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HOMOGENEOUS STRUCTURES ON KAHLER
SUBMANIFOLDS OF COMPLEX PROJECTIVE SPACES*

by SERGIO CONSOLE and ANNA FINO
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In this paper we give a differential characterization of homogeneous Kahler submanifolds of complex
projective spaces in terms of the existence of a tensor field, the homogeneous structure S. We show that for
any meM, Sm determines a unitary representation whose orbit at m is a compact, complete Kahler
submanifold which extends M. We consider the U(n)x U(N — n) (n = dimcM) module of the space of these
tensors and we find its irreducible factors.

1991 Mathematics subject classification: 53C40.

1. Introduction

Let M be a Kahler submanifold of CP*. We shall denote by TM and vM the tangent
and normal bundle of M, respectively; by V and Vx the Levi-Civita and the normal
connection on M. a will be the second fundamental form of M. We let J be both the
complex structure on M and on CP" (cf. Section 2 below). We denote by ^ the bundle
TM © vM, i.e. the pull-back on M of the tangent bundle of CP". The complex structure
of C P " induces on M a tensor field JeTM* ® <!;* ® £,.

Following [24] and [16] (cf. also [5]), we introduce the notion of homogeneous
structure on M.

Definition. A homogeneous structure on M is a tensor field SeTM* ® <!;* ® £ such
that

(1) TM and vM are parallel subbundles of ^ with respect to the connection on £
given by V: = V © V1 - S.

(2) P is a metric connection.
(3) VJ = 0.
(4) Va = 0.
(5) %S = 0.
Our main result is the following differential characterization of homogeneous Kahler

submanifolds.

Theorem A. A connected Kahler submanifold M of C P " is an open subset of a
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382 SERGIO CONSOLE AND ANNA FINO

globally homogeneous Kahler submanifold of CP" if and only if it admits a homogeneous
structure S.

The proof will be given in Sections 3 and 4.
Note that all examples of homogeneous Kahler submanifold of CP* can be obtained

by means of the Borel-Weil construction ([2], see also Section 2).
Theorem A plays the same role, in the intrinsic case, of a Theorem of K. Sekigawa

[20]. Actually the restriction of V to TM is an Ambrose-Singer connection on M
compatible with the complex structure J. An analogue of Theorem A, for submanifolds
of UN was stated by C. Olmos in [16].

A particular case of Theorem A was proved by H. Nakagawa and R. Takagi in [14]
for Hermitian symmetric Kahler submanifolds of CP*. These spaces are characterized
by the fact that they admit the null tensor as homogeneous structure. Nakagawa and
Takagi also classified these submanifolds.

If S is a homogeneous structure on a Kahler submanifold of CPN and m = [p~\eM,
the triple (Sm,ccm,Jm) determines the submanifold uniquely up to isometries (see
Theorem 4.1). Hence, a classification of the tensors which can arise as homogeneous
structures gives rise to a classification of the extrinsic geometry of the homogeneous
Kahler submanifolds of CP". To this aim, in Section 5, we will study the space of
tensors with the same symmetries as Sm. Set V: = TmM, W: = vmM, if n = dimF and
h = dim W, then one has a (canonically defined) action of U(n) x U(h) on this space. This
U(ri)xU(h) module will be denoted by 9>{V,W). We split 3>{V,W) into its irreducible
components. This decomposition is done following the methods of S. M. Salamon ([19,
Chapter 3]; see also [6]). These methods, compared with the ones of Weyl [25] have
the advantage that one does not need to prove the irreducibility of the various
components, thus avoiding the computation of the quadratic invariants.

Theorem B. The U{n) x U(h) module 2>{V, W) splits as

Jf{V, W),

where 3~+ (V) and Jf{ V, W) are respectively a U(ri) module and a U(n) x U(h)-module
which correspond to the V-component and the W-component of a tensor in <3>{V,W).
Moreover $~+{V) and Jf{V, W) have the following decomposition into irreducible factors

ly°\ © {By} ©

(8) [ ( A ^ 1

We refer to Section 5 (cf. also [6] and [7]) for the definitions of Uv-
0}, {Bv}...

Theorem B will be proved in Section 5 as a consequence of Theorems 5.1 and 5.2.
Note that &~+(V) is the Kahler part in the decomposition of homogeneous structures

on almost Hermitian manifolds obtained by E. Abbena and S. Garbiero in [1]. More
precisely, the space of homogeneous structures on almost Hermitian manifolds &~(V)
splits into ^"+(K)@5~_(K), where &~+(V) corresponds to the Kahler structures. We
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remark that the components in ^"+(K) we obtain here agree with the ones in [1] (there
is just a different notation).

The component JV( V, W) obviously comes from the existence of a normal space.
The homogeneous Kahler submanifolds admitting a homogeneous structure in

Jf{ V, W) will be characterized in Section 6.
Moreover, in Section 6 some applications and basic examples will be given. By

Lemma 3.1 the homogeneous structure and the second fundamental form at m of an
orbit Gm of a unitary representation can be determined in a simple algebraic way. In
particular, some geometrical properties of the orbit can be read from the weight lattice
of the representation.

2. Preliminaries

Let i:(M,g,JM)-*(CPN(c),g,J) be a Kahler submanifold. We denote by g and g
respectively the Kahler metrics on M and the Fubini-Study metric on CPN(c) (complex
projective space with constant holomorphic sectional curvature c), and by JM(J) the
complex structures of M(CPN). Let VM(VcpiV) be the Levi-Civita connection on M(CP").
Then

i*g=g,

which implies

where X, Y are vector fields on M and a is the second fundamental form of M.
To simplify the notation, in view of (2.1), we denote by <,> both the Kahler metric of

M and the Fubini-Study metric on CPN and by the same letters the complex structures
on M and CP".

The rigidity theorem of E. Calabi [3] plays a fundamental role in the study of Kahler
submanifolds of CP".

Theorem 2.1. (Calabi's Rigidity Theorem). Let /:M->CP"(c) and f':M-*CPN'(c) be
two full Kahler immersions of the same Kahler manifold M. Then N = N' and there exists
a unique holomorphic isometry d> of CPN such that 0 / = / ' .

As a straightforward corollary, any homogeneous Kahler submanifold is extrinsic
homogeneous. Indeed, if M is homogeneous and G is a Lie group acting transitively on
M as a group of isometries, any geG extends to a unique holomorphic isometry of
CP". Hence M is an orbit of a representation of G in the isometry group of CP*.

There is a classical construction due to Borel and Weil (cf. [2]) which provides all
examples of homogeneous Kahler submanifolds of CP* (cf. [23] and Theorem 2.2
below). Here we sketch such a construction.

Let G be a compact semisimple Lie group and A a suitable (see [23]) linear
combination of the fundamental weights of G. Let p be the irreducible representation of
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G whose highest weight is A. Denote by V the eigenspace of p corresponding to A.
Since dimcK=l, V determines a point [KjeCP*. The orbit M = G [ K ] is a compact
homogeneous, simply connected, Kahler submanifold of CPN(c). The same construction
can be done equivalently starting from a simply connected complex simple Lie group G'
(see [8]; the connection between the two approaches is that the Lie algebra of G is a
compact real form of the Lie algebra of G').

For example, if G = SU(n) (G' = SL(n,C)) one obtains embeddings of the complex
Grassmannian G(k, n) of the k dimensional subspaces of C . Pliicker embeddings of the
Grassmannian and the Veronese embedding also arise in the same way (for more details
see [8, Section 23.3]).

Theorem 2.2. [23]. Let f:M->CPN(c) be a Kahler immersion of a globally homo-
geneous Kahler manifold M. Then

(1) M is compact and simply connected,
(2) / is an embedding,
(3) M is the orbit in CP* of the highest weight in an irreducible unitary representation

of a compact semisimple Lie group.

Let m = [p'] be a point in CP". We remark that TmCPN can be identified with the
orthogonal complement <w>x of the plane <m> in CN+l^U2N+2. Since the quotient
map

is a Riemannian submersion, using the fundamental equations of submersions [18], we
have

Lemma 2.3. Let V€pN denote the Levi-Civita connection of CPN (endowed with the
Fubini-Study metric) and VR2)V + 2 the Levi-Civita connection of U2N + 2 (endowed with the
euclidean metric). Then

vcP~y = v « — y _ < u > Y>p+(u,JY}Jp,

where ueTmCPN, m = \_p] = n(p), Y is a vector field on CPN and u and Y are the
horizontal lifts of u and Y respectively.

Throughout the paper we will always identify tangent vectors to CP* with their
horizontal lifts.

3. The canonical homogeneous structure

Let M->CP" be a homogeneous Kahler submanifold. As remarked in the previous
Section, M is the orbit of a point m = [ p ] e C P " in a representation p:G-*U(N+ 1). We
recall how one can define on M a homogeneous structure Sc, which is canonical as soon
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as a reductive decomposition of the Lie algebra of G is given. It is known (cf. [23], [9])
that if M is an almost Hermitian homogeneous manifold, then there exists a reductive
decomposition of g = h © m (where h is the Lie algebra of the isotropy subgroup at m)
compatible with the complex structure, i.e.

[h,m]£m, msTj t f (3.1)

and (via the isomorphism above)

J m s m and ad^J= Jad,,. (3.2)

Imitating a construction due to K. Nomizu (cf. [15]) one can associate to this
decomposition a canonical connection Vc. The difference tensor Sc = V ® V1 — Vc will be
called the canonical homogeneous structure. The connection Vc can be characterized by
the fact that its geodesies through m are orbits of 1-parameter subgroups, i.e.
y(t) = exp(tx)m, xem and that the parallel displacement along the geodesies coincides
with the differential of the action of exp(tx). The "only if" part of Theorem A is then
straightforward, since one verifies readily that J, a and Sc are Vc-parallel.

Given a representation p:G->U(N + 1) and an orbit of p, M = Gm, Sc
m and the value

at m of the second fundamental form can be expressed in terms of the representation of
Lie algebras which corresponds to p. If Y is a tangent vector to CP^ at m, let
Y(t): = (e\p(tx)),m- Y be the corresponding Vc parallel tangent vector field along y. Since
p(exprx):C"+1s<m> © <m>x-+C'v+1s<y(0> © <y(f)>x is linear, we get

y, (3.3)

hence

x • Y = — (exp tx) • Y = - (exp tx).m • Y.
dtu=0 dtu=0

If proj<m>± denotes the projection on <w>x, using Lemma 2.3, we get

r (exptx).m- y-V^(

= proj<m>i - (exp tx).m • Y = proj<m>i(x • Y).
atu = 0

Next we compute the second fundamental form am of M at m. Let x,yeTmM^m (we
denote with the same letter the elements of TmM and m). As above, _y(t): = exp(fx),m-_y is
a (V' parallel) vector field along y(t): = exp(tX)m. Then
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where 1 denotes the projection on vmM. We remark that the isomorphism (3.1) identifies
(with abuse of notation) y with ym, so (cf. [11])

Hence we have proved the following

Lemma 3.1. With the same notation and assumptions as above,

(S<m)xY = PTokmy(x-Y), (3.4)

am(x,y) = {x-ym)\ (3.5)

where x,yem^TmM, YeTmCPN.

We remark that the restriction of Sc to TM determines a homogeneous structure on
M, whose torsion is given by Txy = Sc

yx - Sc
xy (cf. [24]). By (3.4) it follows readily that

Txy=-\x,y\-m. (3.6)

4. The Lie subalgebra associated with a homogeneous structure

Let M->CPN be a Kahler submanifold which admits a homogeneous structure S and
denote by V the corresponding metric connection. Let meM be fixed and consider a
curve y(t), with y(0) = m, y(0) = x. Denote by Ty(() the isomorphism of TmCPN =
TmM®vmM into Tyil)CPN = TmM © vy(I)M determined by the parallel displacement
with respect to V along y(t). Let y(t) be the horizontal lift of y(t) (in the Riemannian
submersion 7t:S2JV + 1-»CPAr) such that n{p) = m. We identify CN+1 with TmCPN@U{p}
© U{Jp}. For any t, there exists a unique unitary transformation F,eU(N + 1) such
that

This gives a one parameter subgroup of U(N +1), or, in other words, a curve based at
the identity in U(N +1). Hence the tangent vector at / to the curve F, is an element q>x

of the Lie algebra u(/V + 1).
To simplify the notation, we denote by a, A and S the value at m of the second

fundamental form, the shape operator and homogeneous structure, respectively. Using
Lemma 2.3 and the fundamental equations of an immersion, a straightforward
computation shows that cpx is described by

, Jv) Jp - <x, v)p,
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where veTmCPN and vJ (v1) is the orthogonal projection of v on TmM (vmM).
Let Rxy be the curvature tensor of V, computed at m. By the Ambrose-Singer

holonomy theorem, the Lie algebra of the holonomy group of V is generated by the
elements of u(N + 1) which act as follows

Moreover to the Kahler form of CP* correspond the operators

<,x,Jy}Jp

-(x,Jy}p

t; i—»• (x,Jy~)Jv.

The operators <px,pyz,RM(x,y,z,u,teTmM) span a Lie subalgebra g of u(iV+l). Indeed,
the Gauss, Ricci and Codazzi equations and the definition of homogeneous structure
imply that the Lie brackets of these operators are:

lRm, 9^ = 911^, (4-2)

[Ruv>Rzw] = R&ul,zw + Rziiuvw> (4-3)

lpxy,A]=0, for any A eg. (4.4)

Theorem 4.1. Let M be a Kahler submanifold of CPW that admits a homogeneous
structure S and let G be the unique connected Lie subgroup of U(N +1) whose Lie algebra
is g. The orbit of meCPN,M: = G-m is a complete Kahler submanifold of CPN that
extends M (up to isometries).

In particular the values of S, a. and J at m uniquely determine M (up to isometries).

Proof. The Lie algebra g admits the reductive decomposition g = h © m, where

h = span {Ruv, pwz, u, v,w,ze TmM), m = span {<pu, u e TmM}.

Note that m^TmM and that

TmM = span{<pu • m, u e TmM] s TmM.

Let ^c be the canonical connection on M associated to the reductive decomposition
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above. By Lemma 3.1 we get that Sc
m = Sm and the second fundamental form at m of M

and M coincide.
Remark moreover that the complex structures of M and M at m coincide via the

isomorphisms TmM^m^TmM. A very similar argument as the one in the proof of
Proposition 2.1 in [17], shows that there exists an isometry F:CPN-*CPN such that
F(m) = m, F(M)^M.

This proves Theorem 4.1, which is the "if" part of Theorem A.

5. Algebraic decomposition of the space of the homogeneous structures

Let I I M M C P " be a Kahler submanifold. Let meM, put V: = TmM, W = vmM, with
dimR V = dimR M = 2n and dimRW = codimRM = 2/i. Using the hermitian metrics on V
and W we shall make no distinction between covariant and contravariant tensors. In
particular a homogeneous structure shall be considered as a tensor DxYZ on V* ®
(K© W)* ® (K© W)*. By definition of homogeneous structure, the symmetries of
D are

DxYZ=-DxZY, (5.1)

DxyN=0, (5.2)

DXYZ = DXJYJZ, (5.3)

where x, y are vectors in V, N belongs to W, X, Y, Z are in V © W. Hence

Q>{ V, W) = {D e V* ® (V® W)* ® (V ® W)*/DxYZ = - DxZY, DxyN = 0,

DxYZ = DxJYJZ, x,y 6 V, N e W, Y, Z e V © W)

is the space of tensors having the same symmetries as the homogeneous structures on
Kahler submanifolds of CP*.

The inner product on V induces canonically an inner product on 3>( V, W) and
determines an l/(n)-equivariant isomorphism V^V* and an l/(/i)-equivariant isomor-
phism W^W*.

The standard representation of U(n) x U(h) (regarded as a subgroup of U(n + h)) gives
rise to a representation of U(n) on V and of U(h) on W and thus a representation of
U(n) x U(h) on 2>(V, W) defined by

(gD)xYZ = Dg-,xg-,Yg-,z, geU(n)xU(h),De®(V,W).

It follows immediately that the above representation is completely reducible.
Because of (5.1) S>(V, W) is U(n) x t/(/i)-equivariantly included into

V ® A
 2(V ® W)s V ® ( A

 2 V © (V ® W) © A
 2 W).
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By (5.2) there is an U(n) x C/(/i)-equivariant inclusion

)c{V® A2V)®(V® A2W).

It is clear that (J, < ,» defines Kahler structures on V and W. The complexification of
the dual spaces V* and W* are

where lv-° is the annihilator of the space of complex tangent spaces vectors of the form
X + iJX and kv-° = kv-

1 is its conjugate (the same for X'#l). In the sequel we shall deal
mainly with V and it shall be understood that what we say holds for W, too. We refer
to [19], [7] and [6] for more details.

The (p + q)-th exterior power of V* contains a subspace kfy" (which is isomorphic to
A nv-° ® A «A£-') consisting of the so-called forms of type (p,q). Both Af/« © ky, (p*q)
and kfyp are the complexifications of real vector spaces which we denote by p$*] and
[A£-p] respectively, so that

and

The space of 2-forms decomposes as

A 2 K * = [ 4 - 1 ] ® [ 4 - 0 ] . (5.4)

Here [A^1] equals the subspace of 2-forms a for which a{X — UX, Y—UY) = 0 or
equivalents o(JX,JY) = o(X, Y), for all X, Ye V© W. Moreover, a e p i - 0 ] if and only
if o(JX,JY)=-o(X,Y), for all X, YeV@W. One may identify A2V with the Lie
algebra so(2n), [Aj.1] with the subalgebra u(n) and [(A0)J-

fl] with su(«).
More generally, let a>v be the Kahler form on V, i.e. (ov — — i £ , dz" A dz*. Wedging

with oiv determines an [/(n)-equivariant mapping Ly: k
p,~l'q~i-+kp;q. (AQ)^" is defined to

be the orthogonal complement of the image of Lv with respect to the induced Hermitian
metric. It is well known that the complex [/(n)-modules (AK)g* are irreducible.

Finally, we denote by Uv the module [A°°], i.e. the trivial representation on V.
Note now that, by (5.1),...,(5.3) we have the U(n) x [/(fc)-equivariant isomorphism

Set

Every De3)(V, W) splits into two components, i.e.
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D=T + N, Te$~+(V), NeJT(V,W).

Let By denote the kernel of the antisymmetrization Xv'° ® (AK)J>1 \->Xv
A.

Theorem 5.1. There is an isomorphism of U(n)-modules

Proof. We have V = (ty ° ] , so

[A^0], l^yj, [(AK)o-1| are irreducible l/(n)-modules. In fact, in Weyl's correspondence
[AJ--0], [BK] and [(AK)O'1] are associated to the dominant weights (1,0,...,0),
(2,0,...,0, -1 ) and (1,1,0,...,0, -1 ) , respectively.

See [1] for the expressions of the projections of De&~+{V) on the various factors.

Theorem 5.2. There is an isomorphism of U(ri) x U(h)-modules

Proof.

)S V® [A^ 1 ]^ V®

Now [Ay'0] is an irreducible C/(n) module, [(A^)o'1] and R^ are irreducible U(h)
modules. The result follows from the fact that the tensor product of an irreducible U(n)
module and an irreducible U(h) module is an irreducible U(n) x U(h) module.

Finally we determine the projection of D e Jf{ V, W) on the two irreducible factors.
Let

where ea is an orthonormal basis of W. Then
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6. Examples

6.1. 2-symmetric Kdhler submanifolds of CPN.
Let M->CPN be a complex submanifold of CP". We recall that M is then a Kahler

submanifold.
Imitating [12] and [13] we give the following:

Definition 6.1. M is a 2-symmetric Kdhler submanifold of CPN if there exists a family
{(7m}meM of involutive isometries of CPW which leave the submanifold M invariant, such
that any meM is an isolated fixed point of om\M, and for any m,qeM,omoq = orom,
where r = am(q).

Note that the definition implies that M is a symmetric Kahler manifold. Indeed,
{crm|M}m6M is a family of symmetries of M.

k

We recall [21] that the k-osculating space to M at a point meM, Om, is the span of

It k

computed at m, where AT, are vector fields on M. The orthogonal complement Afm of 0m
* + i *

in O m is called the k-normal space. If the dimension of every Om does not depend on m,

the fc-osculating and k-normal bundles 0 and N are defined. Their fibres at a point m
i k k k l k

are Om and Nm respectively. If ^eJV, then, for any vector field X on M, Vx£e N © N
k + l

. The higher order second fundamental forms B at m are defined inductively by

where X, are vector fields extending x,. A metric connection on any fc-normal space is
given by

Lemma 6.1. / / M is a Kdhler submanifold ofCPN then JN^N

Proof. By induction on k. For fc = l we remark that <x(x, Jy) = Ja(x, y) (cf. (2.1))
1 1 k-l k-l fc-l

implies JN<=N. Suppose J N <= N and that B ( x 0 , . . . , J x h . . . , x k - l ) =

J B (xo,...,x,,...,xk^i). Then
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B(xo,...,Jx1)...,xt) = proj .,
(Nm © .. . ffi iV m)

since (N m © . . . © JV „,)•"• is J invariant. As Nm = span{B(x0,...,x/t)}, we get the proof of
the lemma.

A direct consequence of Lemma 6.1 and VcpN J=0 is

Lemma 6.2. / / M is a Kahler submanifold ofCPN, then VJ = O.

Using Lemma 6.2 and the same techniques as in [4] (cf. also [22]) one can then
prove

Theorem 6.3. M is a 2-symmetric Kahler submanifold of CPN if and only if

k k

Let V1 the metric connection on v(M) given by

A straightforward computation shows that

Lemma 6.4. M is a 2-symmetric Kahler submanifold of CP* if and only if S: =
V © V1 — V © V1 is a homogeneous structure on M.

By Lemma 6.1 it is easy to see that c12(S) = 0, so Sep}; 0 ] ® [(Anr)o'1]. Hence a
2-symmetric Kahler submanifold admits a homogeneous structure belonging to p.J/ °] ®

On the other hand, suppose that a Kahler submanifold M admits a homogeneous
structure in Jf{V, W) and let g = h © m be the Lie subalgebra of u(N + 1) constructed in
Section 4. By Lemma 3.1 in [10], if xem, then

x-Nm<zkNl
m®kNl

m (6.1)
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k

(note that our Nm coincide with the modules Vk in [10] for k^. 1). In the same vein as in
the proof of Lemma 3.1, we have

(V,B)(x0,...,xk) = proj^ [x• B(x0,...,**)] = 0,

by (6.1). Applying Theorem 6.3 we get that M is 2-symmetric. Hence

Theorem 6.5. M is a 2-symmetric Kdhler submanifold of CPN if and only if it admits a
homogeneous structure belonging to Se[A^'°] ® [(^w)o'1]-

Remark. The above results imply that, if M admits a homogeneous structure
belonging to Jf{V, W), then the p{/°J <2> Uw factor can be eliminated. Indeed, if M has
a homogeneous structure in Jf{ V, W), then it is 2-symmetric and by Lemma 6.4 it has a
homogeneous structure in [Aj,'°] ® [ ( - V ) Q ' 1 ] .

6.2. Illustration of some examples.
We recall that any homogeneous Kahler submanifold is an orbit in a unitary

representation of compact Lie group G. Hence, using Lemma 3.1, one can recover the
canonical homogeneous structure and the second fundamental form at m of the orbit
G • m starting from the weight lattice of the Lie algebra g of G.

Example 6.1. Let g = su(2). Let px be the representation with highest weight a e Z + .
Let vx be a weight vector relative to a. and consider the orbit of [ua]. The isotropy
subgroup at [ u j is isomorphic to C/(l) and the Kahler submanifold is CP1->CP>'V(a). It

k k+l

is easy to see that if u e N[p], then Sc
mYu e N m (where Y is a root vector relative to the

root - 2 ) . This shows that C P ^ C P " 0 " is a 2-symmetric Kahler submanifold.

Example 6.2. Let g = su(3) and A be a weight which lies in the fundamental Weyl
chamber (including its walls). We consider the representation having A as highest
weight.

(a) Let A belong to a wall of the fundamental Weyl chamber (which one is
immaterial). Let v be an eigenvector relative to A and consider the orbit of [u]. The
isotropy subgroup at [u] is isomorphic to 5(1/(1) x 1/(2)) and the orbit is CP2. Drawing
the picture of the weight lattice one can visualize the normal spaces. In particular one
can see that the orbit is a 2-symmetric Kahler submanifold.

(b) Let A lie in the interior of the fundamental Weyl chamber. In this case the orbit is
not symmetric. (Indeed the orbit is the manifold of all flags in C3; cf. [8, page 383].) To
see this directly from the weight lattice diagram, using homogeneous structures, we now
give an explicit example. To this aim it is simpler to consider the complexified Lie
algebra sl(3, C) (cf. what remarked in Section 2). Let L, denote the functional
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and choose as positive simple roots Ll—L2 and L2 — L3. We now take the irreducible
representation p having highest weight 2Ll — L3. Let v belong to the weight space of
2Ll — L3 and consider the orbit M of v. One can readily see from the weight lattice
diagram that the tangent space is (complex) three dimensional. Let Xesl(3, C) lie in the
root space of L3 — L2, Y in the root space of L2 — Ll and set Z: = \X, Y~\ (thus Z lies in
the root space of L3 — Ll). Then x: = p(X)v, y: = p(Y)v and r. — p(Z)v are respectively in
the weight space of 2L,— L2, — 2L3 and Lt and they span the tangent space of M at
[>]. By (3.6) in Section 3 we have

Txy= -p([X, Y-\)v= -p(Z)v= - z * 0 .

This shows that the canonical homogeneous structure on M has non-vanishing torsion,
which clearly implies that the orbit is not symmetric.
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