial
scales and that each relationship has a different spatial weight matrix (Fotheringham et al., 2017, 2024).
The difference is that MGWRs address parameter heterogeneity regarding the impact of changes in the
regressors on the dependent variable of the unit itself, while SD models are also and especially used to
determine the impact of these changes on the dependent variable of other units in the sample.

3. The Methodology of Parameterization
3.1. The Parameterized Spatial Durbin Model

We consider the following parameterized SD model:

N K K N
Yit = pzwij(ﬁo)}/ﬁ + Zxkitﬁk + Z Zwkij(ak)xkjt'}’k +ei+&ten, (1)
j=1 k=1 k=1j=1
where i = 1,...,N, t = 1,...,T, N is the number of cross-sectional units, and T is the number of

time periods. We assume a balanced panel of large N and finite T. y;; represents the dependent
variable of unit i at time #, and xi; the kth non-stochastic explanatory variable with coeflicient .
The term Zjlil wij(cw)yjr denotes the spatial lag of the dependent variable of units other than i, and
the accompanying coefficient p the impact of this spatial lag. Similarly, the regressors Zjl\il Wiij (k) Xk
(k=1,...,K) denote the spatial lags of the explanatory variables, whose impacts are measured by the
coefficients yx. The elements w;; (v ) and wyij( i ) measure the relationships between units i and j. These
elements are heterogeneous for the different types of regressors and are parameterized by additional
parameters o or . The individual fixed effects ¢; (i = 1,...,N) control for unobserved individual-
specific, time-invariant effects. Similarly, the time period fixed effects & (t = 1,...,T—1)" control for
time-specific, unit-invariant effects. We allow ¢; and &; to be correlated with x;; and Zjlil Wiij (0 ) Xt
Furthermore, if T is small, & can simply be included in the set of explanatory variables. Finally, ¢;; is a
unit-time varying error term, with E(e;) = 0 and Var(e;) = o> (i=1,...,N;t=1,...,T).

Just as previous studies based on the SD model cited in the introduction, we assume that the spatial
weight matrices are constant over time and that the explanatory variables and their spatial lags are
exogenous.

3.2. Parameterization and Estimation

Two commonly used parameterizations of the spatial weight matrix are the negative exponential and
the inverse distance matrix. For i # j, the ijth element of the row normalized negative exponential matrix
is given by

e—dijak
wij (o) = S oo ()
j
and the ijth element of the inverse distance matrix by
dij~ ™
wii(oi) = Ty (3)
j

where dj; denotes the generalized distance between units i and j and « the distance decay parameter
of the kth spatial lag. Both geographic and non-geographic (economic, cultural, geodemographic, and

2One time dummy is left aside to avoid perfect multicollinearity with the individual fixed effects.
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institutional) distance or connectivity measures, or combinations thereof, are possible, as long as they
are exogenous. The diagonal elements of the spatial weight matrix are assumed to be zero to prevent
units from predicting themselves.

For positive values of cx and dj;, both functional forms have the following properties conditional on
d;j)10 d;; —00
each other: (i) wjj(ou) (xeldy) 1 and wij (o) 0 and (ii) wy(ax) iyl 0. These properties

imply that for large values of o, the elements for which dj; is also large converge to zero, that is, there
exists a cutoff point where their values become so small that they can be set to zero without essentially
changing the spatial weight matrix. Such a matrix with many zero elements is called a sparse matrix.
Conversely, for small(er) values of oy, the matrix will become dense with hardly any zero elements. In
Supplementary Appendix A.1, we also consider scalar normalization of the spatial weight matrices by
the largest eigenvalue as an alternative to row normalization.

By making the spatial weight matrices dependent on distance decay parameters oy (k=0,1,...,K),
they become stochastic in the sense that they are subject to uncertainty and a margin of error (Vande
Kamp, 2020). Gupta (2019) shows that many established estimation methods also work with an
exogenous stochastic spatial weight matrix, as long as the sample size N diverges to infinity faster
than the row and column sums of the stochastic spatial weight matrices. This condition requires that
oy > 0 for a negative exponential distance decay matrix and ay > 1 for an inverse distance matrix (see
Supplementary Appendix A.6 for details).

Lee and Yu (2010) set out the assumptions under which the (Q)ML estimator of the model
parameters in Equation (1) are identified, consistent, and asymptotically normal, provided that the W
matrices are nonstochastic, that is, not parameterized. The regular rate of convergence is /N, provided
that T is small or fixed. In Supplementary Appendix A.2, we set out the estimation procedure, and in
Supplementary Appendix A.6, we discuss all assumptions, as well as those that need to be adapted, such
that the proof by Lee and Yu (2010) carries over to the model in this study. One important change is
that the response parameters p and v, (k = 1,...,K) should be bounded away from zero; otherwise, the
distance decay parameters oy (k = 0,...,K) are not identified. Just as the response parameters in Lee
and Yu (2010), the distance decay parameters can also be estimated by ML or quasi (Q)ML, depending
on whether or not the error terms are assumed to be normally distributed. If their distribution is not
specified, application of QML will have a downward effect on the significance levels of the parameter
estimates.

We developed routines in both MATLAB and R enabling estimation of the proposed model for
different normalizations and distance decay functions. A description can be found in Supplementary
Appendix A.8.

The average computation time for an SD model with K = 2 regressors and thus three (K + 1) different
decay parameters next to five (2K + 1) response parameters and a sample size of N =200 and T =5 is
about 0.87 seconds. When N = 800, this increases to 1.64 seconds, and when N = 1,600 to 77.50 seconds.
Overall, these computation times do not constitute an obstacle to further empirical research.

(agldy) —>o0

3.3. Direct and Indirect Effects

A quantitative interpretation of the coefficient estimates in Equation (1) is hindered by the fact that
they do not represent the marginal effects of the explanatory variables (LeSage and Pace, 2009).
Marginal effects are obtained by taking the first-order derivatives of the reduced form of the SD model
reformulated in vector form, which yields an N x N matrix My (k = 1,...,K) of the form

My =(In—pW(0)) ™ (Bedn + %W () @

:ipgwg(aO)(BkIN+'YkW(ak)) :5k1N+(PﬁkW(OéO)+7kW(ak))inWg(040)~
£=0 g=0

Every diagonal element of My reflects the impact of changing the kth explanatory variable of one
observational unit i on the dependent variable of i, and every off-diagonal element the corresponding
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impact on the dependent variable of another unit j (j # 7). To suppress the amount of output, LeSage
and Pace (2009) suggest two summary indicators: the direct effect DE; measured as the average of all
diagonal elements of My, and the indirect effect IE; measured as the average row or column sum of the
off-diagonal elements excluding the respective diagonal element.’ For a recent and detailed discussion
of the interpretation of spatial models, see Whitten, Williams, and Wimpy (2021). Importantly, both
studies explain that the direct effects also encompass feedback effects that circulate across all units in
the sample and eventually influence the originator of the change in the explanatory variable.

The marginal effects of the SD model when allowing for different distance decay parameters have
three important properties. First, Halleck Vega and Elhorst (2015) and Wimpy, Whitten, and Williams
(2021) demonstrate that only models that at least include spatially lagged regressors (7 # 0) are able to
produce indirect effects that are flexible in the sense that they can take on any empirical value relative to
their corresponding direct effects. In contrast, models that include a spatially lagged dependent variable
and/or a spatially lagged error only, among which the SAR model and the SEM, are less flexible since they
impose restrictions on their mutual relationships in advance. Second, parameterizing the spatial weight
matrix of each explanatory variable by a different decay parameter enhances this flexibility by relaxing
the implicit restriction that the spatial range of each variable is the same. If all spatial lags have the same
spatial weight matrix and thus distance decay parameter, W () = W(a1),...,W(akx) = W and ag =
a1 =... = ax, the last term in Equation (4) simplifies to SeIn + (pBk +7k) Lgoo PP W (). However,
if all regressors have the same sum ;% Wt (ap) in common due to this restriction, the maximum
distance at which the indirect effect IEj falls to zero is also the same for all of them, independent of p, S,
and 0. Third, when drawing statistical inferences on the direct and indirect effects, the uncertainty in
the distance decay parameters will also be accounted for. For this purpose, we use the delta method since
it saves on computation time. Mathematical expressions of this method are provided in Supplementary
Appendix A.7. In Section 5, we explore the implications of the last two properties, which are new to the
applied spatial econometrics literature, in the context of our empirical application.

From these three properties, it follows that common but simpler models nested within the proposed
SD model have limitations from an empirical viewpoint. It concerns the SAR model, which according
to Whitten et al. (2021) is used in 60% of 94 papers that appeared in political science journals as of May
2015, the spatial lag of X (SLX) model, used in 33% of these studies, and the SEM, which according to
them is hardly used. These three models can be obtained by, respectively, imposing the restriction, ;=0
forall k, p =0, and pBx W () +7x W (i) = Oy for all k.* Consequently, the ratio between the indirect
and direct effects in the SAR model is the same for every explanatory variable, which is unlikely from an
empirical viewpoint. Indirect effects in the SEM are zero by construction. From an empirical viewpoint,
this is also not helpful, especially if the purpose of a study is to determine these effects, which might
also explain why this model is hardly used anymore. The indirect effects in the SLX model are flexible
in that can take any empirical value. However, the second property shows that this flexibility, just as
for the SD model, can be increased further by parameterizing the spatial weight matrices by different
decay parameters. The choice between the SLX and SD models depends on whether the extension
p # 0 can be motivated, either statistically as in LeSage and Pace (2009) or theoretically. In the empirical
analysis of this paper, we explain military expenditures by an SD model based on data from Yesilyurt
and Elhorst (2017), who also provide an economic-political theoretical model in favor of this empirical
model. Another way to motivate the extension p # 0 is to form a reasonable argument to expect global
indirect effects. These occur if a change in one of the explanatory variables impact the dependent variable
observed in another unit, even if these two units are not connected to each other according to the spatial
weight matrix (wj; = 0). Sometimes a shock has a global impact even though it initially seemed local.

*The total effect, i.e., the sum of the direct and indirect effects, if the spatial weight matrices are row normalized can be
obtained by (Bx +7«x)/(1 - p), no matter whether they are parameterized or not. When they are scalar normalized so that the
rows of these matrices do not sum up to one, the average row or column sums of the matrix M also need to be computed to
get the total effect.

*The last restriction follows from Equation (A.64) in Supplementary Appendix A.6.
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Examples are the banking crisis that started in the United States, the euro crisis that started in Greece,
the COVID-19 crisis that started in China, the war that Russia started with Ukraine, and so on. In these
cases, a spatial lag in the dependent variable is likely because many more recipients were affected by this
crisis without being adjacent to the originator of the shock.

4. Monte Carlo Simulations

We conduct Monte Carlo experiments to evaluate the performance of our proposed estimator for both
parameterized distance decay matrices. Our data generating process contains two explanatory variables:
x1ie ~ N(2,5) and x2is ~ N(—1.5,3.5). The coeflicients of the first variable and its spatial lag are ; = -1
and 71 = 1.5, and of the second variable and its spatial lag are 8, = 0.2 and v = —0.3. These two 7
parameters are greater in absolute values than their corresponding 3 parameters to gain more insight
into the sensitivity of parameterizing spatial weight matrices. The unobserved individual fixed effects
and the error terms are both generated from a standard normal distribution N(0,1). To address the
majority of empirical studies based on N >> T, we set N = {200,800} and T = 5. The number of iterations
is 1,000. To construct distance matrices between the cross-sectional units, we use the coordinates of N
data points evenly set in a rectangle of 10 x 20 for N = 200 and 20 x 40 for N = 800. The decay parameters
are ap = 2, a1 = 1.5, and a;; = 3. Finally, the parameter of the spatial lag of the dependent variable is set
to p=0.5.

We investigate both the parameter estimates and the estimates of the direct and indirect effects,
because LeSage and Pace (2018) demonstrate that past studies’ focus exclusively on parameter estimates
may not provide useful information regarding the statistical properties of the direct and indirect effects
obtained from these parameter estimates. To judge the performance of the estimators, we consider the
average bias (Bias), the root-mean-square error (RMSE), the median bias (Mbias), and the median
absolute value of the bias (Mabias). The latter two statistics are used as they are more robust to outliers.

Table 1 reports the results when using R. To save space, we focus on the results of the row normalized
negative exponential distance decay matrix. Results for the inverse distance matrix are quite similar and
reported in Supplementary Appendix A.9. We performed similar experiments varying p, a1, or oz and
when using scalar instead of row normalized distance decay matrices. In addition, we report the mean
and standard deviations of the p-values of the parameter estimates and direct and indirect effects. If
the underlying asymptotic distribution is true, then under the null, the p-values should follow a U(0,1)
distribution, and thus should have a mean p-value of 0.5 and a standard deviation of approximately
0.29. An overview of all parameter configurations and simulation results can be found in Supplementary
Appendix A.9.

We compare the performance of three estimators. First, the proposed approach in which all spatial
weight matrices are parameterized, labeled PWFE, where P stands for parameterized, W the spatial
weight matrix, and FE fixed effects. The biases in the parameter estimates of this estimator are small and
acceptable.” Generally, they are smaller for the coefficients of the variables than for the decay parameters,
and smaller for N = 800 than for N = 200. Similarly, increasing the sample size leads to a decrease in
the RMSE and the median absolute value of the bias. While the biases in the coefficients and decay
parameters are already small, the biases in the direct and indirect effects appear to be even smaller. The
explanation is that an upward bias in one parameter is offset by a downward bias in another parameter
in such a way as to produce direct and indirect effects that remain relatively stable (LeSage and Pace,
2014, p.227, 2018).

Second, we investigate what happens if a practitioner adopts one common spatial weight matrix with
a decay parameter of 1 for all spatial lags. This may throw more light on how harmful this can be and
is referred to as WFE (one common W and fixed effects). The results show that the performance of this
estimator leads to higher values of bias, RMSE, Mbias, and Mabias in Table 1. Especially, the estimates

One exception is the average bias in the decay parameters ag and a,. However, this is driven by a few outliers as can be
seen when comparing with the median bias.
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Table 1. Simulation results for row normalized negative exponential distance decay matrix (Casel): p = 0.5, g =2, a; = 1.5, a = 3.

Settings Parameters Direct/indirect effects
T N Bi(-1)  B,(0.2)  ~(1.5)  42(-0.3)  p(0.5) (1) ao(2)  ai(1.5) aw(3) DExi  DE_x IE_x, IE_x,
WFE 5 200 Bias 0.028 —-0.007 0.359 -0.172 —-0.069 0.087 0.006 0.001 0.576 —0.298
RMSE 0.034 0.011 0.372 0.176 0.100 0.104 0.020 0.008 0.627 0.308
Mbias 0.028 -0.007 0.359 -0.171 -0.067 0.084 0.007 0.001 0.575 -0.292
Mabias 0.029 0.008 0.359 0.171 0.070 0.085 0.014 0.006 0.575 0.292
TWFE 5 200 Bias 0.001 —0.001 0.001 0.002 —0.006 —0.005 0.000 0.000 —-0.001 0.003
RMSE 0.018 0.008 0.063 0.017 0.043 0.053 0.019 0.008 0.156 0.038
Mbias 0.001 —-0.001 0.001 0.002 —-0.006 —-0.009 0.000 0.000 -0.002 0.004
Mabias 0.013 0.005 0.041 0.012 0.030 0.038 0.012 0.006 0.105 0.025
PWFE 5 200 Bias 0.002 -0.001 0.014 —-0.001 -0.015 —-0.008 0.155 0.008 0.136 0.000 0.000 0.011 0.001
RMSE 0.019 0.008 0.120 0.027 0.063 0.053 0.553 0.182 0.982 0.019 0.008 0.244 0.053
Mbias 0.002 -0.001 0.007 0.000 -0.013 -0.011 0.070 —-0.004 0.031 0.001 0.000 -0.003 0.005
Mabias 0.014 0.005 0.081 0.018 0.043 0.038 0.309 0.119 0.376 0.013 0.006 0.167 0.036
WFE 5 800 Bias 0.018 —0.007 0.350 —0.190 —-0.011 0.081 0.001 0.000 0.704 —0.382
RMSE 0.020 0.008 0.354 0.191 0.039 0.086 0.010 0.004 0.718 0.386
Mbias 0.018 -0.007 0.349 —0.190 -0.010 0.079 0.001 0.000 0.701 -0.381
Mabias 0.018 0.007 0.349 0.190 0.026 0.079 0.007 0.003 0.701 0.381
TWFE 5 800 Bias 0.000 0.000 —-0.002 0.001 —-0.001 —-0.001 0.000 0.000 —-0.004 0.001
RMSE 0.009 0.004 0.035 0.010 0.022 0.026 0.010 0.004 0.084 0.022
Mbias 0.000 0.000 -0.002 0.001 0.000 -0.003 0.000 0.000 -0.002 0.002
Mabias 0.006 0.003 0.024 0.007 0.015 0.017 0.007 0.003 0.060 0.014
PWFE 5 800 Bias 0.000 0.000 0.000 0.000 —-0.002 —-0.002 0.022 0.002 0.016 0.000 0.000 0.001 —0.001
RMSE 0.010 0.004 0.061 0.016 0.033 0.026 0.240 0.089 0.307 0.010 0.004 0.130 0.032
Mbias 0.001 0.000 —-0.001 0.000 —-0.002 —-0.004 —-0.001 —-0.002 —-0.001 0.000 0.000 0.000 0.001
Mabias 0.007 0.003 0.040 0.010 0.022 0.017 0.172 0.058 0.198 0.007 0.003 0.083 0.021
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on 71, 2, and p are severely biased. When investigating the effect estimates of the WFE estimator, we
see that the bias in the direct effect estimates is nonetheless small, whereas the bias in the indirect effects
is large. We find biases that exceed 0.5 (in absolute value). This is a cause for concern and supports the
approach advocated in this paper whereby different decay parameters of the spatial lags are estimated
rather than set at one particular value in advance.

Third, we evaluate the performance of an estimator assuming that the true spatial weight matrices
are known, which we refer to as TWFE (true spatial weight matrices W and fixed effects). Although
this reflects an ideal, but hypothetical situation, it may throw more light on the relative performance of
our approach and the associated costs in terms of estimation errors compared to this ideal estimator.
The results in Table 1 show that the model parameters in this hypothetical situation can be estimated
with greater accuracy than in the situation where the decay parameters also need to be estimated. This
is also evident when comparing the median absolute value of the bias (Mabias) of the indirect effects
of TWFE and PWEE. In general, the differences in the results of TWFE and PWFE are rather small
compared to the differences and negative consequences of using wrong pre-specified weight matrices
as with WFE. When taking the difference between the biases of the coeflicients obtained by WFE and
TWEE, representing the misspecification error due to erroneously assuming that ag = 1 = -+ = ax
minus the unavoidable estimation error, and comparing these biases relative to those obtained by PWFE,
we get an indication of the proportionate improvement of applying PWFE. This improvement appears
to be roughly 62% for the two v parameters. If they would be smaller rather than greater than the (3
parameters as in our Monte Carlo experiment, this percentage is likely to go down but nevertheless
remains substantial.

A somewhat different pattern across all experiments reported in Supplementary Appendix A.9
occurs when increasing the decay parameter to an extremely high value, that is, oy = 10 (Cases VII

and VIII). These cases resemble the property set out in Section 3.2 that w;( o) (caldy)=ee 0. In this
scenario, those elements for which dj; is also large converge to zero beyond a cutoff point and could
just as well be set to zero without changing the structure of the spatial weight matrix. Bias and RMSE
of v increase substantially, while bias and RMSE of the corresponding spatial lag parameter -y remain
largely the same. However, the increased bias and RMSE in the decay parameter cv; appears to have no
effect on the bias and RMSE of the direct and indirect effects when using PWFE. This finding suggests
that a practitioner who finds a high value for one of the decay parameters, perhaps one equal to the
upper bound, could still value the direct and indirect effects of the corresponding explanatory variable
and actually might adopt a first-order binary contiguity matrix equally well.

5. Empirical Analysis

The empirical analysis is based on Yesilyurt and Elhorst (2017) (YE hereafter), who investigate military
spending measured as a ratio of GDP, also known as the defense burden, in 144 countries over the
period of 1993 to 2007. Explanatory variables are GDP, population, international war, civil war, and
political regime. The dependent variable and the first two explanatory variables are measured in logs,
while the latter three are measured as scores. The scores on the variables international war and civil war
range from 0 (no war) to 10 (greatest). The variable political regime ranges from —10 to +10, where —10
indicates strongly autocratic and +10 strongly democratic countries.

YE compare several spatial econometric models and spatial weight matrices. However, negative
exponential and inverse distance decay matrices have not been investigated. Using Bayesian comparison
methods developed by LeSage (2015) and Juhl (2020), they find that the SAR model in combination
with a first-order binary contiguity matrix based on maritime borders produces the highest Bayesian
posterior model probability. YE find little evidence in favor of indirect effects, also not when estimating
the SD instead of the SAR model. This finding is typical of many empirical studies applying the SD
model: often none or only some of the spatial lags in the explanatory variables and/or indirect effects
appear to be significant. One explanation could be that these studies adopt one common spatial weight
matrix for all spatial lags in the model. Our Monte Carlo simulations have shown that especially the
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indirect effects, which tend to be the main focus of empirical studies, are sensitive to a wrong choice
of the spatial weight matrix. Therefore, we investigate whether using parameterized spatial weight
matrices with different distance decay parameters for each spatial lag in the model alter the results.
Three comments are in order before discussing the results. First, YE consider both static and dynamic
versions of the SD model. This empirical application focuses on their static model results. Second, it
focuses on geographical distances only.® Third, following YE, we consider all explanatory variables and
their spatial lags as exogenous.

The first column of Table 2 reports the results using the preferred binary contiguity matrix from YE
and the second column when using the proposed PWFE estimator applied to the parameterized row
normalized negative exponential distance decay matrices in the SD model.”

The estimate of the SAR parameter p is 0.241 and 0.251, respectively, and in both cases significant at
the 1% level. This indicates that the SD model cannot be simplified to an SLX model. Three of the five
explanatory variables in column 1 also appear to have coefficients and direct effects that are significant
at the 1% level and one at the 10% level. However, only one of their corresponding spatial lags and
indirect effects, the political regime, appears to be significant at the 5% level. We also test whether there
is empirical evidence in favor of the SD model by conducting Wald tests on the null hypotheses v =0
and pSr W+~ W = Oy, yielding the SAR and SE model, respectively. The test statistics are 7.85 (p-value
0.16) and 7.39 (p-value 0.19). Consequently, no empirical evidence in favor of the SD model is found.

The LogL of the PWFE estimator in column 2 is —1311.02, which is slightly better than its counterpart
of —1311.39 for the binary contiguity matrix. With oy = 2.003 (¢-value 3.56), the decay parameter of the
spatial lag in the dependent variable dominates the other decay parameters. However, the corresponding
95% confidence interval of (0.88, 3.12) does not contain the decay parameters obtained for the spatial
lags in GDP, international war and political regime. The latter two even reach the upper bound set at 10.
This indicates that one distance decay parameter for all spatial lags is unnecessarily restrictive.

To investigate the impact of ignoring the uncertainty in the spatial weight matrices if they are pre-
specified, we run another regression using spatial weight matrices based on the estimated distance decay
parameters from column 2. For the two variables whose distance decay parameters reached the upper
bound, we also applied a cutoff point; elements smaller than 0.005 are set to 0. We label this model as
EWFE and report the results in Column 3. Finally, column 4 reports the estimation results when the
spatial lags for which an upper bound of 10 was found are replaced by the original binary contiguity
matrix used by YE, labeled EWFEBC.

Although the parameter estimates and the direct and indirect effects hardly change as we move from
column 2 to columns 3 and 4, their t-values do. While their magnitudes decrease slightly for the direct
effects (on average by 1.3% and 10.5%), they increase substantially for the parameter estimates (on
average by 31% and 46%) and the indirect effects (on average by 62% and 63%). This change in the
t-values of the indirect effects is because the decay parameters in the last two columns are no longer part
of the variance-covariance matrix used to determine their significance levels. It reflects the common
approach applied by practitioners who pre-specify the spatial weight matrices and it shows that in
particular the significance levels of the indirect effects can change when uncertainty in the choice of
the spatial weight matrix is accounted for.

When we compare the direct effects of YE in column 1 with those in columns 2-4 (PWFE, EWFE, and
EWEFEBC), we see, in line with the Monte Carlo simulation experiments, that they are not sensitive for
the choice of weight matrix. For GDP, we find a significant direct effect of about —0.5 in all four columns,

YE also investigate whether the spatial weight matrix should be adjusted for sworn enemies and whether the five permanent
members of the UN Security Council react to foreign threats everywhere, regardless of the country involved. In future research,
we will investigate how to integrate the impact of these non-geographical drivers of military expenditures with our geographical
results.

7By first estimating one common decay parameter for all spatial lags in the model, it was found that the row normalized
negative exponential distance decay matrix outperformed the scalar normalized and inverse distance matrix alternatives. For
this reason, we use this specification to see whether the performance of the model can be improved further by estimating
different decay parameters for each single spatial lag. These initial results are reported in Supplementary Appendix A.9.
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Table 2. Military expenditures according to one common binary contiguity matrix and different distance

decay matrices.

1 2 3 4
Determinants/W YE PWFE EWFE EWFEBC
P 0.241*** 0.251*** 0.251*** 0.247***
(8.39) (5.29) (7.67) (7.54)
By GDP —0.530*** —0.487*** —0.487*** —0.486***
(=5.57) (-5.04) (-=5.07) (-5.08)
B2 Population 1.184*** 1.204*** 1.205*** 1.171%**
(3.18) (2.86) (2.98) (2.90)
B3 International War 0.073* 0.084** 0.084** 0.077*
(1.72) (1.98) (1.99) (1.81)
Ba Civil War 0.006 0.010 0.010 0.007
(0.37) (0.66) (0.67) (0.47)
Bs Political Regime -0.016***  -0.018***  -0.018***  —0.017***
(-3.28) (—3.58) (-3.61) (—3.50)
41 W(ct;)xGDP 0.085 —0.944 —0.944* —-0.951*
(0.53) (-0.76) (-1.77) (-1.78)
72 W(arz)xPopulation -0.517 —-1.466 —1.466* —1.389**
(—0.84) (-1.43) (-1.81) (-1.72)
73 W(az)xInternational War —0.055 —0.066 —0.066 —0.032
(-0.70) (-1.17) (—1.46) (-0.41)
4 W(cua)xCivil War —0.029 —0.078 —-0.078** —0.090**
(-1.03) (-1.27) (—2.06) (-2.42)
75 W(cws)xPolitical Regime —-0.019** -0.005 -0.005 —0.023**
(—2.06) (—0.59) (-0.77) (—2.44)
ap (Spatially lagged dependent variable) 2.003***
(3.56)
o 0.410
(0.74)
(e %3 1.485
(1.01)
Qs 10.00
(0.45)
[ 2.330
(1.12)
Qs 10.00
(0.25)
(Continued)

59


https://doi.org/10.1017/pan.2024.16

https://doi.org/10.1017/pan.2024.16 Published online by Cambridge University Press

60 Chang Tan et al.

Table 2. (Continued)

1 2 3 4
Determinants/W YE PWFE EWFE EWFEBC
DE, GDP —0.535*** —0.505*** —0.505*** —0.498***
(-5.37) (-5.22) (—5.36) (-5.15)
DE; Population 1.164*** 1.160*** 1.158*** 1.107***
(3.11) (2.84) (2.99) (2.85)
DEj3 International War 0.072* 0.080* 0.078* 0.078*
(1.64) (1.89) (1.85) (1.79)
DE, Civil War 0.004 0.006 0.006 0.003
(0.26) (0.40) (0.41) (0.19)
DE;5 Political Regime —0.017*** —0.019*** -0.018*** —0.019***
(—3.44) (-3.61) (-3.73) (-3.74)
IE; GDP —0.048 —1.407 —1.409** —1.425**
(-0.24) (-0.85) (-2.14) (-1.99)
IE; Population -0.273 —1.509 —1.491 —1.428
(-0.36) (-1.14) (—1.48) (-1.47)
IE5 International War —0.050 —0.057 —0.058 —-0.016
(—0.50) (—0.80) (-1.00) (—0.16)
IE4 Civil War -0.034 —0.097 —0.096** -0.115**
(-0.97) (-1.20) (-1.97) (-2.33)
IE5 Political Regime —0.029** —0.012 -0.012* —0.035***
(—2.50) (-1.10) (—1.40) (—2.86)
Observations 2160 2160 2160 2160
Log-likelihood function value —-1311.39 —-1311.02 —-1311.02 —-1309.23
R-squared 0.702 0.702 0.702 0.702
HO (SARY): y =0 (p-value) 7.85 (0.16) 7.79(0.17) 13.21(0.02)  16.51(0.01)

HO (SEM): pBk W + v W = Oy (p-value) 7.39(0.19) 21.22(0.00) 12.49 (0.03) 17.74 (0.00)

Notes: YE = one common binary contiguity matrix based on Yesilyurt and Elhorst (2017); PWFE = Parameterized W matrices
and fixed effects (FE), EWFE = Estimated W matrices and FE, EWFEBC = Estimated W or binary contiguity (BC) matrices and
FE; *, **, and *** significant at, respectively, 10%, 5%, and 1%.

which indicates that if the level of GDP in a country increases, the defense burden in that country also
increases though less than proportionally. On the other hand, if we compare the indirect effects, we see
different results. While the indirect effect of GDP is —0.048 and insignificant in column 1, it is —1.4 in
the last three columns, implying that an increase in the level of GDP also has a diminishing effect on the
defense burden of its neighbors. Furthermore, while insignificant in column 2 due to uncertainty in its
corresponding distance decay parameter, it is significant in the last two columns when this uncertainty
is left aside. The indirect effect of civil war is also (weakly) significant in the last two columns of Table 2
and fluctuates around —0.1. This means that a country sharing a border with a country involved in a
civil war does consider this as a potential threat. Finally, the indirect effect of the political regime is
significant and takes values that range from —0.012 to —0.035. A similar and significant effect of —0.029
was found when adopting one common binary contiguity matrix. This outcome demonstrates that the
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Figure 1. Indirect effect broken down by distance relative to total indirect effect.

defense burden does not only increase with a higher level of autocracy in the own country, but also with
higher levels of autocracy in neighboring countries.

In sum, three indirect effects appear to be significant when allowing the distance decay parameters
of the spatial weight matrices to be different, while only one was significant in the model based on
one common binary contiguity matrix. The magnitudes of the indirect effects also differ, in line with
the Monte Carlo simulation results in Section 4. The same applies to the coefficients obtained for the
spatially lagged regressors, as a result of which the hypotheses Hy : v = 0 (SAR) and pSiW(ao) +
YW (ax) =0y (SEM) now also need to be rejected. The p-values of the Wald test statistics are smaller
than 0.05 in the last two columns.

Figure 1 breaks down the indirect effects of GDP, civil war, and political regime, which are significant
in columns 3 and 4, by distance relative to their total indirect effects. The upper panel shows the results
when adopting just one spatial weight matrix, the one used in column 1 of Table 2, and the lower
panel when allowing the decay parameters to be different as in the last three columns. When using
one common spatial weight matrix, the distance decay and spatial range of the indirect effect of all
explanatory variables are similar, while they diverge if the distance decay parameters are allowed to be
different. Whereas the spatial ranges of GDP, civil war, and political regime are all about 2,000 km in
the upper panel, they become greater than 6,000 km for GDP and smaller than 1,500 km for civil war
and political regime in the lower panel of Figure 1. This finding is in line with the property of the spatial
range discussed in Section 3.3.
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6. Conclusion and Discussion

This paper breaks the practice of employing one common pre-specified spatial weight matrix for all
spatial lags in the SD model by parameterizing each spatial weight matrix with a different distance
decay parameter. This extension provides information on the amount of uncertainty of the spatial weight
matrices, and it relaxes the implicit restriction that the spatial range of the indirect effects is the same
for all regressors.

Both our Monte Carlo simulation experiment and empirical application show that adopting one
distance decay parameter for all spatial lags in the SD model, either explicitly or implicitly by choosing
one of the popular spatial weight matrices listed in Section 2, biases the indirect effects and their
significance levels, which are often the main focus of applied spatial econometric research. This is a
cause for concern since it reflects the most widely used approach applied by practitioners. By contrast,
it supports the approach advocated in this paper whereby the decay parameters of the spatial lags are
estimated rather than set at one particular value for all spatial lags in advance.

In follow-up research, we aim at extending the model by considering a spatial lag in the error
term and temporally dynamic relationships. The recent study by Cook, Hays, and Franzese (2023)
offers numerous starting points for this. In addition, it is recommended to investigate the possibility
of integrating distance- and non-distance-based measures in the spatial weight matrix and the link with
MGWR, which focuses on determining direct rather than indirect effects but applies the same principle
of working with different spatial weight matrices for each explanatory variable.
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