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Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key
components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic
environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal
blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their con-
sequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments.
HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global
warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the
possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century,
with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human
health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge
include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination
with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs
phenomena, an important element of the intrinsic links between oceans and human health and wellbeing.
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OVERVIEW OF THE CHALLENGES

Aquatic ecosystems are supported by photosynthetic organ-
isms (e.g. macrophytes, benthic and planktonic microalgae
and cyanobacteria) that fix carbon, produce oxygen, and con-
stitute the base of food webs. Under certain circumstances,
however, the abundance of some taxa can reach levels that
may cause harm to humans and other organisms. These pro-
liferations often are referred to as ‘harmful algal blooms’
(HABs), a term that includes a variety of species and conse-
quences that humans perceive as adverse. HABs occur in all
aquatic environments (e.g. freshwater, brackish and marine)
and at all latitudes. In this paper, we focus specifically on
the threat that blooms of harmful microalgae pose to the
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benefits (food supplies, economic activities, tourism and
recreation) that the oceans and seas provide to human
health and wellbeing (Figure 1).

Of the many thousands of microalgal species described,
about 300 are involved in harmful events (see e.g. http://
www.marinespecies.org/hab/index.php). More than 100 of
these species, with no apparent physiological, phylogenetic
or structural commonalities, produce potent and persistent
natural toxins that can be harmful or even lethal to humans
and animals (Sournia, 1995; Moestrup et al., 2009). The chem-
ically diverse compounds synthesized by toxic HABs species
have been associated with different syndromes in humans
(Box 1), and many may also adversely affect certain fish, sea-
birds, reptiles and marine mammals (Box 2).
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Fig. 1. Conceptual links between the main drivers (natural dynamics, climate change and global warming and other anthropogenic forcings) involved in the
occurrence of HABs, the main impacts of HABs on humans health and wellbeing, and some of the tools to decrease these effects.

In humans, toxicity is caused by the ingestion of contami-
nated seafood products (fish or shellfish), skin contact with
toxin-contaminated water, or the inhalation of aerosolized
toxins or noxious compounds. In the case of food-borne poi-
sonings (Figure 2), HAB toxins are bio-concentrated, often
without apparently harming the vector marine organism
that ingested the toxin, and transferred up through the food
web to humans. Toxic effects usually occur when the HAB
species producing the toxin is present in high abundance,
although seafood poisoning also can be caused by highly
toxic microalgae at low abundances. In addition to the
direct impacts on human health, these toxic outbreaks have
associated consequences on other components of human well-
being both in terms of their socio-economic impact and costs.
Namely, HAB occurrences can lead to the closure of import-
ant shellfisheries (e.g. Jin et al., 2008) and increases in the costs
of monitoring and management (Hoagland et al., 2002).

Another hazardous effect of some HABs taxa is the produc-
tion of excess algal biomass, which can affect individual organ-
isms and ecosystems in different ways (Box 2). When large
blooms decay, the subsequent degradation by bacteria of accu-
mulated biomass reduces oxygen concentrations in marine
waters and can cause hypoxia, especially in bottom waters iso-
lated by density gradients from surface waters. In addition to
the benthic faunal mortalities related to oxygen depletion, the
unpleasant appearance of surface scums and bad odours asso-
ciated with some HABs can dissuade tourists from visiting
coastal recreation areas (Scatasta et al., 2003). Phycotoxins
also can cause morbidities and mortalities of wild and farmed
fish (gill damage), birds (hypothermia), marine mammals, or
certain invertebrates, resulting in economic losses in finfish
aquaculture and tourism, and losses of the non-market,
‘passive’ values that humans may have for protected species or
extraordinary ecosystems. These examples illustrate how
HABs may also decrease the non-market, passive use values of
marine ecosystems and their services, thereby limiting the way
in which the marine environment can enhance the quality of
life and wellbeing for humans (Hoagland & Scatasta, 2006).

Blooms of microalgae, including those deemed by humans
to be harmful (see for instance, http://haedat.iode.org), are a
natural phenomenon (e.g. Smayda, 1997; Margalef, 1998;
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Gowen et al., 2012 and references cited therein) and awareness
of HAB events is embedded in the cultural heritage of many
coastal human communities. Historically, this awareness has
helped to mitigate some of the adverse effects of HABs.
However, at present, increasing the information about
public health risks and the strategies that scientists and
policy makers, working together, can address to decrease the
impacts of HABs on human health and wellbeing could still
be beneficial. It is important to recognize that there is not a
realistic way to prevent HABs occurrence as it results from
complex interactions among physical, chemical, and biologic-
al processes operating at different spatio-temporal scales in
the marine environment. Over the last 50 years, human mod-
ifications of the marine environment, particularly those occur-
ring at the land-sea interface, may have influenced the
incidence of HABs in certain locations. These modifications
include the alteration of water circulation in harbours and
artificial beach construction, the dispersal of species through
ship ballast waters, and nutrient enrichment (Hallegraeff &
Bolch, 1992; Anderson et al., 2002; Davidson et al., 2014).

Superimposed on these stresses, climate change is already
leading to temperature increases in some areas of the earth’s
oceans, and warmer waters could affect the occurrence of
HABs (Moore et al., 2008; Backer & Moore, 2011; Hallegraeft,
2010 and references cited therein; Gowen et al, 2012).
Specifically, changes in the frequency, intensity, and geographic
extent of HABs may occur, but the possible responses are likely
to be highly species-specific, given the diverse toxicity, physi-
ology, biology, and ecology of HAB organisms. Thus, the fore-
casting of such changes is still quite speculative, requiring long
time series of ecological processes, as well as more focused
research (including modelling).

This review was stimulated by discussions at the ‘Oceans
and Human Health at the beginning of the 21st century’
workshop held in Bedruthan (Cornwall, UK) in March 2014.
This paper is not an exhaustive review of all the different
factors concerning the occurrence of HAB events (see e.g.
GEOHAB, 2001, 2005, 2006, 2008, 2010, 2012; Zingone &
Wryatt, 2005; Gowen et al.,, 2012). Instead, we summarize the
main direct impacts of HABs on human health. We describe
briefly the influences of HABs on human wellbeing, mainly
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through the negative consequences to ecosystem services and
other marine organisms and environments. Other aspects of
the possible interconnections between human wellbeing and
HABs have yet to be investigated. Based on this evidence, we
highlight the main challenges posed by marine HABs, and we
discuss the tools available to respond to HABs in the coming
years, especially within the context of climate warming.

DIRECT I IMPACTS OF HABS ON
HUMAN HEALTH

As noted above, the direct impacts of HABs in marine waters
on human health are linked to poisoning (Box 1) associated
with eating contaminated seafood (Figure 2), skin contact
with contaminated water, and/or inhaling aerosolized biotox-
ins. In addition to human health conditions associated with
known toxins produced by microalgae, there exist emerging
phycotoxins and risks of poisoning through biotoxin contami-
nated desalinated drinking water. In the remaining text, the
terms ‘biotoxin’, ‘phycotoxin’ or ‘toxin’ will be used to refer
to toxic compounds synthesized by the marine microalgae.

Box 1. Main HAB toxic syndromes (in alphabetical
order), Biotoxins (T), Causative Organisms (O), Symp-
toms (S), Route of exposure (E), Main Geographic
Affected Areas (A), some References (R).

*Amnesic Shellfish Poisoning (ASP):

T: Domoic acid and isomers

O: Pseudo-nitzschia spp. and Nitzschia

S: Nausea, vomiting, diarrhoea, headache, dizziness, con-
fusion, disorientation, short-term memory deficits, and
motor weakness. Severe cases result in seizures, cardiac
arrhythmia, respiratory distress, coma, and possibly death

E: Consumption of shellfish (possibly, fish)

A: Worldwide, affecting seafood and fisheries activities

R: Bates et al. (1989); Martin et al. (1993); Scholin et al.
(2000); Fehling et al. (2004)

*Azaspiracid Shellfish Poisoning (AZP):

T: Azaspiracid and its derivatives

O:  Amphidomataceae  (Amphidoma  languida,
Azadinium spinosum, Azadinium poporum, Azadinium
dexteroporum)

S: Nausea, vomiting, severe diarrhoea, abdominal
cramps; effects on mice tests include severe damage to the
intestine, spleen and liver tissues in animal tests

E: Consumption of shellfish

A: Seafood poisoning reported from shellfish in Europe
and North America

R: Twiner et al. (2008, 20123, b, 2014); Klontz et al.
(2009); Tillmann et al. (2009, 2014); Hess et al. (2014)

*Ciguatera Fish Poisoning (CFP):

T: Ciguatoxin
O: Gambierdiscus spp., Fukuyo spp.
S: Nausea, vomiting, diarrhoea, numbness of mouth and
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extremities. Neurological symptoms may persist for several
months

E: Consumption of coral reef fish

A: Endemic in the tropics and subtropics, expanding to
temperate latitudes

R: Friedman et al. (2008); Litaker et al. (2010); Chinain
et al. (2010a, b); Tester et al. (2014)

*Diarrhetic Shellfish Poisoning (DSP):

T: Okadaic acid and its derivatives (dinophysistoxins)

O: Dinophysis spp., Prorocentrum lima

S: Nausea, vomiting, severe diarrhoea, abdominal
cramps, respiratory distress

E: Consumption of shellfish

A: Worldwide, affecting seafood and fisheries activities

R: Yasumoto et al. (1980); Kat (1983); Reguera & Pizarro
(2008); Raine et al. (2010); Reguera et al. (2014)

*Neurotoxic Shellfish Poisoning (NSP) and respiratory
irritation:

T: Brevetoxins

O: Karenia brevis (predominantly)

S: By seafood poisoning: nausea, temperature sensation
reversals, muscle weakness, and vertigo. Exposure to aero-
sols related to respiratory and eye irritation particularly
for asthmatics

E: Consumption of shellfish (and fish at least for marine
mammals); inhalation of marine aerosols during active
blooms

A: Particularly in the Gulf of Mexico and Japan, China,
Korea, New Zealand

R: Watkins et al. (2008); Fleming et al. (2011)

*Palytoxicosis (foodborne poisoning) and other irritative
symptoms:

T: Palytoxin, Ostreocin, Ovatotoxin

O: Ostreopsis spp.

S: Associated to food-borne poisoning: nausea, vomiting,
severe diarrhoea, abdominal cramps, lethargy, tingling of
the lips, mouth, face and neck, lowered heart rate, skeletal
muscle breakdown, muscle spasms and pain, lack of sensa-
tion, myalgia and weakness, hypersalivation, difficulty in
breathing. Exposure to aerosols: eye and nose irritation,
whinorrhoea, general malaise, fever. Cutaneous irritations
in beach swimmers

E: Consumption of seafood; inhalation of marine aero-
sols; direct contact with water A: Food-borne poisoning in
the tropics and subtropics; respiratory and cutaneous irrita-
tions in Mediterranean beaches

R: Deeds & Schwartz (2010) (references therein); Tubaro
et al. (2011); Ciminiello et al. (2010, 2013); Vila et al. (2012)

*Paralytic Shellfish Poisoning (PSP):

T: Saxitoxin and derivatives

O: Alexandrium spp., Pyrodinium bahamense var. com-
pressum and other species, Gymnodinium catenatum, some
calcareous red macroalgae

S: Nausea, vomiting, diarrhoea, numbness and tingling of
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the lips, mouth, face and neck. Severe cases can result in par-
alysis of the muscles of the chest and abdomen leading to
death

E: Consumption of shellfish, crustaceans, fish

A: Worldwide, affecting shellfish activities

R: Ayres (1975); Gaines & Taylor (1985); Anderson et al.
(1989, 20052, b)

Food-borne diseases: overview

Poisoning through the ingestion of biotoxin-contaminated
seafood is the best documented impact that HABs have on
humans (Figure 2, Box 1). The poisoning process involves
the bio-concentration of the biotoxins by filter feeding fauna
(mostly bivalve molluscs, e.g. Mytilus spp.) which themselves
are generally unaffected by these compounds. Other vectors
include certain marine gastropods (e.g. whelks and moon
snails), some crustaceans (e.g. crabs), echinoderms and fish
(e.g. some planktivorous fishes or belonging to the tetraodon-
tidae family) that acquire biotoxins through the food web
(Deeds et al., 2008). Toxins accumulated in seafood tissues
can remain for considerable lengths of time after the bloom
has declined in the seawater. Further, these biotoxins are
not destroyed by cooking or by the processing of seafood pro-
ducts, and because they do not have distinctive odours or
taste, they can be detected only through specialized laboratory
testing (Zaias et al., 2010).

Most algal toxins are primarily neurotoxins (e.g. brevetox-
ins affecting the Na* channels), although they are also known
to affect human health through other routes (e.g. okadaic acid
affecting phosphatase activity). The various toxic compounds
can produce a wide range of symptoms and thus have been
associated with several clinically described syndromes
depending on the main symptomatic mode (Box 1): amnesic
(ASP), azaspirazid (AZP), diarrhetic (DSP), neurotoxic
(NSP) and paralytic (PSP) shellfish poisonings and ciguatera
fish poisoning (CFP). The syndromes can present with symp-
toms from the nervous, digestive, respiratory, hepatic, derma-
tological or cardiac systems (e.g. Baden & Trainer, 1993). The
effects can be acute (e.g. paralytic shellfish poisoning can
occur within minutes to hours; Medcof, 1985) and can last

for weeks to months (e.g. ciguatera fish poisoning; Friedman
et al., 2008). Although there is considerable knowledge on
the acute health effects caused by HAB biotoxins, many of
the toxicological mechanisms are incompletely understood.
In addition, we know little about the chronic effects of these
biotoxins, either from acute exposure that produces long-
lasting damage, or from chronic low-level exposures over
long periods of time.

For the food-borne syndromes, the prevention of contami-
nated shellfish reaching the markets (by monitoring the causa-
tive species and/or the presence of biotoxin in seafood in real
time) is currently the only effective way to protect human
health. In fact, well-structured monitoring programmes target-
ing the causative organisms and toxins in commercial seafood
associated with the clinical syndromes (i.e. ASP, AZP, DSP,
NSP and PSP) have proven effective in reducing the human
exposure to biotoxins in many areas of the world.
Information about operative HAB monitoring programmes is
not compiled at a worldwide scale, only at regional as for the
North Atlantic by the ICES (International Council for the
Exploration of the Sea) - IOC UNESCO Working Group on
Harmful Algal Blooms Dynamics (http://www.ices.dk/com-
munity/groups/Pages/WGHABD.aspx). However, monitoring
could be enhanced by complementing it with additional actions
such as informing the public in non-commercial areas affected
by HABs (e.g. Reich et al., 2015) and increasing the understand-
ing of the complex processes involved in harmful events (e.g.
Whyte et al, 2014).

Unfortunately, due to increased human pressure on
coastal marine ecosystems together with global warming,
harmful blooms may occur in areas where they have not pre-
viously been reported (Trainer et al., 2013). Also, new bio-
toxins are continually being identified. For these cases,
toxin detection and identification of the causative organism
represent new challenges for monitoring and management
procedures (Turner ef al., 2015). It is also noteworthy that
for ciguatera fish poisoning, the most frequent cause of
HAB-associated poisoning in tropical waters, effective pro-
cedures to protect human populations are lacking (see
Sections ‘Most common biotoxin syndromes in temperate
latitudes’ and ‘Better quantification and prevention of the
impacts on human health: HAB-related disease surveil-
lance’). Increased international tourist travel and trade in
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Fig. 2. Biotoxin transfer pathways through the marine food web to humans. A biotoxin-producing organism, such as the dinoflagellates Dinophysis acuta or
Alexandrium catenella, is bioaccumulated by shellfish, which are apparently not affected by saxitoxin or lipophilic biotoxins. Consumption of the
contaminated shellfish is a traditional way of diarrhetic or paralytic poisoning (DSP, PSP). Alternatively, some toxicogenic species attach to surfaces
(macrophytes, corals) by an endogenous mucus (e.g. Gambierdiscus, Ostreopsis, Prorocentrum lima). Fragments of corals or macrophytes covered by the
microalgae enter the food web through ingestion by herbivorous fish. This is the transmission mechanism of ciguatera fish poisoning (CFP). Certain fishes

can also experience some sort of poisoning.
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seafood can lead to poisonings in areas far from where the
fish is caught (Mattei et al., 2014).

MOST COMMON BIOTOXIN SYNDROMES IN

TEMPERATE LATITUDES

In the temperate latitudes of Europe, South Africa, Asia,
Australia, North America and South America, the most
common HABs cause amnesic (ASP), azaspiracid (AZP), diar-
rhetic (DSP), neurotoxic (NSP) and paralytic (PSP) shellfish
poisonings (Box 1).

Domoic acid, a neurotoxin produced by various species of
Pseudo-nitzschia and Nitzschia, was identified as responsible
for causing an outbreak of amnesic shellfish poisoning in
humans (involving 107 illnesses and three deaths) after the
consumption of blue mussels from Prince Edward Island
(Canada) in 1987 (Bates et al, 1989; Todd, 1993). Since
then, blooms of these pennate diatoms have resulted in a
range of, often large-scale, shellfish toxicity events, affecting
humans and other large vertebrates (see Section Tmpacts of
HABs on non-market, passive use values of marine ecosys-
tems’ and Box 2). Symptoms of ASP poisoning in humans
include short- and long-term memory loss.

The azaspiracids, first identified in mussels from Ireland in
1995 (Satake et al., 1998), belong to a novel group of polyether
biotoxins produced by the small armoured dinoflagellate
Azadinium spinosum (Tillmann et al., 2009; see also Section
‘Improving monitoring and research needs to forecast and
predict HAB events’). This biotoxin causes symptoms
similar to those displayed by DSP (Twiner et al, 2008),
although slowly progressing paralyses have also been observed
in mouse assays. Azaspiracids have now been found in a
number of other European Union countries with ~20 differ-
ent analogues of AZA identified.

Diarrhetic shellfish poisoning (DSP) was first linked to the
presence of Dinophysis fortii in Japan (Yasumoto et al., 1980)
and to D. acuminata in Dutch coastal waters (Kat, 1983), and
it was recorded after consumption of mussels containing DSP
biotoxins from the Northern Adriatic coast in 1989 (Boni
et al., 1992). Diarrhetic shellfish poisoning is caused by
okadaic acid or its derivative dinophysistoxins, produced by
10 species of the genus Dinophysis, two species of the genus
Phalachroma (Reguera et al., 2012), and Prorocentrum lima
(Koike et al., 1998). In humans, DSP biotoxins bind to phos-
phatase receptors, causing severe, but not usually fatal, gastro-
intestinal symptoms (with a rapid onset). DSP outbreaks are
common in Europe, affecting shellfish consumers in at least
10 countries. On occasion, outbreaks have resulted in large
numbers of people becoming ill, and shellfish harvest areas
have been closed for up to 10 months (e.g. Fraga & Sanchez,
1985; Haamer et al, 1990; Lassus et al, 1985; Ramstad
et al., 2001; Blanco et al, 2005, 2013; Vale et al, 2008;
review by Reguera et al., 2014).

For regulatory purposes, the more recently discovered pec-
tenotoxins and yessotoxins are classified within the DSP
group. Pectenotoxins are produced by some of the Dinophysis
species including D. acuta and D. acuminata. Yessotoxins
induce similar symptoms but are produced by the dinoflagellates
Lingulodinium polyedrum and Protoceratium reticulatum (Paz
et al., 2004 and references cited there in). Recently, experts
have recommended the deregulation of pectenotoxins and
yessotoxins due to research results finding a non-toxic effect
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of the oral administration of these substances in mice
(ICES, 2006).

Brevetoxin is the collective name given to a class of biotox-
ins that causes neurotoxic shellfish poisoning (NSP).
Brevetoxins are produced primarily by the naked dinoflagel-
late Karenia brevis. In the Gulf of Mexico, and in isolated
instances along the South-east Atlantic coast of the USA,
blooms of K. brevis have caused water discolouration,
large-scale finfish mortality events, human poisonings due
to the consumption of shellfish, and respiratory problems in
asthmatics caused by inhalation of biotoxin in the form of
an aerosol (Morris et al, 1991; Magana et al, 2003;
Kirkpatrick et al., 2004; Watkins et al., 2008; Fleming et al.,
2011). Notably, NSP has not been linked to fatalities in
humans (van Dolah, 2000). The occurrence of toxic
K. brevis red tides was recorded as early as 1648 in the
Western Gulf of Mexico and since the 1840s in Florida
(Magana et al, 2003; Kirkpatrick ef al., 2004).

Paralytic shellfish poisoning (PSP) is caused by saxitoxin
and its derivatives, potent neurotoxins that can cause
headache, nausea, facial numbness, and, in severe cases, respira-
tory failure and death. The first likely cases in the UK were in
1827 in Leith and in 1888 in Liverpool (Ayres, 1975). In
British Columbia (Gaines & Taylor, 1985) and Norway
(Yndestad & Underdal, 1985), the first recorded outbreaks of
PSP were in 1793 and 1901 respectively. Medcof (1985)
reported toxic shellfish episodes from the 1930s and 1940s. In
Europe and North America, PSP is mainly associated with
blooms of the thecate (armoured) dinoflagellate genus
Alexandrium, mainly A. tamarense/funyense/catenella group
and A. minutum (Medlin et al., 1998; Higman ef al., 2001;
Lilly et al, 2007; Touzet et al, 2007), although some
Alexandrium species and strains are non-toxic. In Asia (the
Philippines, Malaysia, Brunei and Indonesia, Papua New
Guinea), PSP is mainly produced by outbreaks of the armoured
dinoflagellate Pyrodinium bahamense var. compressum. In the
Philippines, this species was responsible for 1995 cases with
117 deaths linked to PSP toxicity between 1983 and 1999
(Azanza, 1999; Azanza & Taylor, 2001).

CIGUATERA FISH POISONING (CFP)
Worldwide, ciguatera fish poisoning (CFP) is the most
common food poisoning associated with a natural, non-
bacterial chemical, and it occurs throughout the tropics, par-
ticularly in vulnerable island communities such as the Pacific
Island Countries and Territories (PICTs). Ciguatoxins, or
their precursors, are produced by several species of the
benthic  dinoflagellate genus  Gambierdiscus  (mainly
G. toxicus). The biotoxins are modified through metabolic
pathways in the food web of coral reefs, and they tend to accu-
mulate in fish, particularly larger carnivorous species such as
barracuda (Sphyraena spp., Heymann, 2004), but they also
have been found in more than 400 fish species. After consum-
ing ciguatoxin-contaminated fish, a range of acute neurologic-
al, gastrointestinal and cardiac symptoms have been reported,
with some individuals experiencing chronic neurological
symptoms lasting weeks to months (e.g. Freudenthal, 1990;
Friedman et al., 2008; Skinner et al, 2011, and references
cited therein). Repeated exposure to ciguatoxins can reported-
ly exacerbate the acute ciguatera symptoms (Bagnis et al.,
1979; Pottier et al., 2001).

CFP is a threat to public health throughout tropical areas, and
it is the most widespread, and hence best described, in the island

65


https://doi.org/10.1017/S0025315415001733

66

ELISA BERDALET ET AL.

nations of the Pacific and the Caribbean (for reviews, see Brusleé,
1997; Lehane & Lewis, 2000; Friedman et al., 2008; and refer-
ences therein). Unfortunately, the real extent of illness is not
well documented due to under-reporting and misdiagnosis
(McKee et al., 2001; Radke et al., 2015). Thus, its impacts on
human communities and ecosystem health are still poorly
understood. Data from the Health and Fisheries Authorities of
17 PICTSs (Skinner et al., 2011) estimated a mean annual inci-
dence of 104 cases per 100,000 people across the region during
1973 -83. Based on these estimates, the recorded CFP incidence
in the South Pacific should be increased by 60%, i.e. up to 194
cases per 100,000 people between 1998 -2008.

CEFP illness rates exhibit high variability, reaching particularly
elevated levels in some areas. For instance, up to 497 cases per
10,000 population per year were recorded in French Polynesia
including Raivavae Island (Austral archipelago) between
2000-08 (Chateau-Degat et al, 2009; Chinain et al, 2010b),
and up to 440 cases per 10,000 population per year in the
Caribbean between 1996-2006 (Tester et al., 2010). Despite
uncertainty about the real incidence, data suggest that CFP con-
stitutes an acute and chronic illness with major public health sig-
nificance at both local and more widespread levels. In future, the
health problem could be exacerbated due to anthropogenic pres-
sures, such as the increased development of coastal zones, ocean
warming (e.g. Villareal et al., 2007; Kibler et al., 2015), or natural
disasters, such as hurricanes. These pressures can lead to the
damage of coral reefs, favouring more resilient macroalgae
that constitute new surfaces for the proliferation of the involved
toxicogenic benthic dinoflagellates (e.g. Chateau-Degat et al.,
2005; Tester et al., 2010).

It is inherently difficult to cope with CFP as a public health
problem. For example, the risks of CFP often have been trad-
itionally ‘managed’ by native fishermen using their local, trad-
itional knowledge, who may warn each other about areas
where ciguatoxin-contaminated fish are known to occur.
With increasing trade and coastal tourism, CFP cases could
occur in non-tropical areas, where ciguatera often goes unrec-
ognized or diagnosed only after expensive investigation
(Epelboin et al., 2014; Mattei et al., 2014). There is neither a
reliable, cost-effective method for detecting the biotoxin nor
is there a biomarker to diagnose the illness in humans. A
review by Friedman et al. (2008) describes the clinical
course of CFP and its possible treatments, many of which
may be unclear to other healthcare providers and public
health practitioners, even in endemic areas.

POISONING BY PALYTOXIN AND ANALOGUES

Ostreopsis is a dinoflagellate genus co-occurring with
Gambierdiscus. In tropical Indo-Pacific latitudes, Ostreopsis
has been associated with poisoning after the ingestion of
clupeid fishes, crabs or sea urchins contaminated with paly-
toxin (PLTX) (Noguchi et al., 1987; Taniyama et al. 2003;
see review by Deeds & Schwartz, 2010, and references cited
therein). This compound and its analogues (Ciminiello et al.,
2011, 2015 and references therein; Brissard et al, 2015) are
among the most potent biotoxins of marine origin.
Nevertheless, in spite of the well-documented but very
limited number of severe PLTX-related poisoning cases in
these tropical areas, the true risk of PLTX poisoning through
seafood consumption in humans is difficult to assess. This is
due to the co-occurrence of PLTX with other seafood biotoxins
(e.g. ciguatoxins, saxitoxins and tetrodotoxin), the distribution
of PLTX mainly in the tropical areas of developing nations with
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little surveillance and reporting, and its prevalence in reef
species that are not commercially harvested.

Ostreopsis seems to be expanding to temperate latitudes
(Rhodes, 2011), and recurrent blooms have occurred in
Mediterranean waters during the last two decades (e.g.
Mangialajo et al, 2011; Illoul et al, 2012). In this region,
Ostreopsis proliferations have been related to aerosol expo-
sures at bathing beaches (see Section ‘Ostreopsis cf. ovata and
respiratory irritations’) and macrofaunal mortalities (Box 2).
Fortunately, to date, food poisonings related to the PLTX-like
group have not been reported in the Mediterranean, although
the biotoxin has been detected in certain marine fauna (e.g.
Aligizaki et al., 2011; Biré et al, 2013; Brissard et al., 2014;
Ciminiello et al., 2015). The European regulation to monitor
PLTX has not yet become established, although the Panel
on Contaminants in the Food Chain (CONTAM Panel) of
the European Food Safety Authority (EFSA, 2009) assessed
the risks to human health associated with the presence of
PLTX-group biotoxins in shellfish, recommending a maximum
concentration of 30 pg eqPLTX kg™* fresh weight. Overall,
the few available data suggest a growing potential risk of
seafood contamination (from commercial or recreational
fishing or aquaculture) in Mediterranean coastal waters (espe-
cially in those affected by recurrent Ostreopsis blooms).

The possible transfer and accumulation of the PLTX-like
group of biotoxins through the food web to humans should be
investigated further. Because Ostreopsis exhibits both benthic
and planktonic phases (Bravo et al., 2012), its dispersion is facili-
tated, increasing the number of seafood types that could become
contaminated and complicating its monitoring. The planktonic
stage can contaminate filter-feeding bivalves (e.g. mussels),
while the benthic stage can enter the food chain through herbi-
vores (e.g. sea urchins, crabs, gastropods, salps) that feed on
macroalgae (Brissard ef al., 2014). PLTX-like biotoxins can then
be transferred to omnivores and carnivores, including humans.

EMERGING BIOTOXINS

Cyclic imines

Cyclic imines (gymnodimine, spirolides, pinnatoxins and
others) have been produced reportedly by a number of dino-
flagellates (Karenia selliformis, Vulcanodinium rugosum,
Alexandrium ostenfeldii and A. peruvianum). They are classi-
fied typically as fast-acting biotoxins due to the rapid mortal-
ity occurring in the mouse bioassay for lipophilic biotoxins
(Molgo et al., 2014, and references cited therein). Both gym-
nodimine and pinnatoxins had been associated initially with
acute human food poisoning events (Seki et al, 1995;
Uemura et al., 1995). Further studies indicated that other bio-
toxins (i.e. brevetoxins in the case of the New Zealand shellfish
poisoning assumed to be caused by gymnodimine) or bacterial
(Vibrio) contamination (in the case of the Chinese poisoning
assumed to be caused by pinnatoxins) were in fact responsible.
Pinnatoxin-G has been reported worldwide (e.g. Rhodes et al,
2010, 2011; Rundberget et al., 2011; McCarron et al., 2012),
with the highest levels found in a Mediterranean lagoon in
the south of France (Hess et al., 2013). It should be pointed
out, however, that no food-poisoning-related events have yet
been documented. The chemical stability of this biotoxin to
both acids and bases (Jackson et al, 2012) and the high
binding affinity to the nicotinic acetylcholine (nACh) receptor
raises the spectre of potentially harmful effects to human
health due to the chronic exposure of even low levels of pin-
natoxins (Molgo et al., 2014).
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BMAA

B-N-methylamino-L-alanine (BMAA), a non-protein amino
acid initially reported to be produced by certain cyanobac-
teria proliferating in freshwater habitats (Cox et al., 2005),
has been recently confirmed in marine diatoms (Jiang
et al., 2014a) and in seafood from marine and coastal
waters (Brand et al., 2010; Réveillon et al, 2014, 2015).
Exposure to BMAA has been linked to an increased risk
of neurodegenerative diseases such as amyotrophic lateral
sclerosis (ALS), Parkinson’s and Alzheimer’s diseases
(Bradley et al, 2013). Marine cyanotoxins in general are
a potential cause of unexplained acute food poisoning
(Golubic et al., 2010; Roué et al., 2013, 2014). Additional
research is needed to confirm both these findings and the
possible epidemiological associations between BMAA and
neurodegenerative diseases.

Macro-algae

Food poisoning from macroalgae has been reported from
Asian countries where such foodstuffs are traditionally con-
sumed. Particularly important are the polycavernosides
found in Gracilaria edulis (Louzao et al., 2014, and references
cited therein). As postulated by Daigo (1959), domoic acid has
now been confirmed as a metabolite in Chondria armata fol-
lowing the laboratory culture of these macroalgae (Jiang et al.,
2014b). The occurrence of domoic acid and other glutamate
receptor agonists in macroalgae may be of importance in
studies on the effects of chronic exposures to subacute biotoxin
concentration.

EFFECTS OF CHRONIC AND SUBACUTE EXPOSURE
Marine biotoxins have traditionally been known for their
acute effects. Consequently, regulation at a global scale
(FAO, Codex alimentarius) has focused on preventing acute
poisoning events (Lawrence et al., 2011). Only a few studies
have investigated either chronic effects from an acute expos-
ure episode or chronic exposure to sub-acute levels over
time in humans. Some studies, using in vivo models, have
shown that there may be some adverse health effects from
low-level exposures (either single or repeated) to, for
example, domoic acid. Levin et al. (2005) demonstrated that
prenatal rats exposed to domoic acid exhibited postnatal
effects, e.g. scopolamine susceptibility. In this study, rats
showed persistent hypo-activity, and female offspring in par-
ticular showed poor performance in a maze, following a single
low-dose early postnatal exposure to domoic acid. Baron et al.
(2011) reported locomotor disorders in rats exposed to a low
level of domoic acid. Finally, low-level repeated exposure over
a 36-week period in zebra fish also led to gene alteration and
impairment of mitochondrial function at cellular level
(Lefebvre et al., 2012; Hiolski et al., 2014).

Sub-acute effects are also a potential problem for repeated
or chronic ingestion of low doses of saxitoxins via drinking
water produced from desalination of seawater. Until now,
saxitoxins have been regulated only on the basis of their
acute effects: a maximum permissible level of 3 pg L™ " has
been established for drinking water in Australia, Brazil and
New Zealand. Recent studies suggest, however, that the
effects of chronic ingestion of saxitoxins may include the
alteration of antioxidant defences and the induction of oxi-
dative stress in the brains and livers of mammals (Ramos
et al, 2014; Silva et al, 2014). As mentioned above, the
cyclic imine biotoxins also have the potential to interact
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with receptors involved in neurodegenerative diseases such
as Parkinson’s and Alzheimer’s diseases (Molgo et al.,
2014). Interestingly, in both in vitro and in vivo studies, gym-
nodimine and 13-desmethyl spirolide C showed some pro-
tective effects against Alzheimer’s disease, and hence these
compounds should be considered for further research into
their possible therapeutic applications (Alonso et al,
2011a, b, 2013).

CO-EXPOSURE AND EXPOSURE TO MIXTURES
Co-exposure to different agents can lead to confounding diag-
noses in patients. For example, bacterial contamination in
shellfish may lead to gastrointestinal illness (diarrhoea and
vomiting) similar in degree to that caused by okadaic acid.
Normally, the onset of illness following the consumption of
shellfish contaminated with biotoxins is earlier (a few hours)
than for those contaminated with bacterial pathogens (12-
24 h), because bacteria typically require a period of incubation
in the patient before causing the full effect.

Exposure to mixtures of different groups of biotoxins is
another issue that has not been well studied. Many studies
have reported the co-occurrence of biotoxins in single algal
species or shellfish that were contaminated by different algal
species simultaneously, so the issue should be considered ser-
iously (Hess, 2002, 2010; Amzil et al, 2008; Twiner et al,
2008; Reguera et al., 2012; Suikkanen et al., 2013). In particu-
lar, there is a concern that some of the compounds that do not
normally cause acute shellfish poisoning in humans (e.g. yes-
sotoxins), may be absorbed following damage to the intestinal
tract caused by other biotoxins known to cause harm to
humans, (e.g. okadaic acid and azaspiracids). As pure biotoxin
supplies are very limited for most of the HAB biotoxins, only a
few studies have investigated this potential hazard. Aasen et al.
(2011) investigated the combination of azaspiracids with yes-
sotoxins and did not observe any potentiation when orally
co-administered at sub-acute levels to mice. Similarly, even
a combination of azaspiracids with okadaic acid, two biotoxins
known for their potential to cause harm to the human digest-
ive tract, did not cause synergistic effects when orally adminis-
tered to mice at sub-acute levels (Aune et al, 2012). The
combination of okadaic acid and yessotoxins did not cause
any increased toxicity in the oral mouse model (Sosa et al,
2013). It should be noted that the digestive tract of mice
differs significantly from that of humans (notably in pH),
however, and further studies (possibly involving primates)
may be necessary to rule out the likelihood of synergistic
damage. Finally, some potentiation of domoic acid by peptai-
bols, a fungal metabolite, was shown in a fly larval model (Ruiz
et al., 2010). These varied findings are very much dependent
on the biological model used, and they should be considered
as very preliminary in their nature. Longitudinal studies of
humans exposed naturally to mixtures of biotoxins at indi-
vidually low levels over long periods of time are needed.

Water-borne diseases

In fresh waters, cyanobacteria blooms constitute the main
hazard to the health of humans (and other animals), mainly
through the contamination of drinking waters by cyanotoxins,
such as microcystins (see e.g. Nishiwaki-Matsushima et al.,
1992; Falconer, 1998; Stewart et al., 2008). Direct cutaneous
contact, exposure to aerosols, or swallowing water during
occupational or recreational activities conducted in freshwater
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environments affected by cyanobacteria blooms, also can
cause health problems. In contrast, there is no published evi-
dence, at present, of risks for adverse health effects in humans
from swallowing seawater containing toxic marine microal-
gae, but this possibility cannot be discarded.

Toxic HABs have recently emerged as a potential risk for
the contamination of drinking water supplied by desalination
systems. Worldwide, desalination is rapidly growing to
provide water for domestic consumption and industrial
uses. In 2012, there were more than 14,000 desalination
plants in 150 countries (Anderson & McCarthy, 2012).
About 50% of this capacity was located in the West Asia
Gulf region, 17% in North America, 10% in Asia (apart
from the Gulf), 8% in North Africa and 7% in Europe. In
2008, the installed capacity was 52.3 million m® per day.
Based on a growth rate of 12% per year, the global production
of freshwater by desalination will have reached a capacity of
94 million m® per day by 2015.

Chemical and physical properties, such as the molecular
weight of the common HAB biotoxins (saxitoxins, brevetoxins
and domoic acid, i.e. 300-900 Da), suggest that they should
be efficiently removed by reverse osmosis in the desalinization
process. Support for this assumption was provided by Seubert
et al. (2012) in their study combining laboratory tests and a
5-year monitoring of an operational plant in California. It
has been noticed, however, that some taste and odour com-
pounds (e.g. geosmin) with low molecular weights similar to
the biotoxins mentioned above can pass through pre-
treatment and reverse osmosis membranes (Reiss et al,
2006). Further, the complete removal of biotoxins is not guar-
anteed in membranes with micro-fissures caused by, for
instance, high pressures within the desalination plant
system. Excessive pressures can be caused by the obstruction
of intake filters due to high-biomass blooms, such as the
ones caused by Cochlodinium polykrikoides that occurred in
the Arabian Gulf and Gulf of Oman (Richlen et al., 2010).
Still, the data are limited (e.g. Caron et al., 2010; Dixon
et al., 2011a, b; Laycock et al., 2012), based mainly on labora-
tory studies (without the appropriate up-scaling), and there
are only a few studies (Seubert ef al., 2012) from plants oper-
ating during blooms of biotoxin-producing HAB species.
Therefore, more research is needed to ascertain the fate of bio-
toxins during the desalination process. The potential risk of
chronic exposure to biotoxins requires their monitoring in
drinking water produced in desalination plants.

HABSs and aerosolized biotoxins

KARENIA BREVIS AND BREVETOXINS

Over three decades, multi-institutional and multidisciplinary
studies in the Gulf of Mexico and along the coast of Florida
have explored how the inhalation of aerosols containing bre-
vetoxins during high-biomass, toxic Karenia brevis blooms
can cause respiratory symptoms (e.g. Fleming et al., 2005,
2006, 2011). Beach visitors and full-time lifeguards have
reported respiratory disorders (Backer et al, 2003, 2005),
and studies have shown that people with asthma (and possibly
other lung diseases) were particularly at risk from more severe
and longer-lasting symptoms (Fleming et al, 2005, 2006,
2011; Milian et al, 2007; Bean et al, 2011). More recent
research has modelled the health costs of these effects
(Hoagland et al., 2009, 2014).
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The results of this research have been used to engage with
stakeholders to develop local response management plans to
help minimize societal impacts of Karenia blooms on
human health (e.g. Kirkpatrick et al, 2010; Fleming et al,
2011; Zhao et al., 2013). Information about the likelihood of
health impacts has been used to inform personal decisions
as well. For example, the Gulf of Mexico HAB Forecast (see
NOAA Harmful Algal Bloom Operational Forecast System
(HAB-OFS), https://tidesandcurrents.noaa.gov/hab/, accessed
26 August 2015) in conjunction with a local Beach Condition
Reporting System is used by windsurfers and beach visitors to
decide, depending on the wind, tides and the presence of a
Florida red tide, whether or not to visit a particular beach
on a given day. Thus, current observations and forecasts of
this HAB may help to protect public health by decreasing
exposures to toxic aerosols.

OSTREOPSIS CF. OVATA AND RESPIRATORY

IRRITATIONS

Over the past two decades, extensive blooms of Ostreopsis spp.
have occurred in the Mediterranean (e.g. Algeria, France,
Italy, Tunisia). During these blooms, beach users have experi-
enced upper respiratory disorders (rhinorrhoea), eye and nose
irritation, fever and general malaise, and sought medical care
in hospital emergency departments and primary healthcare
centres (Alvarez et al, 2005; Gallitelli et al, 2005;
Brescianini et al., 2006; Durando et al., 2007; Barroso et al.,
2008; Vila et al, 2008, 2012; Tichadou et al., 2010; Tubaro
et al., 2011; Illoul et al., 2012). A similar situation could also
be occurring in certain beaches in Brazil (Proenca et al.,
2010). The health effects could be caused by exposures to
aerosols containing biotoxins or allergenic substances pro-
duced by Ostreopsis cell fragments or accompanying micro-
biota (Casabianca et al, 2013; Ciminiello et al, 2014).
Reported cases of cutaneous irritation were attributed (but
not proven) to direct skin contact with seawater containing
high concentrations of Ostreopsis cells. At present, studies
(including epidemiological and ecological) are underway to
improve the understanding of Ostreopsis bloom dynamics
and the possible links to human health effects (Vila et al.,
2014; Berdalet et al., 2015).

EFFECTS OF HABS ON HUMAN
WELLBEING

In addition to the risks to human health posed by exposure to
biotoxins, marine HABs can impact other aspects of human
wellbeing, including human commercial and recreational
uses of the coastal and marine environments, such as
fishing, shellfish collection and growing, and tourism, and
non-market, passive uses of the ocean, such as preferences
for particular ecological states. Also, marine HABs may lead
to complex societal responses in the affected human com-
munities, such as the more general avoidance of coastal and
ocean resources due to misconceptions and inadequate com-
munications of health risks. In this section, we refer to the eco-
nomic effects resulting both from biotoxin producing species
(Box 1) and from algal taxa involved in high biomass events
(Box 2). Difficulties in developing estimates of the economic
costs associated with HABs are considered in detail in this
section.
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Box 2. Representative examples of HABs that affect
marine organisms or ecosystems, with effects on well-
being, and on human health in some cases.

Events presented following the alphabetical order of the
Causative organism (CO). The Type (T) of bloom, their
Effect/mode of action in the marine organisms or ecosys-
tem (E/m-a), Effects on humans (E-h), Main Geographic
Affected Areas (A) and some References (R) are indicated.

General information. Certain HABs affect marine
organisms and ecosystems, due to the accumulation of
biomass of particular taxa, which may or may not
produce biotoxins In most cases, fish-killing HAB species
produce haemolytic or cytotoxic biotoxins, which cause
necrotizing degeneration of the fish gills. Other, more
rare or more recently discovered combinations of fish-
killing algae and their biotoxins include goniodomins
(produced by G. pseudogonyaulax), amphidinols (synthe-
sized by Amphidinium klebsii and A. carteri; reviewed by
Louzao et al., 2014) and karlotoxins from Karlodinium
spp- (Bachvaroff et al, 2008; Place et al, 2014; Van
Wagoner et al., 2010). In many cases though, the toxic
compound has not yet been clearly identified.

The breakdown of cells during the decline of a bloom,
with the subsequent degradation and utilization of the
organic matter by bacteria can result in low oxygen con-
centrations of isolated bottom water, causing subsequent
macrofauna mortalities. Other impacts on the ecosystem
include: the reduction of light penetration, production of
excess ammonia, physical damage of fish gills, and hypo-
thermia in marine birds due to the accumulation of
surfactant-like proteins Here we list examples of many
microalgae and a macrophyte involved in HAB events.
More details and examples of these blooms, mainly high
biomass blooms, can be found, among others, in e.g.
GEOHAB, 2001, 2006, 2010 (download free from http://
www.geohab.info).

CO: Akashiwo sanguinea (Dinophyceae)

T: High biomass, non-toxic

E/m-a: Extensive marine birds mortality caused by hypo-
thermia. The microalgae produced high amounts of organic
matter that accumulated at the sea surface. The foam con-
tained surfactant-like proteins, which destroyed the water-
proof and insulation characteristics of the bird feathers

E-h: Unknown

R: Jessup et al. (2009)

A: Pacific North-west (Monterey Bay, California)

CO: Chaetoceros wighami, C. debile (Bacillariophyceae);
Dictyocha speculum (Silicoflagellate) T: High biomass, non-
toxic. Physical damage (silicic cell cover) of the fills gills E/
m-a: Farmed fish kills

E-h: Economic losses (several million pounds)

R: Bruno et al. (1989); Treasurer et al. (2003)

A: Europe (Loch Torridon, Scotland; Shetland Isles)

CO: Chattonella antiqua and C. marina (Raphidophyceae)

T: High biomass, toxic (haemolytic, haemagglutinating
and neurotoxic effects, molecule similar to brevetoxin)

E/m-a: Aquaculture fish and natural fauna kills

E-h: Economic losses (US$o.5 billion in 1972; Australia
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AUS$45.0 million losss of caged bluefin tuna in April 1996)
R: Endo et al. (1985), Marshall & Hallegraeff (1999), and
references cited therein
A: Japan, Australia, India, Florida and China

CO:  Cochlodinium  polykrikoides, Cochlodinium spp.
(Dinophyceae)

T: High biomass, toxic. The toxic compound and mechan-
ism have not been identified yet, with controversial results
(Tang & Gobler, 2008, and refs therein). Toxicity could be
caused by non-hydrogen peroxide, highly reactive, labile bio-
toxins such as ROS-like chemicals

E/m-a: Wild and farmed fish kills; coral and shellfish

E-h: Economiclosses. Hundreds of millions of US$ in fish-
eries losses in Korea alone; more than US$3.0 million in
Vancouver (in 1999); in the Arabian Gulf and Gulf of
Oman, the long-lasting Cochlodinium bloom of 2010 killed
thousands of tonnes of fish, limited traditional fishery opera-
tions, damaged coral reefs, impacting coastal tourism, and
forcing the closure of desalination systems

R: Yuki & Yoshimatsu (1989); Kim et al. (1999); Whyte
et al. (2001); Gobler et al. (2008); Richlen et al. (2010);
Kudela & Gobler (2012), and references cited therein

A: North America, Asia, Australia and Europe

CO: Heterosigma akashiwo (Raphidophyceae)

T: High biomass, toxic. No identified toxic nor toxicity
mechanism, which may affect other aquatic organisms (zoo-
plankton, copepods, benthic larvae)

E/m-a: Aquaculture fish kills

E-h: Economic losses

R:Blacket al. (1991), Yamochi (1989); MacKenzie (1991);
Powers et al. (2015)

A: Atlantic and Pacific coast: Canada, Chile, Japan and
New Zealand

CO: Karenia brevis (Dinophyceae)

T: High biomass, toxic (brevetoxin, haemolytic)

E/m-a: Toxicity to humans and marine fauna by direct
ingestion or aerosolization; manatee mortality during the
active bloom phase; dolphin and manatee poisoning and
mortality through the ingestion of contaminated fish and
aquatic plants during the senescence phase of the bloom.
Fish kills

E-h: Health costs; tourism losses, passive use losses; costs
of beach cleanups

R: Tangen (1977); Steidinger et al. (1998); Bossart et al.
(2002); Magania et al. (2003); Flewelling et al. (2005); Naar
et al. (2007); Campbell et al. (2013)

A: Gulf of Mexico, Florida, North Carolina

CO: Karenia mikimotoi (Dinophyceae)

T: High biomass, toxic (gimnocin, haemolytic)

E/m-a: Fish kills. Mortalities of marine fauna

E-h: Economic losses; passive use losses

R: Dahl & Tangen (1990, 1993); Nakamura et al. (1995);
Gentien (1998); Raine et al. (2001); Satake et al. (2002); Silke
et al. (2005); Vanhoutte et al. (2008); Davidson et al. (2009)

A: Asian and Australian, Northern European waters

CO: Noctiluca (heterotrophic Dinophyceae)
T: High biomass, non-toxic
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E/m-a: Hypoxia and excess ammonia in the environment;
unpleasant odours; water discolouration

E-h: Economic losses (on tourism, not estimated)

R: Bricelj & Lonsdale (1997); Elbrachter & Qi (1998);
Murray & Suthers (1999); Fonda-Umani et al. (2004)

A: Worldwide

CO:  Ostreopsis cf. ovata, O. siamensis (benthic
Dinophyceae)

T: High biomass, toxic

E/m-a: Cells attach to corals, macrophytes or macrofauna
by mucous substances. Toxicity (Palytoxin and analogues)
to marine fauna by direct ingestion or by anoxia. The particu-
lar mechanisms have not been identified yet

E-h: Respiratory irritation, possible gastrointestinal illness

R: Shears & Ross (2009); Mangialajo et al. (2011) and
references cited therein

A: Mediterranean, New Zealand, Brazil, Japan

CO: Phaeocystis (Prymnesiophyceae)

T: High biomass, non-toxic

E/m-a: Production of foam or mucilage (alteration of gas
diffusion and rheologic properties) causing farmed fish
kills; discolouration and repellent odour can impact tourism

E-h: From ~US$0.7 million in Vietnam to ~US$;.5
million in Asian aquaculture (1997, Quanzhan Bay, Fujian
province, China)

R:Lancelotetal. (1987); Schoemann et al. (2005); Hai et al.
(2010) and references cited therein; Arin et al. (2013)

A: Asian coastlines, North Sea, Antarctica

CO: Prymnesium parvum (Prymnesiophyte)

T: High biomass, toxic. A variety of toxic compounds with
lytic effects (allelopathy) that would affect other organisms in
the food webs, as well as haemolytic and cytotoxic effects on
fishes (Blossom et al., 2014)

E/m-a: Aquaculture fish kills

E-h: Economic losses (US$5.0 million)

R: Kaartvedt et al. (1991)

A: Norwegian fjords

CO: Pseudochattonella verruculosa (Dictyochophyceae)
T: High biomass, toxic

E/m-a: Aquaculture fish kills

E-h: Economic losses

R: Mackenzie et al. (2011)

A: New Zealand

CO: Pseudo-nitzschia spp. (Bacillariophyceae)

T: High biomass, toxic (domoic acid, neurotoxic)

E/m-a: Morbidity and mortality of large vertebrates,
including seabirds, sea lions, sea otters, selas, and possibly
whales

E-h: Possible passive use losses

R: Sierra-Beltran et al. (1997); Scholin et al. (2000); Hall &
Frame (2010)

A: Especially, Pacific coast of North America

CO: Ulva (Ulvaceae), macroscopic benthic macroalgae

T: High biomass, non toxic

E/m-a: Hypoxia in the environment; unpleasant odours;
impacts on tourism
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E-h: Beach cleanup costs: US$87.3 million in China;
US$10.3-165.9 million in France, depending on the extent
of affected areas (approximate period 1989 -2006)

R: Hu & He (2008); Zhou et al. 2015 and references cited
therein.

A: China (Qingdao) during the Olympics, Atlantic French
coast

In China, disrupted activities during the Olympic games in
2008

Economic effects of HABs linked to food
security and seafood-related activities

Certain HABs constitute a threat to aquaculture food produc-
tion, which has become a major source of protein (linked to
decreasing wild fish stocks) for expanding human popula-
tions, particularly in coastal communities in developing coun-
tries. Like farming, and sometimes in conjunction with it,
aquaculture helps to support many local and regional econ-
omies (FAO, 2006). Currently, and with respect to the cultiva-
tion (and wild-harvest) of shellfish, the most effective way to
protect humans from HAB-related seafood poisoning is to
monitor for the presence of HAB species or biotoxins and
to enforce periodic closures of commercial and recreational
harvesting or growing areas (Figure 3). Contamination of
seafood products can result in economic losses in shellfish col-
lection and growing, and in the aquaculture of certain finfish.
There may also be losses in ancillary industries, including
processing, distribution, wholesaling and retailing of seafood
(Larkin & Adams, 2007; Morgan et al., 2010).

Estimating the overall economic costs associated with the
occurrence of HABs is complex. These costs vary markedly,
depending on geographic region, seafood product, the fre-
quency and intensity of HAB-related events, the duration of
fishery closures and the costs of healthcare provision. As an
example, Hoagland et al. (2002) estimated the annual eco-
nomic effects of HABs in the USA between 1987 and 1992.
At that time, the economic effects were valued in the order
of US$50.0 million per year; this calculation has been subse-
quently adjusted for inflation to ~US$100.0 million per year
(Hoagland & Scatasta, 2006). It is important to note that
there is considerable variation in estimated impacts from
year to year. This estimate was based on a compilation of
the assessments of economic effects in public health, commer-
cial fisheries, recreation and tourism, and monitoring and
management. Notably, public health effects are the largest
component, representing about 42% of nationwide average
effects during that time period. Although the actual incidence
of ciguatera fish poisoning (CFP) is very uncertain in many
tropical locations, estimates of CFP illnesses comprise 99%
of the total public health costs.

With regards to the specific economic costs of HAB-induced
illnesses, there are very few studies available. The UNEP Global
Environmental Outlook lists the worldwide economic impacts
of algal biotoxins on human health from seafood alone
as ~US$4.0 billion a year (GESAMP, 2001). As a comparison,
the impact of infectious hepatitis from seafood consumption
was estimated to be ~US$7.2 billion per year. The direct
medical care costs associated with the respiratory and digestive
illnesses caused by K. brevis blooms along the Florida coast of
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the Gulf of Mexico ranged from US$0.1-0.7 million annually,
depending on the intensity of the event (Hoagland et al., 2009,
2014). Illness costs might exceed US$1.0 million per year for
large, long-lasting blooms, however, such as one that occurred
during 2005 -06. Assuming that the average annual illness costs
of K. brevis blooms would persist into the future, using a dis-
count rate of 3%, the capitalized costs of future illnesses
would range between US$2.0-24.0 million.

In the particular case of ciguatera fish poisoning, the
average medical costs of diagnosis and treatment in tradition-
ally non-endemic areas, as for instance in Canada, was esti-
mated at about CA$2470 per case, with about 1000 cases
per year related to tourism and food importation in 1990
(Lange et al, 1992; Todd, 1995; Fleming et al, 2002).
Accurate estimates of the human costs of these diseases neces-
sitate an adequate knowledge of their prevalence and inci-
dence, as well as an understanding of their acute and
chronic human health effects (Pennotti et al., 2013).

Any estimation of the economic effects of HABs also
should include an evaluation of the costs of monitoring and
management, which would include, for instance, sampling
programmes or strategies to decrease the risk of HAB occur-
rences (e.g. reducing coastal eutrophication, sustainable use of
the coastal zone, and other human-related activities) or their
impacts (Hoagland et al, 2002). For instance, limiting shell-
fish harvesting closures or varying the timing of shellfish or
finfish harvesting could be useful strategies to reduce the
impacts of HABs, but these actions also may have associated
costs in terms of product marketability. Wessells et al
(1995) found that the occurrence of paralytic shellfish poison-
ing in blue mussels from the Canadian maritimes, leading to
illnesses and subsequent harvest closures, adversely affected
the market for mussels from Maine. Whitehead et al. (2003)
found that, after consumer demand for seafood contracted
upon learning of a HAB-induced fish kill, mandatory
seafood inspection programmes were more effective in restor-
ing consumer confidence and expanding demand than broad
public assurances of seafood safety.

Experience suggests that closure strategies in shellfish pro-
duction areas could be beneficial over the long term, despite
leading to losses in the short term. For example, this approach
has been applied recently in the northern areas of Hokkaido
and Tohoku (Japan) with some benefits. The region provides
more than the 60% of the scallop aquaculture in Japan, account-
ing for about 500 thousand tonnes per year with a value of
~ JPY84.0 billion (~US$700.0 million USD). Paralytic and diar-
rhetic shellfish poisoning events had caused the complete closure
of shellfish harvesting in the 1980s, resulting in dramatic eco-
nomic impacts (Imai et al., 2014). Another example is from
the Galician region of NW Spain. The Rias are a highly product-
ive ecosystem that sustain a production of 0.2-0.3 million
tonnes of mussels (Mytilus edulis) per year. Bans on harvesting
can last up to 9 months (particularly in Dinophysis bloom
hotspot areas), when DSP biotoxin levels exceed European
Union regulatory thresholds (e.g. Blanco et al, 2013). NW
Europe has the highest incidence of diarrhetic shellfish poison-
ing (DSP) in the world, and intensive monitoring of biotoxins
attempts to ensure that any closures of shellfish harvesting are
limited to the minimum time needed.

Some data about the economic losses caused by ichthyo-
toxic HAB species in aquaculture are shown in Box 2. In
most cases, fish-killing HAB species (e.g. Karenia mikimotoi,
K. brevis, Prymnesium spp., Chattonella spp.) produce
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biotoxins with neurotoxic, haemolytic or cytotoxic effects on
fishes. Some HAB species have been linked directly to
massive fish kills, often at aquaculture sites. In 2003, losses
in European coastal waters were estimated at more than
€800 million in fisheries associated with HABs (Scatasta
et al., 2003; note that these are global data, including finfish
and shellfish wild harvests and aquaculture). Analogous
losses in the USA were conservatively estimated at around
US$4.0 million annually, adjusted for inflation (Hoagland
et al., 2002). Kim (2006) reported HAB-related aquaculture
losses in Japan of more than US$1.0 billion annually. Recent
estimates were presented at the PICES (North Pacific
Science Organization) ‘Workshop on Economic Impacts of
Harmful Algal Blooms and Aquaculture’ (Trainer &
Yoshida, 2014). From 2006 to 2012, the total economic
losses in farmed fish and shellfish production was estimated
as ~US$94.0 million for Korea, Japan and China. Note that
many of these estimates are lost sales (gross revenues); they
should be regarded as over-estimates of true economic
losses because they do not account for the avoided costs of
not fishing. Where commercial wild harvest fisheries are
managed inadequately and therefore economically or bio-
logically over-exploited (a common occurrence), lost net eco-
nomic values, representing actual declines in human welfare,
are likely to be a small fraction of reported lost sales.

There may be special impacts of high biomass HABs on the
operation of desalination plants, which would result in the dis-
ruption of water production and significant economic losses.
For instance, in 2008 and 2009, at least five seawater desalin-
ation plants were closed in the United Arab Emirates (UAE)
due to a dense bloom of the ichthyotoxic Cochlodinium poly-
krikoides in the Arabian Gulf and Gulf of Oman that lasted
for more than 8 months (Richlen et al., 2010; Anderson &
McCarthy, 2012). In this particular case, algal biomass
clogged the filtration systems and reverse osmosis membranes.

Impacts of HABs on non-market, passive use
values of marine ecosystems

Certain HABs have noxious, even lethal, consequences on
marine organisms and ecosystems (Box 2), thereby potentially
leading to passive value losses or the degradation of ecosystem
services.

Some taxa produce particular toxic compounds that, given
their high concentrations in the water when the species bloom,
have been involved in mass mortalities of wild fauna.
According to the US National Oceanic and Atmospheric
Administration (NOAA), more than 50% of all Unusual
Mortality Events (UMEs) of wild animals (turtles, dolphins,
manatees, whales, birds; e.g. Scholin et al, 2000), could have
been due to microalgal biotoxins, although it is evident that
this is not a new phenomenon and is also a part of the
natural ecosystem functioning. There are reports of mortal-
ities of wild fish associated with HABs that date back to the
latter part of the 19th century (Whitelegge, 1891). In 1968,
mortalities of sand eels (Ammodytes spp.) and an estimated
80% of the breeding population of shag (Phalacrocorax aristo-
telis) coincided with a bloom of Alexandrium tamarense off
the north-east coast of the UK (Adams et al., 1968; Coulson
et al, 1968). White (1984) documented four cases of fish
kills associated with saxitoxins. Other historical examples
include the deaths of 19 humpback whales off Cape Cod
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(USA), and probably the deaths of pygmy, dwarf sperm and
North Atlantic right whales in the same region, as well as
Southern right whale mortalities in Peninsula Valdés
(Argentina). More recently, Scholin et al. (2000) reported
the deaths of over 400 California sea lions (Zalophus califor-
nianus) along the central Californian coast during May and
June 1998. Coincident with these mortalities, a bloom of
Pseudo-nitzschia australis was reported and domoic acid was
detected in planktivorous fish and in sea lion body fluids.

Jessup et al. (2009) reported extensive marine bird mortal-
ity in the Pacific North-west (Monterey Bay, California) in
winter 2007 coinciding with a bloom of the non-toxic dinofla-
gellate Akashiwo sanguinea. Affected birds had a slimy yellow-
green material on their feathers, and they were diagnosed as
severely hypothermic. This dinoflagellate excretes high
amounts of organic matter that accumulate at the sea
surface. In this case, the sea foam contained surfactant-like
proteins, which destroyed the waterproofing and insulative
characteristics of the bird feathers.

Ostreopsis blooms constitute a particular case of an emer-
ging harmful event that is a growing problem in coastal envir-
onments. Since the end of the 20th century in temperate
waters (e.g. in the Mediterranean, Brazilian and New
Zealand coasts), blooms of this benthic dinoflagellate genus
have been linked to damage to marine fauna (i.e. mussel mor-
talities, loss of spines and death of sea urchins, loss of one or
more arms in sea stars, and coral bleaching) and subsequent
alterations of the coastal ecosystems (Sansoni et al., 2003;
Simoni et al., 2003; Shears & Ross, 2009). In some cases, the
invertebrate community of the affected area has not recovered
to date (Vila et al.,, 2012). Coinciding with these effects, high
cell concentrations of O. cf. ovata (mainly in the
Mediterranean) or O. siamensis (mainly in New Zealand)
were recorded in the water column. Also, highly visible dis-
tinctive rusty-brown coloured mucilaginous films covered
the reef, macroalgae and other sedentary organisms, or
floated in the water column or on the surface. Oxygen deple-
tion seems to be the most likely cause of the observed effects.
Direct toxicity to the fauna (via ingestion of Ostreopsis through
the food web) cannot be ruled out, given that palytoxin analo-
gues (ie. ostreocin and ovatoxin) have been isolated from
certain macrofauna at other Mediterranean sites (Aligizaki
et al., 2008, 2011; Amzil et al., 2012; Biré et al., 2013).

High-biomass Phaeocystis blooms also have been linked to
the deterioration of water quality in some coastal regions of
the North Atlantic and the Mediterranean (e.g. Lancelot &
Mathot, 1987; Arin ef al., 2013). This species produces macro-
scopic colonies embedded into a mucilaginous matrix. The
decay of the blooms results in brownish foams containing
3-dimethylsulphoniopropionate (DMSP), which is responsible
for bad odours (Liss et al, 1994). Although this may result
indirectly in the loss of recreational activities, no economic
assessment has been undertaken yet, and no direct harm to
humans has been reported.

Finally, some studies have suggested that certain HAB
species also could have subtle impacts on ecosystems, by alter-
ing fundamental physiological and biological processes (e.g.
feeding behaviour, life stages, survival strategies, reproductive
capacity) in other organisms of food webs, likely through
allopathic effects (e.g. Fistarol et al, 2003; Tillmann, 2003;
Granéli & Hansen, 2006). These particular effects are not
easy to detect, however, and the underlying mechanisms of
damage to other components of the food webs remain difficult
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to understand (Landsberg, 2002; Shumway ef al., 2003). This
is due, in part, to the spatial and temporal variability of HAB
events and also to the difficulty of isolating their impacts from
those associated with other environmental and/or anthropo-
genic factors (e.g. increased temperature, wave action,
habitat destruction). Both long-term field studies and experi-
mental approaches in the laboratory are required to ascertain
the direct and indirect impacts of HABs in the different com-
ponents of the ecosystems.

The challenges of estimating the economic
costs of HABs

As explained, HABs can lead to economic losses associated
with the costs of treating human illnesses, closures of com-
mercial and recreational shellfisheries, mortalities of fish in
commercial finfish aquaculture operations, declines in
coastal recreation and tourism, and additional investments
in environmental monitoring and the prevention, control or
mitigation of blooms or their consequences (Hoagland et al.,
2002). Hoagland & Scatasta (2006) estimated economic
effects (adjusted for inflation into 2015 US$) in the order of
US$1.0 billion per year in Europe and US$100.0 million per
year in the United States. The European estimate was influ-
enced largely by estimated losses to coastal tourism, which
is affected mostly by high biomass, noxious (blooms causing
high foam volumes, discolouration of the ocean, noxious
odours, or beach closings), but not necessarily toxic, HABs.
Any estimates of the scale of the economic effects of HABs
should be considered very rough approximations, even in
areas where they have been relatively well studied, including
the USA and Europe. Estimates in other parts of the world,
particularly in developing countries, are much more specula-
tive and uncertain. The development of comprehensive and
consistent estimates of losses in economic welfare as a conse-
quence of HABs remains a clear priority for future research.

The reasons why economic estimates often are uncertain
include the wide variety of methodologies used to compile
the assessments, some of which produce estimates of econom-
ic measures that may not be strictly comparable (e.g. sales,
indirect or induced impacts, consumer or producer surpluses,
agency budgets); the wide variety of physical and economic
effects; the episodic and often unpredictable nature of
blooms of different types in many areas; and the wide
ranges of responses of humans to mitigate the adverse
impacts, including, most importantly, switching to next-best
alternative activities or foods. Moreover, these reasons tend
to be context-dependent, because of differences in the capabil-
ities of human communities for responding to HABs as a
natural hazard. For example, shellfish management measures
are well-practiced in many parts of the developed world, such
as in Maine or Florida in the USA, but often non-existent or
difficult to enforce in parts of the developing world, such as
in the coastal bays of the Bohol and Visayan Seas in the
Philippines. Morbidities and mortalities from shellfish poison-
ings, particularly among the underprivileged, are common in
the latter but now exceedingly rare in the former (but see
Reich et al. (2015) for a modern counter-example of neuro-
toxic shellfish poisonings from Florida).

Other so-called non-market, ‘passive’ uses of the coastal
and marine ecosystems, such as for the conservation of pro-
tected species (including marine mammals and sea turtles),
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can in theory be affected by HABs. Even if favoured species or
unique ecosystems are not used directly, humans may experi-
ence a sense of loss that might be evaluated in economic terms.
Studies of passive value losses due to the adverse effects of
HABs on protected species or ecosystems are almost non-
existent. One reason for the lack of estimates of effects on
passive use values is that, although individuals may become
ill or die as a consequence of HABs, such as the deaths of
endangered West Indian manatees (Trichechus manatus)
due to Karenia brevis blooms in south-western Florida, the
populations often are largely unaffected by the mortalities
(in essence, K. brevis blooms could be viewed as one of
many natural sources of mortality). Similarly, the media
often report on ‘large-scale’ finfish kills resulting from
HABs, but the impacts on fish biomass and the growth rates
of fish stocks in the wild often are minor or imperceptible.

Of greater concern to users of coastal and marine ecosys-
tems is the loss of access to commercial or recreational fisher-
ies, especially to high-valued shellfish stocks, such as oysters,
scallops, clams, mussels, crabs, or marine snails, or to areas
used to grow shellfish. Even in such cases, commercial fisher-
men (a market-based, direct use) tend to relocate or to switch
fisheries or occupations, thereby mitigating substantial eco-
nomic losses. Recreational fishermen (a non-market, direct
use) choose another target or another pastime. Further,
seafood consumers also can switch among food options.
When switching occurs, other fisheries, recreational destina-
tions, or food providers may benefit. Because the latter typic-
ally are not ‘first-best” choices, economic losses are ipso facto
incurred in all cases, but the human behavioural switching
response clearly serves to blunt the impacts. Here, policies
to improve the communication of risks, say through the wide-
spread publication of the locations of closures or the species
affected, which facilitates human switching, also may help sig-
nificantly to mitigate economic losses. Finally, shellfish rarely
are adversely affected by blooms, and one consequence of this
‘immunity’ to biotoxins is that areas closed to shellfish har-
vesting may become de facto fishery reserves, helping to con-
serve stocks, provided that the biotoxin is naturally metabolized
or lost after the bloom disappears.

Social impacts of the health risks caused by
toxic HABs. The case of ciguatera fish
poisoning

Within the human communities whose revenue is based on
aquaculture and shellfish activities, HABs may have adverse
social impacts including damaged reputations, decreased
incomes, employment losses, and longer-term changes in
seafood consumption patterns (Magnien, 2001). There has
been very little study of these other human dimensions, and
many social impacts remain mostly conjectural and unex-
plored (Bauer et al., 2009).

In the case of the ciguatera fish poisoning (CFP), it has
been associated with the loss of a traditional food source,
losses in commercial fishing businesses, losses of tourism,
increased costs of medical care, and high costs of monitoring
and management (Epstein & Rapport, 1996). Fear of CFP can
lead to reduced fishing in coral lagoons (Dewailly ef al., 2008),
and to a corresponding increased reliance on pelagic fish or on
a less healthy diet of lower quality, imported, canned fish or
red meat. This new diet, combined with reduced levels of
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physical exercise, may be one factor contributing to the
trend of increasing obesity among Pacific Islanders, accom-
panied by a rising prevalence of chronic diseases (e.g. diabetes,
hypertension and cardiovascular diseases) in indigenous
Pacific populations (Lewis & Ruff, 1993).

Ciguatera fish poisoning outbreaks could harm the econ-
omies of tropical islands, many of which are highly dependent
on local reef fisheries for subsistence, export products, and
tourism. Reduced fishing effort due to endemic ciguatera
has been blamed for losses of traditional fishing knowledge,
as new generations abandon artisanal or commercial fishing.
One example concerns Rarotonga, an island located in the
southern Cook Islands that exhibits the world’s highest inci-
dence of ciguatera poisoning. On Rarotonga, the per-capita
fresh fish consumption decreased from 149 gd ™" in 1989 to
75 gd™ " in 2006, due to concerns about CFP (Rongo & van
Woesik, 2012). Consequently, over the same period, the con-
sumption of alternative proteins, particularly imported meats,
increased. The direct loss in value of marketable goods from
commercial fisheries amounted to NZ$0.8 million (about
US$o0.5 million) per year, and the approximate costs asso-
ciated with dietary shifts amounted to NZ$1.0 million
(about US$0.7 million) per year. With a decline in cases of
ciguatera poisoning in recent years, fresh fish has returned
to the menus of Rarotongans, and per-capita fresh fish con-
sumption increased to 104 gd ™' in 2011.

In a discussion of the effects of HABs on public health, it
should be highlighted that the management of tropical
waters for ciguatera fish poisoning is not well-developed.
In these regions, fishermen usually are able to continue to
access areas where finfish may have bioaccumulated cigua-
toxin, leading to circumstances in which CFP illnesses
may become widespread. Given that, researchers and man-
agers may wish to prioritize characterizing the extent of the
CFP problem in tropical regions and developing ways to
alleviate it.

PRESENT AND FUTURE
CHALLENGES, STRATEGIES AND
OPPORTUNITIES

HABs are natural phenomena that have almost certainly
occurred for thousands of years before recorded history
(Mudie et al., 2002). To humans, HABs constitute a problem
worldwide, but the idea that HABs might be prevented from
occurring is not a viable option. However, improvements in
our understanding of HAB dynamics during the last 40 years
have led to insights for designing strategies to mitigate their
impacts. Successful strategies consider the present situation
and the future prospects of the potential spread and increase
in HAB occurrence as a result of climate and other envir-
onmental changes. Common strategies can be adapted to
address specific, local problems in different parts of our
world. Despite some limitations, new advances in technology
and coordinated international research efforts may help to
improve the management of the impacts of HABs.

Improving monitoring and research needs to
forecast and predict HAB events

Monitoring programmes for HAB species and their toxins
implemented in different areas of the world have clearly
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reduced fatal poisonings in humans (e.g. Davidson & Bresnan,
2009). For example, current monitoring programmes of the
European Union are driven by its Food Hygiene Regulations
(EC) No. 853/2004 and (EC) No. 854/2004, which require
Member States to monitor both for biotoxin concentrations
in shellfish tissues and the presence of marine biotoxin-
producing phytoplankton in coastal waters. Due to different
capacities for undertaking local risk assessments, there are
local differences in the implementation of these monitoring
activities. In general, these programmes have been successful
in safeguarding human health, but continued refinement
will be needed in the future as environmental conditions
shift (particularly climate warming) and human uses of the
coastal ocean change.

Currently missing are programmes of robust monitoring in
developing countries where they are often at best rudimentary,
despite increasing exports of seafood products to other regions
(Reich et al., 2015). Despite their success, established monitor-
ing programmes are not without technical, logistical or cost-
related limitations (DeGrasse & Martinez-Diaz, 2012; Hess,
2012; Suzuki & Watanabe, 2012). Since their inception,
improvements have been linked to advances in technologies
related to sampling, taxonomic and biotoxin analyses, and
observing systems.

Light microscopy constitutes the most widespread moni-
toring tool for harmful algal species, but it is time consum-
ing to employ, and it requires specialized training and
expertise. Development of quantitative biomolecular tools
to facilitate monitoring could improve monitoring. Given
the number of different organisms that have to be tracked,
and the lack of fully quantitative molecular tools for their
enumeration, monitoring agencies cannot currently replace
light microscopy as the primary tool. Maintaining and sup-
porting the training of microscopists in the identification
and quantification of HABs species is necessary for success-
ful monitoring.

While the ability to detect the presence of harmful micro-
algal species in coastal waters can provide an excellent early
warning of the likely occurrence of biotoxins in, for
example, shellfish (e.g. Trainer & Suddleson, 2005), many
uncertainties remain. These include the fact that the presence
of potentially toxic organisms is not always linked to toxicity
in shellfish. For example, in Scottish waters, morphologically
indistinguishable toxic and non-toxic Alexandrium tamarense
cells have been known to occur simultaneously (Touzet et al.,
2010). Furthermore, known-toxic organisms are not always
detected efficiently due to their benthic character, fragility
when preserved, or small size. For example, the azaspiracid
producer Azadinium spinosum measures only 7 X 12 pm.
The link with its produced biotoxin was established recently
in 2007 (Tillmann et al., 2009), only after standards for bio-
toxin analysis were isolated (Satake et al., 2002; Jauffrais
et al., 2012; Kilcoyne ef al., 2012) and biomolecular tools for
tracking the organism in water were developed (Kilcoyne
et al, 2014). Further, toxicity itself is not always well
described. For example, not all of the biotoxins of many
Gambierdiscus species have been described, and they may be
present in complex mixtures in different individual organisms
and blooms. Finally, toxicity may be associated with new,
unexpected vectors or species. For example, in 2002, the con-
sumption of puffer fish from Florida caused neurological
disease in 21 people (Centers for Disease Control and
Prevention (CDCP), 2002). Initially, based on patient
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symptoms and reported puffer fish ingestion, the outbreak
was attributed to tetrodotoxin. A mouse bioassay confirmed
the presence of a Na+ channel blocking toxin, tentatively
identified as tetrodotoxin (usually associated with puffer
fish), in unconsumed portions of fish. Direct measurement
analyses (LC/MS, immunoassay, and receptor binding assay)
confirmed the unexpected presence of saxitoxin in the fish
samples, however, but not tetrodotoxin. Analysis of urine
samples from the victims of the outbreak confirmed these
findings. This was the first confirmed report of saxitoxin poi-
soning associated with puffer fish ingestion in North America
(Landsberg et al., 2006).

Concerning biotoxin detection, bioassays (i.e. the mouse
bioassay) had been used traditionally as a fast way to detect
the presence of toxins in potentially contaminated seafood,
thus raising warnings and preventing the harvest of contami-
nated shellfish. Bioassays are associated with a number of
technical and ethical issues (Hess et al., 2006), however, and
led to their recent replacement with non-animal alternatives
(i.e. cell tissue cultures; e.g. Van Dolah et al, 2012) in many
countries, particularly in Europe (European Commission,
2011). Research efforts are now focused on the development
of multi-toxin methods for the detection of multiple groups
of compounds in biosensor systems (Campbell et al., 2014,
and references cited therein). The large number of compounds
that need to be detected and an inability to validate new tools
for detection mean that many monitoring agencies will need
to continue to rely on either insensitive (and ethically ques-
tionable) mouse bioassays or on comparatively complex and
expensive LC-MS/MS detection methods, neither of which
can be implemented in situ.

A potentially useful sampling technique based on the
passive capture of biotoxins by resins was developed by
MacKenzie et al. (2004). This method has been used success-
fully to trace biotoxins when the producing organisms are dif-
ficult to monitor due to their small size (e.g. Azadinium spp.)
or their benthic habit (e.g. Prorocentrum lima and
Vulcanodinium rugosum; Fux et al., 2009; Zendong et al.,
2014). The technique has not been standardized, however,
and it will need further development for hydrophilic biotox-
ins. At present, the passive capture of biotoxins cannot
easily be automated or adapted for in situ detection.
Furthermore, ongoing refinement of its analytical methods
will be required to meet the challenges of emerging biotoxins
(Turner et al., 2015).

Issues arise with the existing technologies with the fre-
quency of representative sampling of in situ biotoxins and
the toxin-producing microalgae, which rarely takes place
more than weekly, although higher frequency sampling may
be desirable in some coastal waters. In the particular case of
the benthic harmful species (e.g. Gambierdiscus, Ostreopsis,
Prorocentrum lima), sampling techniques require refinements
and standardization (e.g. Tester et al, 2014). As yet auto-
mated, reliable, and affordable systems to detect harmful
species or their biotoxins for routine monitoring in situ are
lacking. While recently some promising techniques have
been developed to detect biotoxin-producing organisms (e.g.
Hess et al., 2012 and references cited therein; ICES, 2015),
they are still viewed mainly as research tools and have
seldom been used in high frequency in situ monitoring. This
is the case of the Environmental Sample Processor (ESP;
Greenfield et al., 2008; Scholin et al., 2009) and the Imaging
Flow Cytobot (IFCB; Olson & Sosik, 2007), two automated
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in situ monitoring platforms deployed in Monterey Bay, the
Gulf of Maine, Puget Sound and the Gulf of Mexico. The
ESP collects and processes water samples in situ, using sensi-
tive and specific molecular assays to detect target HAB cells
and toxins, and transmitting the data to the laboratory in
near real time. The IFCB is an imaging flow cytometer that
captures the high-resolution images and fluorescence
characteristics of all plankton cells (in the 5-150 um size
range) at a high frequency (3 samples per hour); the data
can also be sent to a laboratory in near real time (e.g.
Campbell et al, 2010, 2013). At present, however, they have
very high costs and cannot be deployed to monitor individual
shellfish production areas. Although they cannot replace more
traditional forms of monitoring at present efforts are being
made to facilitate their use for this purpose. Fortunately,
these sophisticated systems are useful tools for advancing
an understanding of the links between HABs and ocean
dynamics.

The adoption of monitoring technologies are affected
strongly by economic costs (Frolov et al, 2013). Some
systems are relatively simple, comprising microscopic analysis
of water samples for particular HAB species and analysis of
shellfish tissues for the presence of biotoxins. Other pro-
grammes involve in situ monitoring of phytoplankton and
model-based forecasts of bloom occurrence, such those
carried out in the Gulf of Maine (e.g. Anderson et al,
20053, b; McGillicuddy et al, 2005; http://www.whoi.edu/
main/topic/harmful-algae-red-tides) or in California Bay
(e.g. Ryan et al, 2005, 2011). According to Bernard et al.
(2014), the costs of monitoring could be on the order of
1 billion USD annually, accounting for 10% of the overall
costs of HABs worldwide, estimated to be at 10 billion USD
annually for marine and fresh waters. A monitoring system
including satellite observations could be made more efficient
by improving international cooperation in the collection,
interpretation and sharing of Earth observation information,
as conceived by the Global Earth Observation System of
Systems (GEOSS, Fritz et al., 2008).

Monitoring, combined with operational oceanography and
modelling, offers the hope of providing forecasts and early
warnings and ultimately predictions of HAB events (e.g.
GEOHAB, 2011; Davidson, 2014). Achieving a predictive cap-
ability would require an adequate understanding of the eco-
physiology of HAB species and the physical and chemical
processes that influence the occurrence of the blooms,
however. One problem is that, in many contexts, such as
remote sensing from satellites, HAB species do not exhibit
characteristics that distinguish them from other phytoplank-
ters. Our understanding of the many different processes (bio-
logical, ecological, physical, chemical, meteorological) that
control HAB dynamics and the dynamics of microalgae in
general is incomplete, making their parameterization in
numerical models extremely difficult. To date, progress has
been constrained by the complexities of biological interactions
and the resulting difficulties in developing ecological models.
One example is the HAB operational forecast (HAB-OFS)
developed by NOAA for Florida and Texas (Stumpf et al.,
2008; http://tidesandcurrents.noaa.gov/hab/). HAB-OFS com-
bines satellite imagery, field observations, models, public
health reports and buoy data to help forecast K. brevis
blooms. Another NOAA effort for forecasting Pseudo-nitzschia
has incorporated input from stakeholder communities in
the state of Washington (Brown et al, 2012). In the Gulf of
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Maine, a coupled physical/biological model (e.g. He et al,
2008) predicts the transport of Alexandrium fundyense cells,
controlled by plume advection and wind forcing. Statistically
based models (Anderson et al., 2009; Lane et al., 2009) have
successfully hindcast Pseudo-nitzschia blooms in Monterey
Bay and Chesapeake Bay. Finally, conceptual models, such as
for Phaeocystis blooms in Vietnam (Hai et al, 2010) and
Dinophysis acuminata (Velo-Suarez et al., 2014) in the Rias
of north-western Spain, have provided new insights into under-
standing the dynamics of blooms and designing preventive
strategies.

Sustained fundamental research could help generate a
better understanding of HAB dynamics, to inform and
improve monitoring programmes, and to design methods to
mitigate the impacts of HABs on human health and
well-being.

Better quantification and prevention of the
impacts on human health: HAB-related disease
surveillance

Determining the true incidence of HAB-related diseases
remains a very significant challenge. The lack of experience
of professionals in the public health and medical communities
with patients exposed to marine biotoxins (e.g. Pennotti et al.,
2013) has led to incorrect diagnoses and failures to report ill-
nesses. Inexperience, in turn, likely results in the under-
reporting of HAB-related disorders, even in areas where
such diseases are endemic. Furthermore, in general, there is
a lack of coordination between marine biotoxin monitoring
and public health surveillance activities.

Under-reporting due to erroneous diagnosis is common
and widespread, and is related, in part, to the lack of diagnos-
tic tools. For instance, the symptoms of diarrhetic shellfish
poisoning (DSP) are non-specific, and, except during excep-
tional outbreaks, neither seafood consumers nor their clini-
cians may recognize the incidence of DSP illness (e.g.
Davidson et al, 2011; Taylor et al, 2013). Taylor &
Harrison (2002) query that ‘[n]o diarrhoeic shellfish poison-
ing has been diagnosed in humans in British Columbia, but,
given its resemblance to diarrhoea caused by bacterial con-
tamination (Vibrio haemolyticus, in particular), would DSP
be detected without testing specifically for okadaic acid or
dinophysistoxin?’ Indeed, routine methods for the detection
of either biotoxins or biomarkers in human tissues or fluids
are virtually absent. [In 2011, nine years after Taylor had
queried whether diarrhetic shellfish poisoning would be
detected in the absence of testing for okadaic acid or dinophy-
sistoxin, 62 illnesses of diarrhetic shellfish poisoning were
reported in British Columbia. Changes were made to the shell-
fish monitoring programme following this outbreak to include
more stringent testing for DSP toxins (Taylor et al., 2013).]

Diagnostic tools for saxitoxins in human urine have recent-
ly been developed (Johnson et al., 2009). A biomarker for low-
level domoic acid exposure of zebra-fish and sea lions
(Lefebvre et al., 2012), is a promising technology for identify-
ing such biomarkers for humans. The verification of ciguatox-
ins in contaminated seafood has been particularly challenging.
Recent advances suggest that an effective and reliable method
will soon be available. Under the auspices of the International
Atomic Energy Agency (IAEA), a radio-labelled receptor
binding assay (RBA) was developed for ciguatoxin, and this
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assay has been tested successfully in the Caribbean and the
Pacific at TAEA-UNESCO-IOC sponsored training work-
shops (Tester, personal communication). A more recent
advance is a fluorescent RBA method that compares favour-
ably with the radio-labelled RBA approach. The fluorescent
method is analogous to a technique implemented for breve-
toxins (e.g. McCall et al, 2012), in that no radioactivity
is involved, making it less expensive to use, and avoiding
hazardous waste disposal costs that can be significant, for
example, in the Pacific islands.

HAB-associated illnesses are a public health issue, and,
accordingly, public health surveillance could be coordinated
with environmental monitoring. Until now, epidemiological
studies typically have been conducted after clusters of disease
outbreaks have occurred (although unfortunately usually
without long-term follow-up to explore the chronic health
effects from acute exposures). New multidiscipliary approaches
could help to identify relevant bloom events, measure biotoxins
in seawater (and in some cases air) and seafood, and identify
symptoms in humans and other animals associated with expo-
sures. In addition, communications with potentially affected
communities could be conducted to promote the understanding
that a particular symptom may be the result of exposure to a
HAB biotoxin.

An example of such an approach can be found in the Gulf
of Mexico, where the link between Karenia brevis blooms and
human exposures and health effects, particularly to contami-
nated aerosols, was established. These efforts facilitated the
successful understanding and mitigation of the human
health risks associated with these events. This large and
costly initiative included coordination among physicians, tox-
icologists, ecologists, stakeholders (including businesses,
public health agencies, Poison Information Centres) and
end-users (Fleming et al., 2005, 2011).

Another initiative with the same aim was the Harmful Algal
Bloom-related Illness Surveillance System (HABISS) (http://
www.cdc.gov/hab/surveillance.htm) that the US Centers for
Disease Control and Prevention (CDC) and other public
health and environmental organizations established to create a
coordinated human, animal and environmental health surveil-
lance network. The simultaneous collection of environmental
and health data over time was considered to have helped
public health practitioners identify long-term trends in
HAB-related diseases in humans and animals. The CDC also
has created a module within the National Outbreak Reporting
System (NORS) to capture HAB-related illnesses. Beta-testing
of the system began in the summer of 2015.

In Europe, similar initiatives, although at a smaller scale,
have been established in the Mediterranean region to develop
tools and strategies to manage the impacts of Ostreopsis
blooms on human health before they can have a wider
impact. Examples conducted at local scale include France
(Tichadou et al., 2010; Lemée et al., 2012) and the Spanish
Catalan coast (Vila et al., 2012), and the Accord RAMOGE
(http://www.ramoge.org) at Mediterranean region level
(mainly on the coasts of Italy, Monaco, France and Spain).

HABs dynamics in the context of global climate
change

Climate plays a fundamental role in the physical dynamics of
the water masses and energy pathways in the ocean, which in
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turn modulate the biogeochemical fluxes and thus nutrient
supplies to microorganisms at the bases of food webs
(Beaugrand et al, 2010). Climate variability modulates eco-
logical events (phenology) and ecosystem characteristics at
different spatio-temporal scales (Longhurst, 2007). As a
result, the dynamics of HABs, as a natural phenomenon, are
also influenced by climate variability.

The Earth’s climate has changed continually over scales
of millions of years, as evidenced by glacial and interglacial
periods. Its climate also exhibits much shorter-term cyclic-
al changes at multiannual to decadal and multi-decadal
scales, such as those reflected in the El Nifio Southern
Oscillation (ENSO) and the North Atlantic Oscillation
(NAO).

Photosynthetic organisms have evolved and adapted with
changes occurring at these different temporal scales (e.g.
Beardall & Raven, 2004). In the last 200 years, however,
since the industrial revolution, human activities have
impacted the Earth dramatically, mainly as a consequence of
the increasing release of carbon dioxide (CO,), methane and
nitrous oxides into the atmosphere. In particular, atmospheric
CO, concentration has increased from 280 ppm to >380 ppm
at present, with values of 750-1000 ppm predicted by 2100
(IPCC, 2008), in comparison to fluctuations between 180
and 300 ppm during the previous 800,000 years.

This rapid and uncontrolled rate of increase in so-called
greenhouse gases has been responsible for an augmentation
in about 1°C of global temperature in the past 20-30 years
(data from the Hadley Centre for Climate Prediction and
Research; shown in figure 1 of Hallegraeft, 2010), with a
further rise of 2-4°C predicted over the next 100 years.
Climate warming is already directly and indirectly impacting
terrestrial and marine ecosystems. In the oceans, increased
temperature in the upper layers can lead to changes in
density which in turn affect the seasonal patterns of
mixing, stratification and circulation, acidification, weaken-
ing or reinforcement of upwelling winds, and modification
of the freshwater inflows to coastal regions (e.g. Bindoff
et al., 2007). These changes may influence many ecological
processes, including the occurrences of HABs. Given the
impacts that HABs have on humans, there is now an
urgent need to investigate the potential effects of climate
warming on the occurrence of HABs. In addition, it will be
important to develop tools for tracking and evaluating
recent and future trends in HAB dynamics at both local
and global scales.

The possible impacts of climate change on toxic marine
HABs include: (1) range-changes in both warm- and
cold-water species; (2) changes in abundance and toxicity;
and (3) changes in the timing of the seasonal window of
growth (e.g. Hays et al, 20055 Moore et al, 2008;
Hallegraeff, 2010; Anderson et al., 2012; Fu et al., 2012). On
the other hand, the effects of climate change on other compo-
nents of the food webs (e.g. predators, competitors, parasites)
could modulate the impact of climate change on the occur-
rence, magnitude and duration of HABs. Some HAB species
may benefit such that their impact on human health and well-
being becomes more severe, whereas others may diminish in
areas that are currently impacted (Hallegraeff, 2010). Our
ability to forecast the directions of change for toxic marine
HABs is constrained by inadequate understanding of the
interactions among multiple climate change variables and
non-climate stressors in conjunction with inadequately


http://www.cdc.gov/hab/surveillance.htm
http://www.cdc.gov/hab/surveillance.htm
http://www.ramoge.org
https://doi.org/10.1017/S0025315415001733

MARINE HARMFUL ALGAL BLOOMS — HUMAN HEALTH AND WELLBEING

designed experiments for investigating decadal- or century-
scale trends (Hallegraeff, 2010; Fu et al., 2012).

Few studies have investigated the effects of projected future
climate change conditions on individual species or genera of
toxin-producing marine microalgae. Of the few studies to
date that have directly investigated future climate change
effects on certain HAB species or genera, most have focused
on the effects of warming. For example, the 2.5-3.5°C pro-
jected increase in sea surface temperature in the Caribbean
over the coming century has been estimated to increase the
incidence of CFP by 200-400% (Gingold et al, 2014). In
Puget Sound, warming has been projected to increase the sea-
sonal window of growth for Alexandrium by ~30 days by
2040, allowing blooms to begin earlier in the year and to
persist for longer periods (Moore et al., 2015). It is important
to remember that these projections are primarily based on
projected changes to water temperature. Other aspects of
bloom ecology and oceanography, such as the location of
nutrient availability, competition with other phytoplankton
species, grazing, and infection by parasites, were not consid-
ered. Therefore, while these initial assessments of greenhouse
gas-driven changes to HAB risk provide insight into potential-
ly important climate pathways that are relevant for bloom
development, more work is needed to understand better the
interactive effects of drivers other than temperature on HAB
occurrence.

An emerging body of work is also focusing on the effects of
ocean acidification on marine HABs. Some experiments per-
formed on Pseudo-nitzschia fraudulenta found significantly
high production of the domoic acid neurotoxin in response
to a combination of low pH and some other factor that
limits growth (Sun et al, 2011; Fu et al.,, 2012; Tatters et al.,
20124, b, 2013), provided that the limiting resource was not
needed for toxin synthesis. Saxitoxin (paralytic shellfish
toxin) production increased with elevated temperature and
increased CO, supply (Kremp et al, 2012), although the
response was highly strain specificc. Much more work is
needed to understand the effect of increasing ocean acidifica-
tion on HAB species, and thus the potential effect on human
health and the ecosystems under this scenario.

In order to evaluate future trends of HAB events, there is a
need to establish the present baseline. Several studies report
that the occurrence and geographic distribution of toxic
marine HABs has increased in certain areas during the past
few decades (Hallegraeff, 1993, 2010; Van Dolah, 2000;
Lewitus et al., 2012). Increased awareness, expanded and
better monitoring and detection of toxic HABs, and the mul-
tiple effects and interactions of human activities (including,
but not limited to, increased nutrient loading to coastal
waters, aquaculture development and transport of seed
stock, ballast water transport) and climate warming may
have contributed to this putative increase (Smayda, 1990;
Hallegraeff, 1993, 2010; Sellner et al., 2003; Gowen et al,
2012). Direct observations of microalgae in coastal marine
waters on timescales sufficient to evaluate climate change
effects and to discriminate the role of other natural or
anthropogenic forcings (e.g. nutrient loads) are typically
lacking. This makes it difficult to establish whether the
observed trends are global or local (Davidson ef al., 2012).
While a few isolated time series do exist (e.g. Borkman &
Smayda, 2009; Kim et al, 2009), they have not yet been
fully utilized to describe changes in the abundances of HAB
species. In some cases, the available HAB data are from
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offshore, such as that generated by the Continuous
Plankton Recorder (CPR) in the North Atlantic (Edwards
et al, 2001, 2006; Hinder et al, 2012). Even though
humans typically encounter HABs and their toxins at the
coastal margins, these offshore time series provide valuable
insights into the ecological responses of HAB species on
timescales relevant to climate change. A small number of
toxic HAB species leave a long-term record of their abun-
dance in bottom sediments as microfossils (Dale et al.,
2006) which could be used to explore time-series of bloom
events. On the basis of similarities in the sediment cyst
records in the Pacific and Atlantic regions of Canada,
Mudie et al. (2002) concluded that climate change (including
surface temperature and storminess) was a main factor
stimulating blooms.

Reported illnesses are also an indicator of toxic HABs (Van
Dolah, 2000); however, seafood is often consumed at long dis-
tances from where harvested. Unless robust information on
the source of the seafood consumed is reported, it is difficult
to identify potential relationships between food-borne
HAB-related diseases and climate. Because most of the
HAB-related diseases are associated with the consumption
of contaminated shellfish, time series of HAB toxins in shell-
fish tissues provide valuable data for evaluating long-term
trends and relationships to climate and in some cases date
back to the 1950s (Trainer et al., 2003). The interactions of
weather and climate are important for understanding patterns
of disease, with climate determining the range of species and
weather determining the timing and intensity of outbreaks
(Dobson & Carper, 1993; Epstein, 2001).

At present, it is clear that we lack sufficient scientific under-
standing of climate-driven changes to nearshore marine envir-
onments, as well as HAB responses to these potential changes,
to provide accurate predictions of future HAB occurrences in
space and time. One option to improve understanding of these
changes would be to facilitate multidisciplinary research and
coordination including stakeholders and policy makers with
the objective to mitigate the impacts of HABs on human
health and well-being. The concern about this need motivates
discussions and meetings in different fora, such as the
Symposium on ‘HABs and Climate Change’ held in
Goteborg, Sweden, 19-22 May 2015 (https://pices.int/meet-
ings/international _symposia/2015/2015-HAB/scope.aspx).

Mitigation strategies for aquaculture

In Japan, several strategies have been adopted to minimize
economic losses to aquaculture (Imai ef al., 2014). In south-
west Hokkaido’s Funka Bay, for example, the scallop culturing
industry has adapted to frequent occurrences of dinoflagellate
blooms that produce the dinophysis toxin and paralytic shell-
fish poisoning (PSP), which typically occur in May and con-
tinue into the summer. Modified approaches to harvesting
were necessitated, in part, by high PSP contamination in the
1980s that stopped shipments of all bivalves. Timing the
scallop harvest every year from December to April avoids
the impacts associated with the toxic bloom season. Scallops
are harvested both for immediate fresh consumption, and
they can be inventoried by boiling and freezing in order to
provide a source of supply during the closed season.

In the Okhotsk Sea, recent occurrences of paralytic shellfish
poisoning contamination of scallops have been predicted
on the basis of movements of the Soya Warm Current.
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The strength of this current prevents the transport of
Alexandrium tamarense, which typically resides in the oft-
shore water masses of the Okhotsk Sea, to locations such as
Monbetsu and Abashiri on the northern coast of Hokkaido.
Adaptive harvesting in response to these forecasts is an effect-
ive way to avoid the impacts of toxic blooms on the bivalve
aquaculture industry. This strategy is effective because of the
fundamental understanding of local HAB dynamics.

Some strategies to mitigate the impacts of HABs on aqua-
culture may have been discounted prematurely and are worth
revisiting. The use of clay to flocculate and remove toxic cells
at some aquaculture sites in Asia (Sengco & Anderson, 2004)
is one example. This approach could be studied further to
explore tradeoffs between the economic losses associated
with fish kills from HABs, the environmental consequences
of clay dispersal, the costs of implementing the mitigation
technology, and toxin accumulation in the benthos.

Communication with the public and
improving literacy about oceans and HABs

Throughout history, humans have learned how to cope with
natural phenomena, including HABs. In some areas, such as
in the Pacific Islands (Chinain et al., 2010b), local traditional
knowledge about ciguatera is functionally correct, albeit scien-
tifically incomplete.

The Spanish explorer Alvar Nufez Cabeza de Vaca
(1490-1558) recorded a place along the northern coast of
Mexico in the Gulf of Mexico, probably not far from
Apalache Bay, where indigenous peoples were unable to
relate the passage of time to the movements of the sun and
the moon, but instead marked the seasons by fishkills
(Ferrando, 1984), which could have been caused then, as
now, by blooms of Karenia brevis.

To people making a living around the Galician Rias, red-
tides (‘purgas de mar’) are familiar events, traditionally com-
pared with menstruation, through which local waters are
cleansed, usually in the autumn. It was general knowledge
that it was unsafe to eat shellfish gathered when the ocean
exhibited a reddish-brownish hue. When mass cultivation of
mussels in the Galician Rias was undertaken by developers,
who were ignorant of the blooms, the dispersal of toxic
mussels became more frequent. One particularly extreme
case occurred during the autumn of 1976 (Estrada et al., 1984).

Fukuyo et al. (2002) note that in Northern Japan, local
folklore advises not to eat shellfish during runoff of snow-
melt into the sea occurring in the early spring. In the UK
and the USA, there is a similar folklore (O’Connor 2008;
Whyte 2013): one should eat shellfish only during months
that are spelled with the letter ‘r’, i.e. avoid shellfish con-
sumption the summer months (May to August) when
HABs are more likely to occur (although bacterial contamin-
ation of the food cannot be discounted). Perhaps, as Fukuyo
et al. (2002) suggest, such folklore has arisen because:

this indicates that toxin contamination of shellfish has repeat-
edly occurred almost every year over a long time, leading to
many tragedies among the local people. Community educa-
tion resulted in self-regulating behaviour to avoid high-risk
fish species and certain fishing locations.

Successful communication about HABs and their effects
can be problematic for many different reasons. In part,
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this is due to the complexity of HAB phenomena, which
are currently difficult to predict and to prevent or
control. Most public health and medical personnel do not
have in-depth knowledge about HABs and their potential
effects on human health and wellbeing. Nowadays, many
coastal communities are not fully informed of the public
health risks of HABs, however, which can result in a phe-
nomenon known as the ‘halo effect’, where human activ-
ities unrelated to the HAB hazards are scaled back or
discontinued (Wessells et al, 1995; Whitehead et al.,
2003; Parsons et al., 2006). A common form of the halo
effect is a reduction in the consumption of all types of
seafood, regardless of the actual risks of consuming phyco-
toxins. Other forms of the halo effect can influence com-
mercial and recreational fishing behaviour and coastal
tourism. Consequently, it would be beneficial to improve
the scientific messages about HABs to the many and
diverse end users and stakeholders.

Fortunately, there are now examples of interesting and
potentially successful dissemination and early warning
activities related to safeguarding human health from
HAB-related toxic episodes. For example, the US National
Oceanographic and Atmospheric Administration (NOAA)
produces HAB Bulletins which provide forecasting of HABs
for managers in the Gulf of Mexico (for Karenia brevis), in
the Pacific North-west (for toxic Pseudo-nitzchia) and the
Great Lakes (for cyanobacteria). The bulletins incorporate
oceanographic modelling, satellite imagery and on-the-
ground monitoring, as well as other information (e.g. real-
time reports from lifeguards and managers). These materials
were developed with stakeholder engagement and input, so
that the outputs are actually useful for and used by the
people (such as beach managers) who need timely informa-
tion. Another example of appropriate communication was
the implementation of a toll-free, 24/7-telephone number
at the Miami Poison Information Centre staffed by poison
specialists trained to discuss HAB exposure and illnesses
in Florida. This resource was signposted on information
panels and brochures placed in beaches, hotels and other
tourist venues. Another useful aspect of this centralized
information resource was that the poison control phone
calls also could be incorporated into HAB human health
surveillance activities to increase case reporting (Fleming
et al., 2011).

Examples in Europe include HAB bulletins that are pro-
duced weekly in both Ireland and Scotland for the aquaculture
industries in these countries (http://www.marine.ie/Home/
site-area/data-services/interactive-maps/weekly-hab-bulletin;
http://www.somuchtosea.co.uk/news/ bulletin_for_shellfish_
farmers.aspx). In the Baltic, the Swedish Meteorological and
Hydrological Institute Service offers reports and almost real-
time information about the algae situation in the Baltic
obtained from satellite data (http://www.smhi.se/en/weather/
sweden-weather/1.11631). In the NW Mediterranean, the
RAMOGE Accord is working to communicate with the
public and stakeholders, communicating through brochures
and web pages, with dissemination activities about the occur-
rence of the Ostreopsis blooms and their impacts on human
health and the environment, and searches to provide tools to
manage them (http://www.ramoge.org/fr/ostreopsis_ovata.
aspx). RAMOGE also fosters the coordination of international
research around the understanding and management of these
events in the affected countries.
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International coordination: the GEOHAB and
GlobalHAB programmes

HABs are a global challenge which needs to be addressed at
local levels by implementing a broad global vision. During
the last few decades, much work has been accomplished to
understand HAB dynamics with the ultimate aim of predict-
ing their occurrences and mitigating their impacts. Studies
and monitoring of toxic phytoplankton and biotoxins have
been conducted at local, national and regional levels, each
with their own particular resources. In addition, international
and interdisciplinary cooperation has been invaluable in
advancing the science of HABs. As an international exemplar,
this cooperative research has been fostered from 2000 to 2014,
by the GEOHAB programme, ‘Global Ecology and Oceanog-
raphy of Harmful Algal Blooms’ (http://www.geohab.info),
with the financial support of SCOR (Scientific Committee
on Oceanic Research) and IOC/UNESCO (Intergovernmental
Oceanographic Commission of UNESCO). As stated in its
Science Plan (GEOHAB, 2001): ‘[t]he scientific goal of
GEOHAB was to improve the ability to predict HABs by
determining the ecological and oceanographic mechanisms
underlying their population dynamics, and integrating bio-
logical, chemical, and physical studies supported by enhanced
observation and modelling systems.’

GEOHAB acted as an umbrella and catalyst for organizing
scientific research on HABs. Moreover, GEOHAB provided a
common and interconnecting aim for individual needs and
efforts. The initiatives sponsored by GEOHAB, including
open science meetings, specific workshops, and training activ-
ities, were publicized as reports, books and special issues in
international journals (http://www.geohab.info).

At the termination of GEOHAB in 2014, the international
scientific community agreed that a coordinated research
approach to HABs was beneficial and still necessary (see
GEOHAB, 2014). Starting in 2015, a new programme,
GlobalHAB, will build on the GEOHAB Science Plan, incorp-
orating the present challenges and opportunities that inter-
national research on HABs requires (Figure 3). Taking
multidisciplinary and international perspectives, GlobalHAB
will integrate key aspects of climate warming and global
change on HABs within the context of the field of ‘oceans
and human health.’

GE@HAB | GlobalHAB |

| Emerging Toxins & Ciguatera |

 Climate Change
Epidemiology

Economic impacts
| Training & Literacy
New Integrated policies

v

HABs Management and Mitigation |

Biodiversity & Biogeography |

MNutrients & Eutrophication |

| Adaptive Strategies

Comparative Ecosystems l

%

Observation, Modelling
and Prediction

Better Oceans and Human Health

Fig. 3. Main elements of the international GEOHAB (2000-2014) and
GlobalHAB (2015-2018) programmes, that aim to contribute to the
advance of the research on HABs.
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CONCLUSIONS

Microalgal blooms are a natural part of the seasonal cycle of
the marine ecosystems around the world. They are key
components of the structure and dynamics of the oceans
and thus sustain the benefits (food supply, recreation, com-
merce, livelihood,) that humans obtain from this aquatic
environment.

However, some microalgal blooms can be harmful to
human health, impact valuable fisheries, and degrade other
marine and coastal ecosystem services. The impacts of these
HABs comprise acute and chronic health effects in humans,
financial losses from contaminated seafood, mortalities of
farmed fish, reduced coastal tourism and altered socio-cultural
aspects. The losses due to HABs of passive values that humans
place on protected species and extraordinary marine ecosys-
tems are more difficult to quantify. There is evidence in
some littoral areas that human pressures may have increased
the occurrence of HABs. Further, global warming and changes
in the climate regime also could affect HAB occurrences and
toxicity, although forecasting the possible trends is still
speculative.

At the beginning of the 21st century, with expanding
human populations, particularly in coastal and developing
countries, there is an urgent need to prevent and mitigate
the impacts that HABs pose on human health and wellbeing.

Because HABs are natural phenomena, it is not possible to
prevent their occurrence. However, the scientific research
conducted over the last four decades, with the support of sta-
keholders, policymakers and the general public, has improved
the understanding of HAB dynamics.

The achieved insights allow defining key priorities and
designing strategies to mitigate the HABs impacts. In this
paper, we have summarized part of the present knowledge
and available tools to address this general objective. Around
the world, at varying levels of government, certain promising
efforts are being attempted to mitigate HAB impacts. These
efforts include:

o Integrating both ecosystem and human health monitoring
for HAB impacts. This involves maintaining or expanding
existing HAB and biotoxin monitoring, and implementing
new monitoring programmes where necessary. It also
includes the monitoring of physico-chemical and meteoro-
logical variables to help ascertain the real effects of climate
and other environmental changes on HAB occurrences and
their impacts.

¢ Maintaining and reinforcing initiatives and local and inter-
national policies to reduce human pressures on the marine
environment that may increase the occurrence of HABs
and the severity of associated events.

e Developing an increased public “ocean literacy” and
expanded engagement with coastal and ocean stakeholders.

We have also identified key research needs that, if
addressed, could greatly enhance our understanding over
HABs and their impacts on health. These questions include:

e Ascertaining real trends in ciguatera fish poisoning inci-
dence, and provide informed projections of potential
future trends.

¢ Ascertaining the risks of new emerging HABs and biotox-
ins (e.g., azaspiracid food-borne poisonings, BMAA and
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neuromuscular diseases, and respiratory irritation in new
areas impacted by Ostreopsis blooms).

e Investigating the responses of HABs (especially regarding
toxin production) to multifactorial physico-chemical
climate drivers and the potential of marine microalgae to
adapt genetically and phenotypically to the unprecedented
rapidity of current climate and other environmental
changes. This will require multidisciplinary collaboration
and appropriately scaled experimental designs.

e Investigating possible interconnections between socio-
cultural aspects of human wellbeing and HAB events.

¢ Advancing in the estimation of the economic costs of HAB
events.

Overall, we emphasize that collaborative research across
natural and social scientific disciplines, as for example, the
Florida Red Tide Research Group and GEOHAB, can lead
to significant advances in our understanding of HABEs,
helping to develop approaches at local and global levels to
lessen their impacts on public health and human wellbeing.
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