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CONJUGATE »-SUBGROUPS OF FINITE GROUPS
JOHN J. CURRANO

1. Introduction. Throughout this paper, let p be a prime, P be a p-group
of order p*, and ¢ be an isomorphism of a subgroup R of P of index p onto a
subgroup Q which fixes no non-identity subgroup of P, setwise. In [2, Lemma
2.2], Glauberman shows that P can be embedded in a finite group G such that
¢ is effected by conjugation by some element g of G. We assume that P is thus
embedded. Then Q = PN\ P’ Let H = (P,P? and V = [H, Z(Q)], so
Q< Hand V«H.

Let E(p) be the non-abelian group of order $* which is generated by two
elements of order p. Then E(p) is dihedral if » = 2 and has exponent p if p
is odd. If p is odd, then E*(p) is defined in § 2 to be a particular group of order
$% and nilpotence class three. Our main results are:

THEOREM 1. Let G be @ finite group, g € G, and P be a p-subgroup of G of
order p'. Let Q = PN\ P H = (P, P?),and V = [H, Z(Q)]. Assume:

(1.1) P is non-abelian, |P:Q| = p, and g normalizes no non-identity subgroup

of P;
(1.2) H = PO*(H)Cyg(Q/V) = PO*(H)Cg(Q/V); and
(1.3) V& Z(H).

Also assume that the nilpotence class of P is two and that |P’'| = p*. Then t = 3v
and P 1is the direct product of an elementary abelian subgroup of order p*=3" with
the direct product of v subgroups isomorphic to E(p).

THEOREM 2. Let G be a finite group, g € G, and P be a p-subgroup of G of order
pt. Let Q = PN P?and H = (P, P?). Assume (1.1), and

(1.4) H = Po0"(H)Cy (Q), and
(1.5) H = PO*(H)Cu(Q).

Let |[P/Z(P)| = p*. Then x is even. Let v = x/2. Then:

(@) If P has nilpotence class two, then |P’'| = p*, t = 3v, and P is the direct
product of an elementary abelian subgroup of order p*=3% with the direct product of
v subgroups isomorphic to E(p).

(0) If P has nilpotence class three, then P is odd, | P3| = p*, v is even, t = 3v,
and P is the direct product of an elementary abelian subgroup of order p =% with
the direct product of v/2 subgroups isomorphic to E*(p).
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18 JOHN J. CURRANO

These theorems are related to the following type of question. Let .S be a
non-abelian Sylow p-subgroup of a finite group G, and let a be an automorphism
of S. We may ask whether « fixes any non-identity normal subgroup of G con-
tained in S. If not, and if there is an element % in G with G = (S, S*) and
[S:S M S" = p, we can determine the structure of S. To see this, let ¢:S — S
be given by ¢(x) = (x*)". Then (1.1), (1.4), and (1.5) can be verified, so S has
nilpotence class at most three (by Lemma 2.2) and has the structure indicated
in Theorem 2.

Our results generalize part of [2, Theorem 2]. There, Glauberman assumes
that P and P’ are conjugate in H and obtains the decompositions we obtain in
Theorem 2. In [2, § 5], he shows that this assumption implies (1.4) and (1.5).
He also shows that under hypothesis (1.1), P has nilpotence class two or three.
Thus, Theorems 1 and 2 completely characterize P under the given conditions.

(1.1) alone is not sufficient to obtain the decompositions of Theorems 1 and 2,
as we have shown in [1, Theorems 1 and 2]. Thus, we must make some addi-
tional assumptions about P. It appears that (1.2), (1.4), and (1.5) depend on
the group G in which P is embedded, but in [2, § 4], Glauberman shows that
(1.4) depends only on P and ¢ and not on G. (His proof also works for (1.2) and
(1.5).) Thus, (1.2), (1.4), and (1.5) are really statements about the structure of
P. Furthermore, they are natural ones to consider. Recall that O?(H) is the
smallest normal subgroup K of H with H/K a p-group. (1.5) says that modulo
Cyz(Q), H has no proper normal subgroup which contains P. We factor out
Cy(Q) for two reasons: (1) we shall look at the action of H on chains of sub-
groups of Q, and Cyx(Q) contributes nothing to this analysis; and (2) C»(Q) =
Z(Q) (cf. Lemma 2.4(b)), and the rest of Cx(Q) does not affect the structure of
P. Similar remarks can be made about (1.4) and (1.2). Finally, it can be shown
that neither (1.1) and (1.4) nor (1.1) and (1.5) suffice to prove Theorem 2.
(Using [1, Theorem 2], a group can be constructed which satisfies (1.1) and
(1.4), but violates (2.3).)

All groups considered in this paper are finite. We write H C G if H is a
subgroup of G; H C G if HC G and H # G; and H < G if H is a normal
subgroup of G. Let G; be the 7-th member of the lower central series of G,
defined inductively by G; = G and G;y1 = [G;, G]. For p a prime, let 07(G)
be the subgroup of G generated by all the p’-elements of G and let GF () be the
field of the integers modulo p. Finally, let Z»(G) be the inverse image in
G of Z(G/Z(G)).

Acknowledgement. This work constitutes a portion of the author’s doctoral
dissertation. The author is indebted to his advisor, Professor George Glauber-
man, for his encouragement and many suggestions.

2. Preliminary results. We now state some facts which we shall need in
the proofs of Theorems 1 and 2. We shall also fix some notation for the
remainder of the paper.
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LemMmA 2.1 (Sims; [1, Lemma 2.1]). If P satisfies (1.1), then:

2.1) There are elements x1, . . ., x, 1n P which satisfy:
@) |{x1, ..., x:)| = pifor1 =1 =X ¢t; and
®) x! =x41forl =7 =t — 1.

LEmmA 2.2 (Glauberman [2, Theorem 1]). Assume that P satisfies (1.1).
Then the nilpotence class of P is at most three if p is odd and at most two if p = 2.

Throughout the paper, we assume that P satisfies (1.1). Choose xy, . . ., x,
as in Lemma 2.1. Define x,41 = x,%, 50 P? = (X2, .. ., X41)-

Let u be a positive integer minimal subject to [x;, x,4;] # 1 for some j.
(u exists by (1.1) and (2.1).) Letv = ¢ — u.

If P; 1, let k be a positive integer minimal subject to [x;, x4 ;] € Z(P)
for some j. If P; = 1,letk = (. Letr = ¢ — k.

Definez; = [x;, xypiJforl =7 =<v 4+ l,andletZ = (21, ..., 2,). [f P3 5% 1,
define w; = [x;, x4 for 1 7 =7+ 1.

The following symmetry principle will be useful:

LemMma 2.3 (Glauberman [2, Lemma 3.3]). Let n be a nonzero element of
GF (p). Conditions (1.1) and (2.1) and the definitions of u, v, and k remain valid
if we replace:

(@) Pby P,Qby R,Rby Q, gby g7 (and thus ¢ by ¢™'), and x; by (x,41-;)"

forte=1,...,¢t; 0r
(b) Pby P?,Qby Q,Rby Q°, gby g7* (and thus ¢ by ¢=*), and x; by (x,40—;)"
forv=1,...,t

LEMMA 2.4 (Glauberman-Sims; [1, Theorem 1 and Lemma 2.2]).
@) 2/3=u<u+v/2=k=t

(b) [xyxurs Z1forl =7 =v+ 1.

(c) If Py #~ 1, then [x;, xp40) € Z(P) for 1 <1 = 1.

d) Z(P) = (Xpt1y - -y %)y Z(Q) = (Xpy1, - -+, %u41), and PN Z(H) =
PN\ Z(H) = (Xyp2, ..., %y). Furthermore, these are elementary abelian groups.
(e) Z C Z(P).

We shall have use for the following three well-known lemmas:

LemMMA 2.5 [3, p. 179]. Let S be a p-group and T C Aut S. Assume that T
stabilizes some chain

of normal subgroups of S; that is, T fixes each S; and each coset of Siyy in S;.
Then T 1s a p-group.

LemMma 2.6 (P. Hall; [3, p. 19]). Let G be any finite group.

@) [x,y74 2%y, 274, x]*[z, x"L, y]°* = 1 for all x, y, 2 € G.

(b) If class G = 3, [x, 5, 2]y, 2, x][2, x, ¥] = 1 for all x, y, 2 € G.

(c) Let A, B, and C be any subgroups of G. If [A, B, C] = [B, C, A] = 1, then
[C,4,B] =1.
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Lemma 2.7 (von Dyck; [4, § 18]). If a group G is given by a system of defining
relations, and if a group H is given by these relations and some further relations
in the same symbols, then H is isomorphic to a factor group of G.

LemMmA 2.8 (Glauberman [2, Propositions 4.5, 4.7, and 4.15]).
(@) V = (21, 2p41)-
(b) If P satisfies (1.4), then for 1 <1 < v+ 1,

(2.2) 2y = X500 xS,

where ¢(v+ 1) %0 and c(u — v+ 1) # 0. In particular, V N\ Z(H) = 1,
V& Z(P),and VL Z(P).
(¢) If P31 and P satisfies (1.4) and (1.5),thenv = 2r and for 1 i <r+ 1,

(2.3) w; = X000 L, SO,
where d(r + 1) # 0 and d(u + 1) #= 0.
Lemva 2.9. V &€ Z(H) if and only if

(2.4) 21 = X170 xS,
where c(v + 1) £ 0o0r c(u — v+ 1) 0.

Proof. By Lemma 2.4, Z C Z(P) = {(Xy41, - - - , Xu). Using this, the fact that
2, = ¢ 1(z1), and (2.1), we obtain

21 = xv—i—lc(H—l) ... xu—v+lc(u-t+1)~
Then
Zor1 = @°(21) = X9p41°FD L L a1 SOTED,

By Lemma 2.4, PN Z(H) = (Xp12, - .y %u), 50 V = (21, 2,41) € Z(H) if and

onlyifcw+ 1) =clu —v+ 1) = 0.

LemMmA 2.10. Assume that P; = 1.
(@) If P satisfies (1.4), then H = P'Cy(Q/V).
(b) If P satisfies (1.5), then H = PCyx(Q/V).

Proof. (b) follows from (a) by symmetry. So assume that P satisfies (1.4).
Let N = Cx(Q/V). Then N < H, since Q and V are normal subgroups of H.
Since [P, Q] C P’ C Z(P) C Z(Q), H/N stabilizes the chain

Q/V2Z(Q)/V =21,

so H/N is a p-group by Lemma 2.5. Therefore, N D 0?(H). But clearly
Cyx(Q) € N, and the result follows from (1.4).

The following lemma is a generalization of part of [2, Proposition 4.13]. The
proof is essentially the same as in [2].

LEMMA 2.11. Assume that P satisfies (1.2) and (1.3). Then

@) [P,xysidl S {21,...,2:0for 1 =7 =<k — u.

(b) If Py = 1, then P’ = Z.
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Proof. By symmetry, we may assume thatz,.1 ¢ Z(H),soc(u —v + 1) =0
and 2,41 ¢ Z(P), by (2.4). Assume that 1 =7 = k — u, and that (a) is true

forall jwithl £ j<i LetM = (21,...,2; 81y and N = (X1, .« ., Xypi).
Then M = V(M N Z(H)) by Lemma 2.3 and (2.4), so M < H.

Using the definition of k, we see that Z,(P) = (x,41,...,%;) and
Zy(P?) = (X;12,...,%k1). Then

Z(P) S N C Zy(P) N Zy(P?),

so N < H.
Let L =Cyg(N/M), so L<QH. Since VC M, Cyg(Q/V)C L. Also,
Xp+1 € Z(Q) and

(2.5)  [P% (Xpg2y .-+, Yur )] S [Py (Kot + o vy Xugio1)]
g ¢<zly ceey zi—l> = <Z2, LI zi> g 4‘7"19
by induction if ¢ > 1 and by Lemma 2.4(d) if < =1, so Q € L. Finally,

[%:41, Xpr1] = 2,417, and, together with (2.5), this implies that x,.; € L.
Therefore,

PiCy(Q/V) S L Q4 H = (P, P7),

so H/L is a p-group. But then O?(H) C L,so H = P0?(H)Cx(Q/V) C L and
L=H. Thus, PC L = Cy(N/M), so [P,xuss] S [P,NJCS MNZ(P) =
(Z1y o v vy 1)
LEmma 2.12 (Glauberman [2, Theorem 3.7 and Proposition 4.15]). Assume
that Py % 1 and that P satisfies (1.4) and (1.5). Then Py = Z and
P C <xr+ly e ,xk).
We now define the group E*(p) discussed in Theorem 2.

LeEmMA 2.13 (Glauberman [2, Lemma 5.7]). Assume that p is an odd prime.
Then there exists a group S of order p® generated by elements a, b, ¢, d, e, f subject
to the following restrictions:

(2.6) AP =P =>=d = =f? =1,

2.7) ab = ba, ac = ca, bc = cb;

(2.8) ad = da, bd = db, d"'cd = cb;

(2.9) ae = ea,be = eb, ce = ec, e 'de = db;

(2.10) af = fa, bf = fb, f~lcf = ca, f~df = dc7!, ef = fe.
Moreover, S is unique up to isomorphism and satisfies

(2.11) Z(S) =S; = (a, b).

Proof. To construct .S, let D be the direct product of E(p) and a group of
order p. Then there exists a set {a, b, ¢, d} of generators of D that satisfies
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(2.6) and (2.7). Also, there exist ¢, f € Aut D for which
a®*=a’ =a,0°=0b"=0,c*=¢,¢’ =ca,d® = db,d’ = dcL.

Note that ef = fe.

Since p is odd, D has exponent p, and ¢ and f have order p. Let S be the semi-
direct product of D by <{e, f). Then we 1mmed1ately obtain (2.6)— (2.10),
and easy computations yield (2.11).

Now suppose that S* is an arbitrary group generated by elements satisfying
(2.6)-(2.10). Let D* = {(a, b, ¢, d). Then D* < §* and S* = (D*, ¢, f). Hence,
|D*| < p* and |S*/D*| =< p?2. Assume that |S¥| = pb. Then D* = D and
D* M (e, f) = 1. Therefore, S* is a semi-direct product of D* by (e, f), and
S* > S.

Definition. If p is an odd prime, let £*(p) be the group S defined in Lemma
2.13.

3. The class two case. In this section, we prove Theorems 1 and 2(a).

Assume the hypothesis of Theorem 1. By Lemma 2.9, (2.4) holds, so by

Lemma 2.11, P’ = Z = (21,...,2,). Thus, » = v,s0¢{ = 3v by Lemma 2.4.

By (1.2) and (2.1), there are elements @ € {(xs, ..., x,) and

b € (Xpp1, - vy Xop1)
such that x;7! = ab (modulo C; = Cx(Q/V)). But (Xp41, - . ., X,41) is abelian
modulo V, by (2.1) and the definitions of # and 2;, s0, if ¥ € (Xypa, ..., x,),
1 = [y, x10b] = [y, x1a]ly, b]*** = [y, x1¢] (modulo V).

Thus, [x1a, (Xpr2y . .., %] & V.Butxwe € (x1,..., x,11), which is abelian, so
[x1a, Q] © V. Thus, x1 = ¢! € Q (modulo Ci1), so x1 € QCy and
(3.1) H = PC, = QCu.
Then, P = QP M C1) D Q, so we may choose x € Cp(Q/V), x ¢ Q.

Let x = sy where s = 2,V ... %, and y € (Xp41, ..., %,). By (2.1) and

Lemma 2.4 (a), s» = 1 and
(3.2) [s, Q] S [sy utry - -+ )] & [59, gty o, 2)] & VNP = (z1).

(Note that z,41 ¢ P’ = Z, by (1.1), since ¢(Z) = (22, ..., 2p11).) Also, since
x & Q,s ¢ Q and therefore a(1) = 0.
By symmetry, there is 7 = x,1"® ... %,41°® with 6() #£ 0, 72 = 1, and

[7, O] € (o41)-
Define s; = ¢ 1(s), t; = ¢tV (7), and S; = (s, ¢;) for 1 =7 = 2. We
first show that S, = E(p) and [S;, S;] = 1if 1 = 7#j =0
Soletl <175 j = v. Then
[sot] € s, o2 ()] M ™1 (s4), 7]
= " Ha1) N @ " Nzgpp1) = ()N (3;) = L.
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Also,
(Styeney Sy T X1, ey X20) © (X1, v oy Xu)s

which is elementary abelian. Thus, [s; s;] = 1. By symmetry, [¢;, ¢;] = 1.
Therefore,

3.3) [s4,5;] =1 forl £i+#j = 0.
From the definition of s;, ¢;, and %, we obtain
[ss 8] = [x%D ... %, xu.-!-‘z—ib(l) co X O] = 35

where ¢ = a(1) b(@) # 0. Butz; € Z(P) N\ Sy, 50 [S;/{z:)| = p*>and |S,| = p3.
Since s# = t# = 1 and S; is non-abelian, S; = E(p).

Let ¥ be a complement to Z in Z(P). Then |Y| = p*=°/p® = p*=3°. So in
light of (3.3), it suffices to show that P = S;...S,V and that

[Pl = [Si] ... S]] Y]

in order to complete the proof of Theorem 1. But

P = {(x1,...,%,)
= Z(P)(X1y - vy Xoy Xugly - - -y X¢)
=Z(P){(S1y -y Spttyneyty)
=YZS5...S,
=YS5...5,

and
pt =P =1[S1...5Y| = |Si|...[S\[|¥Y] = p*p=2" = pt,
so equality holds everywhere. This completes the proof of Theorem 1.

Now assume the hypothesis of Theorem 2(a). By Lemma 2.4, |P/Z (P)|=p?®
and, by the first paragraph of the proof of Theorem 1, [P/| = p°. Now
Theorem 2(a) follows from Theorem 1 and Lemmas 2.4, 2.8, and 2.10.

4. The class three case. We now prove Theorem 2(b). By Lemma 2.2, p
is odd. By Lemmas 2.8 and 2.12, P; = Z, |P;3| = $° and v = 27, Then Lemma
2.4 implies that |P/Z(P)| = $?°,s0 v = v and ¢ = 3.

Recall that V = [H, Z(Q)] = (21, 2,+1). Using the definition of k, we see

that
Zz(P) = (x,+1, e ,xk),
Zy(P%) = (X132, . .., Xx41), and
Z2(Q) = Fry1y+ v vy Xpg1)e
Let

Vo= V<zr+1> = <zlr Zrt1y Zv+1>v
Vi= Zy(P) N Z3(P?) = (X742, ..., %), and
M, = [H, Z,(Q)] = Z(Q) (w1, Wr11),

I
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where for 1 = ¢ =7 + 1, w; = [x4, %x+:]. We complete the proof in a series of

lemmas.

LEMMA 4.1. There are elements a(1),...,a®) and b(1),...,0@®) in GF(p)
such that a(l) =b@) =1 and such that, if s =x"Y ... %, and
b= Xup2®D L. x,1%OD, then
(41) [Vl, S] g <21>,

(4.2) (@, s] € Z(Q) (wr),
(4.3) [0, 8] © Z(Q)(wrs1), and
(44) [Vl, t] g <Zv+1>.

Proof. One easily verifies that H stabilizes the chains

222V
and
Q2 2Z:(Q) 2 M.

Let Cy = Cq(Vi/V) N Cx(Q/M,). By Lemma 2.5, H/Cyx(Vy/V) and
H/Cy(Q/M,) are p-groups, so O (H) C Cxg(V1/V) N Cx(Q/M;) = C,. Also
Cy(Q) C (Cyys0H = PCy = PCy by (1.4) and (1.5). Then H = QC, as in the
proof of (3.1),s0 P = Q(P M C2) D Q and there isx € PN Cy, x ¢ Q. Let
x = sy with s = 21D ., %, and y € (Xpy1,...,%,). Since x € Q, s ¢ Q,
soa(l) # 0.

Recalling that V; C Z,(P), we obtain

[V, s] € VN Z(P),

as in the proof of (3.2). But 2,41 ¢ Z(P) by Lemma 2.8, so (4.1) holds. In a
similar manner we obtain

[Q,s] & M, P

However, P’ M (w,4+1{Z(Q), w1)) = 0 since P' C {x,41,...,%) by Lemma
2.12, and w,p1 = X2,01%7HD L2 1%¢HD where d(u + 1) # 0, by Lemma 2.8.
Thus, (4.2) holds. By taking an appropriate power of s, we may assume that
a(1) = 1. Now the rest of the lemma follows by symmetry.

Definitions. Let y1 = [s, o7 "(t)], v2 = [¢"(s),¢], and M = (21, Zr+1, Zpt1,
Y1, ¥2). Let ¥ be a complement to Z M Z(H) in P M Z(H).

Remark. |Y| = p*=3? and Z(P) = YZ by Lemmas 2.4 and 2.8.
LemMA 4.2. M is a normal subgroup of H.

Proof. Y € Z(H), so Y centralizes M. Let s, = ¢*"1(s) for 1 £ ¢ < v and
by =@V () for1 £j=<v+ 1. Then [s;¢] = z;for 1 £ ¢ Z 9, s0

(4.5) P=Y{utll i <o)
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Also, a straightforward argument using the definition of & shows that
(4.6) Y1 = [s1, trpa] = [2°0, 241.°V]2 = wiz,

where z € Z(P).
Let Ny = {21, 2,41, 1) and N2 = (2,41, Zp41, ¥2). Assume that 1 <7 < 0.
Then, since s; and y; = w;z lie in (x4, . . ., X441), We obtain

(4.7) [y1, 54 € (21).

By the definition of u, [¢,41, t;] = 1. Also, [t;, s1] = wi?g’ for @« € GF(p) and
2z’ € Z(Q) by (4.2). Therefore, using Lemma 2.6 and the definitions, we obtain
1 = [s1, tre1, E)lbrery bay S1)[E4y STy Erga]
= [y1, ti][w, trya]
= [y, tJ[ws*, tria],

S0 [t4 ¥1] = [0, 2,04%P] € (2,41) © N1. Together with (4.7) and (4.5),
this shows that [y, P] € Ni. But (21, 2,+1) € Z(P), so N1 < P. By symmetry,
Ny < Po.

Now M = NN, and Vy = {21, 2,41, 2o11) < H. Therefore, to show that
M < H, it suffices to show that [yy, {,41] € M and [ys, s1] € M. By symmetry,
it suffices to show the former. Now, (4.4) and (4.6) imply, modulo
V = [H, Z(Q)], that

[y, tora] = [wiz, tora] = (%2770, 1] = [$r270HD, £y
But, modulo Vo 2 V, {%r41, ..., %x.1) has class at most two, so
Y1y Lora] = [Sre1, Lopa]?TFD = 204D,
Therefore, [y1, t,+1] € M, which completes the proof of the lemma.

LemMA 4.3. There are elements m(1),...,m@®) and n(l),...,n{) in
GF(p) such that m(1) = n(v) = 1 and such that, iof f = 2™V ... x,"? and
g = Xy "V L x 1", then

(4.8) [fy 1y oo oy 2)] € (21),
(4.9) [f, Q] € Vo(yr),
(4.10) lg, Q1 € Vo(y2), and
(4.11) lg) Crizy ey Xi01)] © (Botr)-

Proof. By Lemma 4.1 and the definitions, H stabilizes the chain
Q=22:(Q) 2 MZ(Q) 2 M.
Then, H/Cy(Q/M) is a p-group, by Lemma 2.5, so
O*(H)Ca(Q) S C: M Ca(Q/M),
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where C, is as in the proof of Lemma 4.1. Then, H = PC; = P?C;, where
Csy = CoM Cy(Q/M), by (1.4) and (1.5), and now the lemma is proved in the
same manner as Lemma 4.1.

LEMMA 4.4. For 1 =1 = v+ 1, define

fi=o"1(f) = D [ xpp ™

and

g1 = @ (g) = oy 41" ® oL 2y MO
Then:
(4.12) [fofd =lgngl=1for 1 =4,j =0
(4.13) [fiy gz] = %4 fOr 1 é ’L é .
(4.14) [fogd=1forl1 £4,j<vandj 1,1+ r.

Also, there are elements h(r + 1), ..., h(u + 1) in GF (p) withh(r + 1) # 0,
h(u + 1) # 0,and

(4‘15) [fiy gr+1] = xr+ih(r+1) cee xu+,;h(u+l), fOT 1 =
Furthermore, we have
(4.16) [for &t &rid] = 24"V, for 1 =4 < r+ L.

<
Proof. (4.12), (4.13),and (4.14) for 1 < j =< 7 =< r follow from the definition
of u.
Letl =7=rand?<j <17+ r. Then

[fogd = 7'fy & (g)] = =P (f), gl,
so, by (4.8) and (4.11),
[fir g € ¢ a1) M "V (z41) = (2:) N (3;) = L.

Thus, (4.14) also holdsfor 1 =7 = rand7<j <7+ r.
Now letr + 1 = j < v. Using (4.6), Lemma 2.8, and symmetry, we obtain

A
)
lIA
X
+
—t

(4.17) Y1 = X1 Dx, 20D [y @@y, 00D and y, = o7 (y1),
where d(r + 1) # 0 and d(u + 1) 5 0. Let

A = Vo) = (21, Zr41, 2041, Y1), and
B = "D (Vi(ys)) = (¢ (21), 2)r, 2;, &~V (y1)).

Then, using (4.9), (4.10), and a straightforward calculation of the type used in
the previous case (¢ < j < ¢ + r), we see that [f1, g;,] € 4 N B.

First, assume that 74+ 1<j=<w9v. Then BNZ(P) = (3j—r, 2;). If
x € B — Z(P), then x involves x; or .4,y ; to some non-zero power. (This can
be seen by using (4.17) and Lemma 2.8 to expand the elements of B in terms of
the x;.) Similar calculations then show that x ¢ 4, so BN A C Z(P). But
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ANZP) = {21, 2r41), 50 AN B = 1. Thus, [fi,g;] =1forr+1<j =0
Now, applications of ¢ establish (4.14) in the remaining cases.
Finally, let j = r 4+ 1. Since

[fly gr+l] E ANB g <A) B> g <(p—r(zl), 21y 3r41y Zo41y y1>,

we obtain (4.15) for ¢ = 1 and for some elements % (m) € GF (p). Applications
of pyield 4.15) forl1 =¢=7r + 1.
Now, we must show that 2(r + 1) ¢ 0 and k(x + 1) 5 0. But

(4.18) [fi, gre1) = w1 #£ 1 (modulo (X,pe, ..., %)),

by Lemma 2.8 and the definitions of f1, gr11, and &, so 2(r 4+ 1) £ 0. A similar
argument using [ fr+1, gs+1] yields 2 (x + 1) = 0.

To establish (4.16), we observe that the congruences in (4.18) hold modulo
Z(P). Then [f1, gr+1, gri1] = 2,41"™D, by the definitions of wy, g,4+1, and «.
Finally, applications of ¢ yield (4.16). This completes the proof of the lemma.

Recall that ¥ C Z(H) and Z(P) = YZ.

LemMAa 4.5. Let S; = (fi, 84y grriy for L =1 Zr. Then [S,,S;) =14 1 #£ ]
and P = 5;...S,Y.

Proof. This follows directly from the definitions and (4.12)—(4.16), using
arguments similar to those in the class two case.

LEMMA 4.6. For 1l 1 =27, S, E*P)and P =5 X ... X S, X V.

Proof. Fix 1+ with 1 = 7 = r. We keep the notation of the previous lemmas.
Letm =h(r +1)andn = h(u + 1), so m # 0 and # % 0. Define

¢ =247 b=87"¢c= gy fil,d=fue=g"f =gt

Then S; = {a, b, ¢, &, ¢, f), so, by Lemma 2.13, to show that .S; = E*(p), it
suffices to show that [S,| = % and that (2.6)-(2.10) hold for the elements
a, b, ¢, d, e, and f defined above.
(2.6) follows from the definitions and Lemmas 2.1 and 4.4. (2.7) and the
first two statements in each of (2.8) and (2.9) follow since (g, b) C Z(P).
By (4.15), Lemma 2.6, and the definitions of f;, g;, and #,

[c,d] = [gr+i_lyfi:fi:’ = [fu gr+iyfi] = [®ut " %4 = 27" = b.

A similar argument shows that [¢,e] = 1. By (4.13) and the definitions,
[d, e] = b. Thus, (2.8) and (2.9) hold. Finally, [d, f] = ¢! by definition, and
le, f] = a by (4.16) and Lemma 2.6, so (2.10) holds. Thus, by Lemma 2.7 and
the proof of Lemma 2.13, S; is a homomorphic image of E*(p). In particular,
IS = pt.

Now we can finish the proof of the lemma. P = S;...S,Y, so we have

(4.19) pt=|P| = Y| I:II 1S:] < p"*p" = p*.
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Therefore, equality holds everywhere in (4.19). In particular, this means that
|P| = |Y].1I|S, so P=S;X...XS, X Y. Also, (4.19) implies that
S| = p%, s0S; = E*(p) by Lemma 2.13. This completes the proof of Theorem 2.
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