
Can. J. Math., Vol. XXIV, No. 1, 1972, pp. 17-28 

CONJUGATE ^-SUBGROUPS OF FINITE GROUPS 

JOHN J. CURRANO 

1. Introduction. Throughout this paper, let p be a prime, P be a ^-group 
of order p \ and <p be an isomorphism of a subgroup R of P of index p onto a 
subgroup Ç which fixes no non-identity subgroup of P, setwise. In [2, Lemma 
2.2], Glauberman shows that P can be embedded in a finite group G such that 
<p is effected by conjugation by some element g of G. We assume that P is thus 
embedded. Then Q = PC\Pg. Let H= (P,Pff) and F = [H,Z(Q)], so 
Ç < # and V < iJ. 

Let £(/>) be the non-abelian group of order ps which is generated by two 
elements of order p. Then E(p) is dihedral if p = 2 and has exponent p \i p 
is odd. If £ is odd, then E* (p) is defined in § 2 to be a particular group of order 
p& and nilpotence class three. Our main results are: 

THEOREM 1. Let G be a finite group, g (z G, and P be a p-subgroup of G of 
order p\ Let Q = P Pi P\ H = (P, Pa), and V = [H, Z(Q)]. Assume: 

(1.1) P is non-abelian, \P:Q\ = p, and g normalizes no non-identity subgroup 
ofP; 

(1.2) H = PO*(H)CH(Q/V) = PgO>(H)CH(Q/V); and 

(1.3) V£Z(H). 

Also assume that the nilpotence class of P is two and that \P'\ = pv. Then t ^ 3i> 
and P is the direct product of an elementary abelian subgroup of order pl~Zv with 
the direct product of v subgroups isomorphic to E(p). 

THEOREM 2. Let G be a finite group, g Ç G, and P be a p-subgroup of G of order 
pK Let Q = P H P9 and H = (P, P°). Assume (1.1), and 

(1.4) H = P*Op(H)CH(Q), and 

(1.5) H = PO*(H)CH(Q). 

Let \P/Z(P)\ = px. Then x is even. Let v = x/2. Then: 
(a) If P has nilpotence class two, then \Pf\ = pv, t è 3z>, and P is the direct 

product of an elementary abelian subgroup of order pl~3v with the direct product of 
v subgroups isomorphic to E(p). 

(b) If P has nilpotence class three, then P is odd, |P3 | = pv, v is even, t ^ Sv, 
and P is the direct product of an elementary abelian subgroup of order pl-3v with 
the direct product of v/2 subgroups isomorphic to E*(p). 
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18 JOHN J. CURRANO 

These theorems are related to the following type of question. Le t S be a 
non-abelian Sylow ^-subgroup of a finite group G, and let a be an automorphism 
of S. We m a y ask whether a fixes any non-identi ty normal subgroup of G con­
tained in S. If not, and if there is an element h in G with G = (5, Sh) and 
\S:S r\ Sh\ = p, we can determine the s t ructure of S. T o see this, let <p:S —> Sh 

be given by <p(x) = (xa)h. Then (1.1), (1.4), and (1.5) can be verified, so 5 has 
nilpotence class a t most three (by Lemma 2.2) and has the s t ructure indicated 
in Theorem 2. 

Our results generalize pa r t of [2, Theorem 2]. There , Glauberman assumes 
t ha t P and P° are conjugate in H and obtains the decompositions we obtain in 
Theorem 2. In [2, § 5], he shows t h a t this assumption implies (1.4) and (1.5). 
He also shows t h a t under hypothesis (1.1), P has nilpotence class two or three. 
Thus , Theorems 1 and 2 completely characterize P under the given conditions. 

(1.1) alone is not sufficient to obtain the decompositions of Theorems 1 and 2, 
as we have shown in [1, Theorems 1 and 2]. Thus , we mus t make some addi­
tional assumptions abou t P . I t appears t h a t (1.2), (1.4), and (1.5) depend on 
the group G in which P is embedded, bu t in [2, § 4], Glauberman shows t h a t 
(1.4) depends only on P and <p and not on G. (His proof also works for (1.2) and 
(1.5).) Thus , (1.2), (1.4), and (1.5) are really s ta tements abou t the s t ructure of 
P. Fur thermore , they are natura l ones to consider. Recall t h a t Op(H) is the 
smallest normal subgroup K of H with H/K a ^-group. (1.5) says t h a t modulo 
CH(Q), H has no proper normal subgroup which contains P. W e factor out 
CH(Q) for two reasons: (1) we shall look a t the action of H on chains of sub­
groups of Q, and CH(Q) contr ibutes nothing to this analysis; and (2) CP(Q) = 
Z(Q) (cf. Lemma 2.4(e)) , and the rest of CH(Q) does not affect the s t ructure of 
P. Similar remarks can be made abou t (1.4) and (1.2). Finally, it can be shown 
t h a t neither (1.1) and (1.4) nor (1.1) and (1.5) suffice to prove Theorem 2. 
(Using [1, Theorem 2], a group can be constructed which satisfies (1.1) and 
(1.4), bu t violates (2.3).) 

All groups considered in this paper are finite. W e write H Ç G if H is a 
subgroup of G; H C G if H Ç G and H 9e G; and H <\ G if H is a normal 
subgroup of G. Le t Gt be the i-th member of the lower central series of G, 
defined inductively by G\ = G and Gi+i = \GU G]. For p a prime, let 0P(G) 
be the subgroup of G generated by all the ^/-elements of G and let GF(^>) be the 
field of the integers modulo p. Finally, let Z2(G) be the inverse image in 
Gof Z ( G / Z ( G ) ) . 

Acknowledgement. This work const i tutes a port ion of the au thor ' s doctoral 
dissertation. T h e au thor is indebted to his advisor, Professor George Glauber­
man, for his encouragement and m a n y suggestions. 

2. P r e l i m i n a r y r e s u l t s . W e now s ta te some facts which we shall need in 
the proofs of Theorems 1 and 2. W e shall also fix some notat ion for the 
remainder of the paper. 
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LEMMA 2.1 (Sims; [1, Lemma 2.1]). If P satisfies (1.1), then: 

(2.1) There are elements x i, . . . , x i %n P which satisfy: 
(a) |(xi, . . . , %i)\ = plfor 1 ^ i ^ t; and 
(b) x / = xi+1for 1 S i ^ t - 1. 

LEMMA 2.2 (Glauberman [2, Theorem 1]). Assume that P satisfies (1.1). 
7 7 ^ the nilpotence class of P is at most three if p is odd and at most two if p = 2. 

Throughout the paper, we assume that P satisfies (1.1). Choose Xi, . . . , xt 

as in Lemma 2.1. Define xt+i = xt°, so PQ = (x2, . . . , xt+i). 
Let u be a positive integer minimal subject to [xjf xu+j\ ^ 1 for some j . 

(u exists by (1.1) and (2.1).) Let v = t — u. 
If P 3 9^ 1, let k be a positive integer minimal subject to [xj, xk+j] £ Z(P) 

for some j . If P 3 = 1, let k = /. Let r = t — k. 
Define ^ = [xu xu+i] for 1 ^ 2 ^ v + 1, and let Z = (z\, . . . , zv). If P 3 ^ 1, 

define wz- = [Xj, xfc+J for 1 S i ^ r + 1. 
The following symmetry principle will be useful: 

LEMMA 2.3 (Glauberman [2, Lemma 3.3]). LeJ n be a nonzero element of 
G¥(p). Conditions (1.1) awd (2.1) <md /&e definitions of u, v, and k remain valid 
if we replace: 

(a) P by P, Q by R, R by Q, g by g - 1 (and thus <p by ç~x), and xt by (x?+i_f)
w 

for i — 1, . . . , t] or 
(b) P by PQ, Qby Q, R by Q9, g by g~l (and thus cp by <p~l), and xt by (xt+2-i)n 

for i = 1, . . . , t. 

LEMMA 2.4 (Glauberman-Sims; [1, Theorem 1 and Lemma 2.2]). 
(a) 2t/S ^ u < u + v/2 ^ k S t. 
(b) [xit xu+i] ^lforl^i^v+1. 
(c) 7 / P 8 * 1, then [xi9 xk+l] (2 Z(P) for 1 ^ i ^ r. 
(d) Z(P) = (xv+1, . . . , Xu), Z(Q) = (XH-I, . . . , xu+1), and P Pi Z(77) = 

P° C\ Z(H) = (xv+2, • . . , xu). Furthermore, these are elementary abelian groups. 
(e) ZQZ(P). 

We shall have use for the following three well-known lemmas: 

LEMMA 2.5 [3, p. 179]. Let S be a p-group and T C AutS. Assume that T 
stabilizes some chain 

S = So 2 Si 2 . . . 2 S. = 1 

0/ normal subgroups of S; that is, T fixes each St and each coset of Si+i in Sf. 
Then T is a p-group. 

LEMMA 2.6 (P. Hall; [3, p. 19]). Let G be any finite group. 
(a) [x, y1, z]y[y, z~l, x]z[z, x~l, y]x = 1 for all x, y, z £ G. 
(b) If class G ^ 3, [x, y, z][y, z, x][z, x, y] = 1 for all x, y, z £ G. 
(c) Let A, B, and C be any subgroups of G. If\A,B,C\ = [B, C, A] = 1, then 

[C,A,B] = 1. 
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LEMMA 2.7 (von Dyck; [4, § 18]). If a group G is given by a system of defining 
relations, and if a group H is given by these relations and some further relations 
in the same symbols, then H is isomorphic to a factor group of G. 

LEMMA 2.8 (Glauberman [2, Propositions 4.5, 4.7, and 4.15]). 
(a) V = <zi, * H - I ) . 

(b) If P satisfies (1.4), then for 1 ^ i ^ v + 1, 

(2.2) zt = x , c w > . . . x w _ p + ^ - p + 1 \ 

where c(v + 1) ^ 0 awd c(u — v + 1) ^ 0. I n particular, V C\ Z(H) = 1, 
F £ Z(P),and V£Z(P°). 

(c) If Pz?£\ and P satisfies (1.4) a^J (1.5), thenv = 2r and for 1 ^ i ^ r + 1, 

(2.3) w, = x r + i d ( r + 1 ) . . . ^u+< d ( , l + 1 ) , 

w&ere d(r + 1) ^ 0 and d ( ^ + 1) ^ 0. 

LEMMA 2.9. V £Z(H) if and only if 

(2.4) 2 l = ^ ^ « . . . xu„v+^u-^\ 

where civ + 1) ^ 0 or c(w - v + 1) ^ 0. 

Proof. By Lemma 2.4, Z ÇI Z(P) = (xv+i, . . . , xu). Using this, the tact t ha t 

%v = Vv~l(zi)i and (2.1), we obtain 

zi = x^!**» . . . Xu-n.!*»-*». 
Then 

zv+1 = <pv(Zl) = x2»+ic("+1) . . . xM+ic(M~»+1). 

By Lemma 2.4, P Pi Z(H) = <xw+2, . . . , xM), so F = (si, zP + i) Ç Z( i7 ) if and 
only if c(w + 1) = c(u — v + 1) = 0. 

LEMMA 2.10. Assume that P 3 = 1. 
(a) If P satisfies (1.4), Jftew i l = P°CH(Q/V). 
(b) If P satisfies (1.5), /Aera # = PCH(Q/V). 

Proof, (b) follows from (a) by symmetry . So assume t h a t P satisfies (1.4). 
Let N = CH(Q/V). Then N <\ H, since Q and F are normal subgroups of H. 
Since [P , < 2 ] Ç P ' Ç Z ( P ) C Z ( Q ) , i^/iV stabilizes the chain 

Q/V^Z(Q)/V^1, 

so i f / iV is a ^-group by Lemma 2.5. Therefore, N 3 Op(H). Bu t clearly 
Ctf(<2) C JV, and the result follows from (1.4). 

T h e following lemma is a generalization of pa r t of [2, Proposition 4.13]. T h e 
proof is essentially the same as in [2]. 

L E M M A 2.11. Assume that P satisfies (1.2) and (1.3). Then 
(a) [P, xu+i] Ç (si, . . . , zt) for 1 ^ i ^ k — u. 
(b) J / P 3 = 1, / t o P ' = Z. 
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Proof. By symmetry, we may assume that zv+i (? Z(H), so c(u — v + 1) ^ 0 
and zv+i $ Z(P), by (2.4). Assume that 1 ^ i S k — u, and that (a) is true 
for all j with 1 ^ j < i. Let i f = (zu . . . , zz-, 2c+i) and N = (xv+i, . . . , xu+t). 
Then i f = F (if H Z(if)) by Lemma 2.3 and (2.4), so i f < H. 

Using the definition of k, we see that Z2(P) = (xr+i, . . . , xk) and 
Z2{Pg) = (xr+2, • • • , x*+i). Then 

Z(P) QNQZ2(P)nZ2(P°), 

so TV < if. 
Let L = CH(N/M), so L < fT. Since F Ç I , C f f ( C / 7 ) C L . Also, 

xv+1 G Z(Ç) and 

(2.5) [P9, (xv+2, . . . , xw+2:)] C <p[P, (xv+h . . . , xM+z-_i)] 
C <p(zu . . . , sz_i) = (z2j . . . ,Zi) Q if, 

by induction if i > 1 and by Lemma 2.4(d) if i = 1, so Q C L. Finally, 
[x^i, xB+i] = sw+i_1, and, together with (2.5), this implies that xt+i £ f>. 
Therefore, 

PgCH{Q/V) QL <H = (P, P'), 

so H/L is a £-group. But then 0P(H) C L, so if = PffOp(H)CH(Q/V) £ L and 
Z, = H. Thus, P QL = CH(N/M), so [P, xw+J C [P, TV] C i f H Z(P) = 
<*1, • • • , « * ) . 

LEMMA 2.12 (Glauberman [2, Theorem 3.7 and Proposition 4.15]). Assume 
that P 3 ^ 1 and that P satisfies (1.4) and (1.5). Then P% = Z and 

P £ \Xr+i, • • • > #&)• 

We now define the group E*(p) discussed in Theorem 2. 

LEMMA 2.13 (Glauberman [2, Lemma 5.7]). Assume that p is an odd prime. 
Then there exists a group S of order pQ generated by elements a, b, c, d, e, f subject 
to the following restrictions: 

(2.6) ap = bv = cp = dp = ep = fp = 1; 

(2.7) ab = ba, ac = ca, be = cb; 

(2.8) ad = daybd = db, d~xcd = cb; 

(2.9) ae = ea, be = eb, ce = ec, e~lde = db\ 

(2.10) af = fa, bf = fb,f-icf = caj^df = d<r\ ef = fe. 

Moreover, S is unique up to isomorphism and satisfies 

(2.11) ZÇS) = Sz= (a,b). 

Proof. To construct 5, let D be the direct product of E(p) and a group of 
order p. Then there exists a set {a, b, c, d} of generators of D that satisfies 
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(2.6) and (2.7). Also, there exist e, f € AutD for which 

ae = af = a, be = bf = &, ce = c, cf = ca, de = dfr, d r = dc -1 . 

Note that ef = /e. 
Since £ is odd, D has exponent p, and e a n d / have order p. Let 5 be the semi-

direct product of D by (e,f). Then we immediately obtain (2.6)—(2.10), 
and easy computations yield (2.11). 

Now suppose that S* is an arbitrary group generated by elements satisfying 
(2.6)-(2.10). Let D* = (a, b, c, d). Then £>* <3 5* and S* = (D*, e,f). Hence, 
|£>*| g p* and |5*/Z>*| g £2. Assume that |S*| = p\ Then D* ^ D and 
D* P\ (e,f) = 1. Therefore, 5* is a semi-direct product of D* by (£,/), and 

Definition. If £ is an odd prime, let E*(p) be the group 5 defined in Lemma 
2.13. 

3. The class two case. In this section, we prove Theorems 1 and 2(a). 

Assume the hypothesis of Theorem 1. By Lemma 2.9, (2.4) holds, so by 
Lemma 2.11, Pr = Z = (zi, . . . , zv). Thus, v — v, so t ^ 3v by Lemma 2.4. 

By (1.2) and (2.1), there are elements a G (x2, . . . , xv) and 

b G (Xfl+i, . . . , xt+i) 

such that Xi_1 = ab (modulo Ci = CH(Q/V)). But (xp+i, . . . , xt+i) is abelian 
modulo V, by (2.1) and the definitions of u and ŝ , so, if y G (xp+2, . . . , x*), 

1 == [3;, xiab] = [y, XiOJly, b]Xia = [y, x\a\ (modulo V). 

Thus, [xia, (xv+2, • • • , xty\ Ç V. But X\a G (#i, . . . , xv+i), which is abelian, so 
[xia, Q] £ F. Thus, xi = a - 1 G Q (modulo Ci), so Xi G QCi and 

(3.1) H = Pd = Qd. 

Then, P = Q(P H d ) D Q, so we may choose * G C P (Ç/F) , x G (?. 
Let x = sy where s = Xia(1) . . . xv

a{v) and y G (xv+i, . . . , xt). By (2.1) and 
Lemma 2.4 (a), sv = 1 and 

(3.2) [s, Q] C [5> <xM+1, . . . , x,)] C [yy, <xw+1, . . . , xt)] Ç F n ? ' = (2 l). 

(Note that zv+i G P ' = Z, by (1.1), since <p(Z) = (z2, . . . , zP+i).) Also, since 
x & Q, s £ Q and therefore a ( l ) 9* 0. 

By symmetry, there is r = xw+2
&(1) . . . xt+iHv) with &(*/) F^ 0, TV = 1, and 

[r, Q] Ç («H.!). 

Define 5, = ^ C O , *< = <^~(*+1)0-), and St = (st, tt) for I ^ i ^ v. We 
first show that St ^E(p) and [S,, 5 J = 1 if 1 ^ i 5* 7 ^ ». 

So let 1 ^ i 7^ j S v. Then 

= ^ i < g l > n vS—H**!) = <«i> n (^) = 1. 
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Also, 
(si, . . . , sv) C (xl9 . . . , x2p) C (xi, . . . , xw), 

which is elementary abelian. Thus, [st, Sj] = 1. By symmetry, [tu t3] = 1. 
Therefore, 

(3.3) [st, sj] = 1 for 1 S i ^ j ^ v. 

From the definition of su tu and w, we obtain 

where c = a ( l ) 6(w) ^ 0. But s, G Z(P) H 5,, so |SV(s<>| = £2 and |S<| = £3. 
Since 5 / = tf = 1 and £* is non-abelian, 5* = E(p). 

Let F be a complement to Z in Z(P) . Then | Y\ = pu~v/pv = pl~3v. So in 
light of (3.3), it suffices to show that P = Si . . . SVY and that 

\P\ = | 5 i | . . . | 5 B | | F | 

in order to complete the proof of Theorem 1. But 

P = (xu . . . , xt) 
^ \-L ) \Xij . . . , XV1 Xu^-i, . . . , Xt/ 

— Z{P){s\, . . . , sv, ti, . . . , tv) 
= YZSx. . . 5 , 
= YS1...S, 

and 

p* = \P\ = |5x. ..SVY\ f£ |5i| . . . |5 , | | F | = p*>pl~zv = P\ 

so equality holds everywhere. This completes the proof of Theorem 1. 

Now assume the hypothesis of Theorem 2(a). By Lemma 2.4, \P/Z(P)\ =p2v 

and, by the first paragraph of the proof of Theorem 1, \P'\ = pv. Now 
Theorem 2(a) follows from Theorem 1 and Lemmas 2.4, 2.8, and 2.10. 

4. The class three case. We now prove Theorem 2(b). By Lemma 2.2, p 
is odd. By Lemmas 2.8 and 2.12, P 3 = Z, \PZ\ = pv, and v = 2r. Then Lemma 
2.4 implies that \P/Z(P)\ = p2v, so v = v and t è 3*. 

Recall that V = [H,Z(Q)] = (zi, zv+i). Using the definition of ky we see 
that 

Z2(P) = (Xr+i, . . . ,xk), 

Z2{P°) = (xT+2, . . . , xA+i),and 
Z 2 ( Q ) = (XT+I, • • • , tf*+i). 

Let 
Fo = F(z r+i) = (zi, zr+i, zv+i), 

Vx = Z2(P) r\ Z2(P°) = <xr+2, . . . , xfc), and 
Mi = [H,Z2(Q)] =Z(Q)(w1,wr+1), 
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where for 1 ^ i S r + 1, wt = [xt, xk+i]. W e complete the proof in a series of 
lemmas. 

L E M M A 4.1 . There are elements a ( l ) , . . . , a(v) and 6(1), . . . , 6(z/) m G F ( p ) 
52/c^ that a ( l ) = b(v) = 1 awd swcft / t o , if s = Xia(1) . . . x»a(c) awd 
* = xM+2

&(1) . . .xt+1^
v\ then 

(4.1) [ 7 x , 5 ] C <*>, 

(4.2) [Q,s]QZ(Q)(w1), 

(4.3) [Q,*] C Z ( Ç ) ( % 1 ) , a « ( i 

(4.4) [Vl9t]Q (zv+1). 

Proof. One easily verifies t h a t H stabilizes the chains 

Vi'DZiQ) 2 V 

and 

0 2 Z 2 ( 0 ) 2 M i . 

Let C2 = Q ( F i / F ) n CH(Q/Mi). By Lemma 2.5, H/CH(Vi/V) and 
H/CH(Q/Mi) are ^-groups, so O ^ t f ) Ç C ^ f F i / F ) H CnlQ/Mx) = C2. Also 
Cff (Q) C C2, so # = P C 2 = P°C2 by (1.4) and (1.5). Then H = QC2 as in the 
proof of (3.1), so P = Q(P C\ C2) D Q and there is x £ P H C2, x g Ç. Let 
x = s j with s = Xia(1) . . . xv

a{v) and y £ (x^+i, . . . , xt). Since x (l Q, s d Q, 
s o û ( l ) ^ 0. 

Recalling t ha t F i C Z2(P), we obtain 

[Fi , s] C F H Z ( P ) , 

as in the proof of (3.2). Bu t zv+i £ Z(P) by Lemma 2.8, so (4.1) holds. In a 
similar manner we obtain 

[Q, s]Q M i H P ' . 

However, P' C\ (wT+i(Z(Q), Wi)) = 0 since P' ÇZ (x r + i , . . . , xA) by Lemma 
2.12, and wr+1 = x2 r+id ( r + 1 ) • • • ̂ + i d ( w + 1 ) , where d(w + 1 ) ^ 0 , by Lemma 2.8. 
Thus , (4.2) holds. By taking an appropr ia te power of s, we may assume t h a t 
a ( l ) = 1. Now the rest of the lemma follows by symmetry . 

Definitions. Let yi = [s, (p~r(t)], y2 = [<pr(s), t], and M = (zu zr+ï, zv+i, 
yi, y2). Let F be a complement to Z C\ Z(H) in P C\ Z(H). 

Remark. \Y\ = pl~3v and Z{P) = YZ by Lemmas 2.4 and 2.8. 

L E M M A 4.2. M is a normal subgroup of H. 

Proof. Y Ç Z(H), so F centralizes M. Let s* = <£i-1C0 ior 1 ^ i ^ v and 
^ = ^-(*+i)(/) for 1 ^ 7 ^ v + 1. Then [5,, *,] = 2, for 1 S i ^ », so 

(4.5) P = F<5 i f*, | l ^ i Sv). 
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Also, a straightforward argument using the definition of k shows that 

(4.6) yi = [slf tT+1] = [x^l\ xk+1
b^]z = Wlz, 

where z G Z(P). 
Let iVi = (zi, zr+i, y±) and N2 = (zr+ij zv+1, y2). Assume that 1 g i tk v. 

Then, since st and yi = W\Z lie in (xi, . . . , xu+i), we obtain 

(4.7) [yl9 st] G <2i>. 

By the definition of u, [tr+u til = 1- Also, [/*, 5J = ze>iajs' for a G GF(^>) and 
s' G Z(Ç) by (4.2). Therefore, using Lemma 2.6 and the definitions, we obtain 

1 = [Si, tr+i, til[tr+i, tu S\]\ti, S\, tr+ll 

= bu tillwfï, tT+1] 

= bl> tHb*>la> tr+Hf 

so [tu yil = [xr+1^
r+1\ W< f >] G (zr+1) C Nt. Together with (4.7) and (4.5), 

this shows that [yu P] C Nv But (z1} zr+1) QZÇP), so Ni < P. By symmetry, 
N2 < Pg. 

Now M = NxN2 and V0 = (zu zr+i, zv+i) < H. Therefore, to show that 
M <\ H, it suffices to show that Qyi, tv+i] G M and [y2l s J G M. By symmetry, 
it suffices to show the former. Now, (4.4) and (4.6) imply, modulo 
V = [H,Z (0)], that 

hu h+ll = [W!Z,tv+1l = [Xr+1
d^r+1\ tv+1l = [Sr+1

d^+1\tv+1l. 

But, modulo Vo 2 V, (xT+i, . . . , xt+i) has class at most two, so 

lyi, Uil - [Sr+1, tv+1y^» = y2*<'+». 

Therefore, [yi, tv+{[ G M, which completes the proof of the lemma. 

LEMMA 4.3. There are elements m (I), . . . ,m(v) and n(l), . . . , n(v) in 
G¥(p) such that mil) = n(v) = 1 and such that, if f = xim(1) . . . xv

m{v) and 
g = Xu+2n{1) . . .x*+iw(*\ then 

(4.8) [/, (xi, . . . , * * > ] £ <2l>, 

(4.9) [/, Ql ç 7o<yi>, 

(4.10) [*, Ç] ç y0<y2>, fl«d 

(4.11) [g, (xr+2, . . . , xt+1)l C <z,+i). 

Proof. By Lemma 4.1 and the definitions, if stabilizes the chain 

<2 3 Z 2 ( Q ) 2 MZ(<2) 2 Af. 

Then, H/CH(Q/M) is a ^-group, by Lemma 2.5, so 

0>(H)CH(Q) Q C*n CH(Q/M), 
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where C2 is as in the proof of Lemma 4.1. Then, H = PC% = P9Cz, where 
Cz = C2 r\ CH(Q/M)f by (1.4) and (1.5), and now the lemma is proved in the 
same manner as Lemma 4.1. 

LEMMA 4.4. For 1 g i S v + 1, define 

fi = <Pi~1(f) =xr™...x9+i-1«i 
and 

gt = *>f-('+l)(£) = *H-H-l"(1) • • • W ^ . 
Then: 

(4.12) [fufjl = [gt, gj] = h for l g i,j £ v. 

(4.13) [ft,gi] =zuforl SiSv. 

(4.14) [/if gj] = I, for l £i,j ^v andj 9* i, i + r. 

Also, there are elements h(r + l ) , . . . , h(u + l ) inGF(p) withh(r + l) 9e 0, 
h(u + l ) 7̂  0, awd 

(4.15) [/„ g r +J = XH-i*(r+l) . . . W ( , l + 1 > , / " l ^ i ^ r + l . 

Furthermore j we have 

(4.16) [/„ £ r +„ £ r +J = Zr+l*r+l\for U ^ r + 1 . 

Proo/. (4.12), (4.13), and (4.14) f o r l g j g i g r follow from the definition 
of u. 

Let 1 ^ i ^ r and i < j < i + r. Then 

Ifugj] = ^ U ^ ^ ' f e ) ] = ^'-(e+1)^P+^(/),rf, 
so, by (4.8) and (4.11), 

[fug,] e ^{zi)r\çi-^»{zv+1) = <2i>n <*,> = 1. 
Thus, (4.14) also holds for 1 ^ i S r and i < j < i + r. 

Now let r + 1 ^ 7 ^ v. Using (4.6), Lemma 2.8, and symmetry, we obtain 

(4.17) yi = x r+i^ r+«x r+2a( r+2) . . . tf%id{^ and 3/2 = <^r(^i), 

where d(r + 1) ^ 0 and d(u + 1 ) ^ 0 . Let 

A = V0(yi) = (zi, zT+u zv+ll 3/1), and 

B = ^-<«H-D(7o<y2» = (^*1)(*i),*j-r,Zj,<Pi-ir+1)(yi)). 

Then, using (4.9), (4.10), and a straightforward calculation of the type used in 
the previous case (i < j < i + r), we see that [fi, gj] G A P\ B. 

First, assume that r + l < j ^ . Then B C\ Z(P) = (Zj-r, Zj). If 
x 6 B — Z(P), then x involves x ; or x r+r+^ to some non-zero power. (This can 
be seen by using (4.17) and Lemma 2.8 to expand the elements of B in terms of 
the xf.) Similar calculations then show that x ? i , so 5 H i Ç Z(P). But 
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A H Z(P) = (zi, zT+1), so A C\ B = 1. Thus , [/i, g j = 1 for r + 1 < j ^ ». 
Now, applications of <p establish (4.14) in the remaining cases. 

Finally, let j = r + 1. Since 

[/i, gr+i] 6 4 H S C ( 4 , 5> ç (<^-r(si), z1} zr+1, zv+u 3/1), 

we obtain (4.15) for i = 1 and for some elements h(m) Ç G F ( ^ ) . Applications 
of <p yield (4.15) for 1 ^ i ^ r + 1. 

Now, we must show tha t h(r + 1) ^ 0 and h(u -\- 1) 3^ 0. But 

(4.18) [/i, g r + J = wi ^ 1 (modulo (x r + 2 , . . . , **)), 

by Lemma 2.8 and the definitions of /1 , g r + i , and &, so h(r + 1) F^ 0. A similar 
a rgument using [/ r+i, gv+i] yields h(u + 1) ^ 0. 

T o establish (4.16), we observe tha t the congruences in (4.18) hold modulo 
Z(P). Then [fi, gr+i, gr+i] — zr+1

hir+1), by the definitions of wly gT+i, and u. 
Finally, applications of <p yield (4.16). This completes the proof of the lemma. 

Recall t ha t Y Ç Z(H) and Z(P) = YZ. 

LEMMA 4.5. Let St = (fu gu gr+i) for 1 ^ i ^ r. Then [S*, Sj] = 1 if i ^ j 

and P = Si . . . ST Y. 

Proof. This follows directly from the definitions and (4.12)-(4.16), using 
arguments similar to those in the class two case. 

L E M M A 4.6. For 1 ^ i ^ r , S t ^ E*(p) and P = 5 i X . . . X Sr X Y. 

Proof. Fix i with 1 S i S r. We keep the notation of the previous lemmas. 
Let m = h(r + 1) and n = h(u + 1), so m 9e 0 and w 9^ 0. Define 

a = zT+cm, b = zrn, c = [gr+i~\fi], d =fife = grn,f = gr+r1. 

Then St = (a, b, c, d, e, / ) , so, by Lemma 2.13, to show tha t Si = E*(p), it 
suffices to show tha t \St\ = p6 and tha t (2.6)-(2.10) hold for the elements 
a, b, cf d, e, a n d / defined above. 

(2.6) follows from the definitions and Lemmas 2.1 and 4.4. (2.7) and the 
first two s ta tements in each of (2.8) and (2.9) follow since (a, b) Q Z(P). 

By (4.15), Lemma 2.6, and the definitions of fu gu and u, 

[C,d] = [gr+i~\fi,fi] = [fugr+ufi] = [Xu+in, Xt] = Zf" = 6. 

A similar argument shows tha t [c, e] = 1. By (4.13) and the definitions, 
[d, e] = b. Thus , (2.8) and (2.9) hold. Finally, [d,f] = c~l by definition, and 
[Cjf] = a by (4.16) and Lemma 2.6, so (2.10) holds. Thus , by Lemma 2.7 and 
the proof of Lemma 2.13, St is a homomorphic image of E*(p). In particular, 

\st\ ^ P«. 
Now we can finish the proof of the lemma. P = Si. . . SrY, so we have 

(4.19) p* = | P | g \Y\ • n \St\ g pt~upu = p'\ 
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Therefore, equality holds everywhere in (4.19). In particular, this means that 
\P\ = \Y\ . II|S<|, so P = 5i X . . . X Sr X Y. Also, (4.19) implies that 
\Si\ = pQ, so St = E*(p) by Lemma 2.13. This completes the proof of Theorem 2. 
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