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LEITER TO THE EDITOR

ON A FAMILY OF PRIOR DISTRIBUTIONS FOR A CLASS
OF BAYESIAN SEARCH MODELS

K. D. GLAZEBROOK, * University of Newcastle upon Tyne

Abstract

We propose a two-parameter family of conjugate prior distributions for the
number of undiscovered objects in a class of Bayesian search models. The family
contains the one-parameter Euler and Heine families as special cases. The two
parameters may be interpreted respectively as an overall success rate and a rate of
depletion of the source of objects. The new family gives enhanced flexibility in
modelling.
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Benkherouf and Bather (1988) and Benkherouf et al. (1992) considered Bayesian
sequential decision models for a class of search problems modelling oil exploration. In these
models Te = (Teo, Tel' ... ) is a prior on the number of undiscovered objects, v is the value of a
discovery, c is the cost of a search, where v> c > 0, and a is a discount rate. A search is
conducted at times t = 0, 1, 2, . . . until further searching is uneconomic. Each search finds
either a single object or nothing. The conditional probability of a search failing to find an
object given that there are n undiscovered objects to be found is qn, °< q < 1. This geometric
form is necessary to ensure that the numbers of successes and failures to date yield a sufficient
statistic for the problem. Bather (1992) has proposed a continuous-time version of this model.
The goal is to find a stopping rule which maximises the total net (discounted) value of
searching.

Benkherouf and Bather (1988) proposed two conjugate families of priors for the problem,
which they called Euler and Heine. They are both one-parameter families, the parameter
representing an initial success rate in each case. These families give limited flexibility in
modelling. We propose a conjugate two-parameter family, which contains the Euler and
Heine families as special cases. The first parameter (A) is again a success rate, whereas the
second (0) may be thought of as a rate of depletion of the source of objects. Together, they
give us enhanced flexibility in modelling how rapidly the success rate decreases as objects are
found.

Kemp (1992) discusses the Euler and Heine distributions from a different point of view.
She identifies them as q-series analogues of the Poisson distribution and introduces a new
distribution (the pseudo-Euler) which shares this property. The pseudo-Euler is not a
member of our two-parameter family. The question of whether our two-parameter family can
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be helpfully studied from the Kemp (1992) perspective is a topic for further investigation.
Suppose we begin our development with the requirement that the posterior following s

successes should be the same as the posterior following f failures. This yields via Bayes'
theorem that

which suggests the form

(1)

n eN,

n eN.

n eN,

If we write fJ =f Is then (1) implies the prior Jl'(A, q, fJ) given by

(2) nAA, q, 8) = Jrn(A, q, 8)Anq fl n 1n - IlI2{U(1 _ q')} -I,

with associated parameter space {0 = 0, 0 < A< I} U {O > 0, A> O}. This is our two­
parameter family. (Recall that q is fixed.) We obtain the Euler distribution E(A, q) and the
Heine distribution H(A, q) by taking fJ = 0 and 1 respectively in (2).

That this is a conjugate family emerges from the following lemma, which follows from
Bayes' theorem. In the result, Jl's and Jl'F denote the posterior following a single success or
failure respectively.

Lemma 1. st = Jl'(A, q, O)::} Jl's= Jl'(AqH, q, 0) and Jl'F = Jl'(A, q, 0).

In Lemma 2, '>' denotes the usual likelihood ratio ordering. The proof is straightforward.

Lemma 2. A> J-l::} Jl'(A, q, 0) > Jl'(J-l, q, 0).

Now write

n>O

for the (unconditional) probability of a successful search when the prior is Jl'(A, q, 8). Simple
algebra yields

p(A, q, 8) = AJl'o(A, q, O)(Jl'O(AqH, q, 8)} -I.

The following result is a consequence of Lemma 2.

Corollary 1. A"?:: J-l ~ p(A, q, 0) "?::p(J-l, q, 0).

Proof. The likelihood ratio ordering of Lemma 2 implies a stochastic ordering of the
distributions concerned. Hence we conclude that

n eN.
k~n k~n

The result now follows from standard properties of stochastic ordering and the fact that 1 - qn
is increasing in n.

With the above results in place, we can now follow the analysis of Benkherouf and Bather
(1988). Note that with prior Jl'(A, q, fJ) the expected (undiscounted) net value of a single
search is

(3)

It follows from Lemma 1 and Corollary 1 that this quantity decreases almost surely as the
system evolves, at a rate which depends upon 8 and the proportion of successes to date. In
Theorem 1, let (s, f) denote a state in which s + f searches have been conducted of which s
have been successes and f have been failures.
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Theorem 1. In the stopping problem, if n = n(A, p, 8) then (s, f) is a continuation point if
and only if

(4) -c + Aq(SH+!)vno{Aq(sH+!), q, 8}(no[ Aq {('\'+ I )H+! }, q, 8])-1 >0.

Note that if we have equality in (4) then both stopping and continuing to search are optimal
at (s, f). Note also that the optimal stopping rule is a 'one-step look-ahead' or 'myopic' rule.
We see from Theorem 1 that the key statistic determining optimal decisions is sO +f

Note further that, following Benkherouf et al. (1992), the one-step value in (3) divided by
(1 - a) may be thought of as a Gittins index. In this way we may construct optimal policies
for choosing how to search in K different areas each of which is modelled as above, where
there are no between-area dependencies. In Theorem 2, i = 1, 2, ... , K denotes area.

Theorem 2. In the K-area problem, if n' = n(A;, q;, 8;) and (s;, [;) is the record of past
searches of area i. then search number 1 + r.~1 (s, + [;) will be in whichever area has maximal
value of the index

provided this is positive. If all indices are negative, it is optimal to stop searching altogether.
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