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1. Introduction. I t is known that under special conditions, Fourier sine 
transforms and Fourier cosine transforms behave asymptotically like a power 
of x, either as x —» 0 or as x —» oo or both. For example (3), 

\ l / 2 

Fc(x) ~ <K+0) l~) r ( l - cOsinjTrax*"1 (x->oo), 

/ o\1/2 

~ 0 ( + o o ) l - ) r ( l - a)$m±Traxa~l (tf-»0) f 

where f(x) = x~a<j>(x), 0 < a < 1, and </>(x) is of bounded variation in (0, oo ) 
and Fc(x) is the Fourier cosine transform of fix). This suggests that other 
results connecting the behaviour of a function at infinity with the behaviour of 
its Fourier or Watson transform near the origin might exist. In this paper wre 
derive various such results. For example, a special case of these results is 

(2V'2 l CT 

/ ( + 0 ) = l - J Hm-= xg(x)dx, 

where/(x) is the Fourier sine transform of g(x). It should be noted that the 
Fourier inversion formula fails to give jf(+0) directly in this case. Some 
applications of these results to show the relationships between various forms of 
known summation formulae are given. 

2. Definition. A function S(N) is limitable by Riesz means (R, N, r), to 5 
as N-+ oo, if 

lim TN~T S(t){N - tY^dt = S 

for a sufficiently large r. 

3. The main results. 

THEOREM 1. If g(x) 6 L(0, co) and has a TTJV /2-i(27rx1/2) -transform fix) and 
x1/2~p/4gix) is of bounded variation near x = 0, then 

l i m r ? ^ f ^ W 4 " 1 / 2 / ( ^ ) ( l ~ j)Tdx = lim x1/2-^g(x), 
T-ioo I (P/*) JO \ 1 / x_++o 

where r > (p — l ) / 2 and p is a positive integer. 
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Proof. Let, for p > 0, 

L(x) = xp/4~1/2, 0 < x g r , 
= 0 x > r . 

Its irJp/2-i (2irxl/2)-transform is given by 

H(x) = x f r f / 4 - l / 2 / w 2 _ l (2 1 rX l / 2 / l / 2 )^ 

= r / 4x-1 / 2 /2 ) / 2(2^1 / 2r1 / 2) . 
Now 

(1.1) f T / ( ï ) x " 4 - 1 , 2 à = r / 4 rx-1 /2g(x)/ î , / 2(27rx1 /^1 /2)rfx, 
«/o «Jo 

since both integrals are equal to the absolutely convergent double integral 

7T ^ f XV/A-1,2g(t)Jp/2-1(2TTX1/2t1,2)dxdL 

Split the range of integration of the right-hand side of (1.1) into (0, A) and 
(A, oo), A > 0, and let 

lim x1,2~VIAg(x) = k, a constant. 

Now the integral with the range (0, A) can be written as 

(1.2) & r / 4 f xw4-V, / 2(27rx1 /2r1 /2)^x 

+ r / 4 fAxp/4-1/?)/2(2xx1/2r1/2){x1/2-2,/4g(x) - k\ dx 
Jo 

= Si(T) + S2(T), say. 
We shall now show that Si(T) + S2(T) is limitable by Riesz means (R, T, r) 
to a finite limit as T —> oo , for a large r, 

lim im rr~T f 5 i ( 0 ( r - / ) T _ 1 ^ 

= kr lim r~T fT e'\T - ty-Ut f a*'4-1/,^**1'**1") dx 
T^oo ^ 0 • / 0 

= £r lim r"T f xv/A-xdx f f / 4 ( r - or~1^/2(2^1/2^1/2) dt. 
r̂ oo •/ o •/ o 

By Sonine's integral (3), the inner integral can be evaluated to yield: 

kT(r + l)ir~r lim r"4~T/2 f xz , /4-T/2-1/p /2+r(2Tx1 /2r1 /2) dx 

= kT(r+ l)x-p/22r-?/2+1 P f'*-T-lJvn+T(t) dt, 
r^co 
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by putting 2^^xl,'1Tl,2 — t and making T —» oo, the inner integral is equal to: 

(1.3) T-p/'T(p/2) lim x/z-p/g(x), 

where r > (p - 3)/2. 
Now consider 

iimrr-T f s2(/)(r- o7-1-
r^™ t / o iimrr-T sM(r-ty-ldt 

= l i m r r - T f f'\T-t)T~ldt f xp/i-1Jv/2(27rx1/Y/2)ct>(x)dxJ 

where 

0(x) = x1/2~p/4g(x) — & 

= lim r r ~ r f xp / 4 _ 10(x)dx f / p / 4 ( r - / ) T - 1 / w 2 ( 2 7 r x 1 / 2 / 1 / 2 ) ^ . 
r-^oo «^ o ^ o 

Again by Sonine's integral, the inner integral can be evaluated to yield: 

T(r + 1)TT-T lim r / 4 ~ T / 2 f xw 4 -T / 2 - 1J p / 2 + T (2^ 1 / 2 r 1 / 2 )0(x) dx. 

Choose A small enough so that 4>(x) is of bounded variation in (0, A) and tends 
to zero with x. Therefore, we can write 

<t>(x) = <£i 0 ) — </>20), 

where <j>\ and <£2 are positive non-decreasing bounded functions in (0, A) and 
tend to zero as x —> 0. The above integral can now be written as 

(1.4) r ( r + l ) r - ' l i r a r ' 4 - " 2 fxp / 4-T / 2-1 / î ) / 2 + T(21rx1 / 2r1 / 2) 

X {(t>i(x) — 02(x)} dx. 

Given any positive e, choose A so that |</>i(A)| < e. Since <j>\(x) is a positive 
non-decreasing bounded function, we see, by the second Mean Value Theorem, 
that the first part of the above integral is 

^ (A) lim r / 4 ~ T / 2 fxp,i'r/i-1J1)/i+T(2^x1"T1,2)dx, 

where, for all T, 0 ^ ô S A. Since |<£i(A)| < e and the integral is bounded as 
shown above in (1.3), we see that the absolute value of the last expression is 
less than Ae, where A is some constant. Hence, the first expression in (1.4) 
vanishes. Similarly, the second expression in (1.4) also vanishes. 

The integral with the range (A, co ) in the right-hand side of (1.1) yields: 

f ' \ T - tY^dt x-1'2g(x)Jp/2(2-!rxllY/2)dx 

= lim TT~T (x x-1/2g(x) dx (T e'\T - ty-'j./^wx1^1'2) dt. 
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By Sonine's first integral, we obtain 

lim o ( r / 4 " T / 2 - 1 / 4 f°V ( T / 2 + 3 / 4 )g(x) dx) = lim 0 ( r / 4 - T / 2 " 1 / 4 ) = 0, 

for T > (p — l ) /2 . Thus, the right-hand side of (1.1) is limitable (R, N, r) by 
Riesz means to 

T~P/2T(P/2) lim x1/2-p/4g(x), 

as N -> 00 for r > 0 - l ) /2 . The left-hand side of (1.1) yields: 

lim TT~T f (T-ty-'dt f f(x)xp/i~1/2dx 
T-^OO «Jo ^ 0 

= lim JJ/(*K / 4-1 / 2(l - | J d*. 
Hence, (1.1) reduces to 

Vim~^/o\ xp/i~1/2f(x)[l ---) dx = lim x1/2~p/*g(x), 

as required, for r > (p — l ) /2 . 

TVo/e 1. Consider the formulae (1), 

um{ t „(„)„—/(„)(i -1)' - ??f;~ £>-"'/«(. - i ) ' 4 . 

where rp(w) is the number of ways of expressing n as the sum of squares of p 
integers and g(x) is the irJp/2-i(2Trx1/2)-transform,/(#),/'(#)> • • • >/ ( 2 T~3 )0*0 are 
integrals,/(x), xf'(x), x*f"(x), . . . , x*'-*/^-»(x) £ £2(0, oo), r > (£ - l ) / 2 . 
By Theorem 1, with appropriate conditions, the summation formula can be 
written, formally, as 

CD 

(1.5) Z r,(»)»1/4- , , /y(») - lim xl/2-v/ig(x) 
CO 

= £ ^C»)»1'*-"4^») - lim x1/2-^/4/(x). 
rc=l z^+0 

Put p = 1. Then 
/ » 0 0 

g ( x ) = 7T f(t)J-1/2(2wx1/2tl/2)dL 
Vo 

Let (27rx)1/2 = w and (27r£)1/2 = v. Then we obtain 

Similarly, 

Ml/2/(fc) = w X p l / 2 gwC 0 S M ," f e-

https://doi.org/10.4153/CJM-1969-103-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-103-5


946 C. NASIM 

Let F(x) = X1/2/(X2/2TT) and G(x) = xl/2g(x2/2w). Thus, F(x) and G(x) are 
Fourier cosine transforms and (1.5) becomes 

oo oo 

£ F(V(2*n)) = E G(\Z(2ir»)), 

which is the Poisson summation formula, where the terms n = 0 should be 
divided equally. Putting p — 2 in (1.5) yields: 

oo oo 

X) r(n)f(n) = £) r(n)gW, 

where /(x) and g(x) are 7rJo(27rx1/2)-transforms, and r(w) is the number of 
solutions of the Diophantine equation x2 + y2 = n. This is the Hardy-Landau 
summation formula. 

THEOREM 2. If g{x) G L(0, oo) and tes a it J v{2Trx1/2)-transform f(x) and 
x1/4g(x) is of bounded variation near x = 0, /Ae» 

Hm T-^nCx^f{x) dx =
 r~^l+l^ lim *"«f (*), 

r-̂ oo ^o 1 (p/2 H- 5 / 4 j ^ + 0 

where v > — 1. 

Proof. Let 
L(x) = x' /2, 0 < x < r , 

= 0, x > T. 

Its TTJV(2TX1/2)-transform is given by 

H(x) = 7T f V 2 / , ^ * 1 ' 2 / 1 ' 2 ) * 

J
» 2 7 T ^ l / 2 ^ 1 / 2 

0 

= r " f 0 V % 1 ( 2 r t f 1 ' ! r l " ) 1 , > - l . 
Applying Fubini's theorem, 

(2.i) r-('+1/2)/2 fV /2/(*)<fc = r1/4 r*-1/VH.i(2ir*1/ ,r1/i)g(*)i*. 

Split the range of integration on the right-hand side of (2.1) into (0, A) and 
(A, oo), and let lim^+o x1/4g(x) = k, where k is some constant. Then the 
integral with the range (0, A) can be written as 

kTlli Cx-s/iJ„+1(2irx1/2T1/2)dx 

+ r1/4 fV3/4/,+1(2xx1/2r1/2)(x1/4g(x) - *) dx. 
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The first integral in the above expression yields 

. 1 / t r f r / 2 + 3/4) Q = r _ ^ 
kw r ( , / 2 + 5/4) a s r - * ° ° > 

where v > —3/2. The second integral is 

(2.2) T1/4 f x-3 /V,+i(27rx1 / 2r1 / 2)0(x)Jx, 
Jo 

where <t>(x) = xing(x) — k. 
Choose A small enough so that 4>(x) is of bounded variation over (0, A), and 

therefore can be expressed as a difference of two non-decreasing bounded 
functions <t>i(x) and 02(x), say. Then by applying the second Mean Value 
Theorem, as before, the absolute value of expression (2.2) can be made less 
than e. Hence, 

(2.3) l imr 1 / 4 f x-1/2Jv+1(2irx1/2T1/2)g(x)dx 

= ^ 1 / 2 r ( y / 2 + 3/4) 1/4 

r(v/2 + 5/4) ?Z «W-
Next, consider the integral with the range (A, co ). By the asymptotic expansion 
(4) of the Bessel function J„+i> 

J'» CO 

X- 1 / 2J ,+ i (2 , rX 1 / 2 r 1 / 2 )g(x) dx 
A 

= 1 x - 3 / 4 g ( x ) c o s ( 2 « 1 / V / 2 - J ' x / 2 - 3 7 r / 4 ) & + <9(r-1/2x-5/4g(x)dx 
7T « / A «^A 

= - j°°x~z/*g(x)cos(2W(xT) -6)dx + 0\T~1'2 J ° V 6 / 4 g ( a ) dx) . 

Since g(x) G L(0, oo ), we see that x~z/4g(x), x~b/Ag(x), and x~7/Ag(x) belong to 
L(A, oo), A > 0. Hence, all the integrals above tend to zero as T —> oo, the 
first and the third by virtue of Riemann-Lebesgue theorem (2, p. 11), that is, 

(2.4) lim T1/4 f°° x~l/2JP+1(2ir\/(xT))g(x) dx = 0. 
Z*-*» ^ A 

Combining (2.4) and (2.3), we obtain, from (2.1), 

lim r * - ™ " f ' « " f t * ) dx = ' " ^ r ^ + | ^ lim *"«<(*), 
T-too ^ 0 1 W^ + 0/4) x^+0 

when Ï; > —1, as required. 

Note 1. Letting u = (27rx)1/2 and y = (27r/)1/2, the conditions of Theorem 2 
become 

https://doi.org/10.4153/CJM-1969-103-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-103-5


948 C. NASIM 

or, 

J'oo 

F(v)(uv)l/2Jv(uv)dv, 
o 

where x1/2g(x2/2w) = G(x) and xll2f(x2/2ir) = F(x). Similarly, 

J»OÙ 

G(v)(uv)1,2Muv)dv. 
0 

Making the same substitutions in the main result we obtain: 

(2.5) lim N~™m f t^F{t) dt = I & Z 2 ± M ^ H m G ( x ) ) 

where F(x) and G(x) are x1/2/„(x) -transforms. 
Let v = 1/2. Then (2.5) becomes 

limAT1 j tF(t)dt = (-) G(+0) , 

where Fix) and G(x) are Fourier sine transforms. 

Example. Let G(x) = e~x. Then 

F(X) = [-) T-T—"2 
\7r/ 1 + x 

and G(0) = 1. 
From (2.5), we obtain 

lim T~l I -—7—sdt = 1. 

THEOREM 3. If g(x) £ £(0, oo ) and has a sine transform f{x) and xa~1g(x)is 
of bounded variation near x = 0, where 1 ^ a < 3, then 

lim T~a I xf(x)dx = 1") s i n ^ x lim xa~1g(x). 
r-̂ oo ^ o \ 7 r / a x^+o 

Proof. Let 
L(x) = x, 0 < x < T, 

= 0, x > T. 
Then its sine transform 

/ 2 \ l / 2 ÇT 
H(x) = I — ) I / sin x/ d/ 

_ ( 2 \ 1 / 2 sin xT — xT cos xT 
\7r/ x2 

By Fubini's theorem, as before, 

(3.1) T-° Vxf(x)dx = r-{-2-Y/2 fsinxr-xrcosxr dx 
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Split the range of integration on the right-hand side of (3.1) into (0, A) and 
(A, co). 

Let lim^+ox"-1^:*;) = k, say. Then the integral with the range (0, A) is: 

(3.2) (|J T~ak J x~(a+1) (sin xT - xT cos xT) dx 

+ (-) T~a J x~(a+1)(sin xT - xT cos xT) (xa_1^(x) - k) dx 

= Ii+ 1% say. 

/ 2\1/2 p A r 

lim Ii = ( — ) k lim I zi_(a+1)(sin u — u cos u) du. 
T-ÏOO \ ^ / T->œ ^ 0 

Integrating by parts, note that the integrated terms vanish when 1 < a < 3, 
and we obtain (4, p. 260), 

lim 11 = I — J - I sin uu du 
T^OO \ 7 r / a J o 

-(r r ( 2 — a) . ! t. «_i , v 
sinfa7r lim x g{x). 

It can be easily seen that when a = 1, the above result holds. Hence, the value 
of Ii is valid for 1 ^ a < 3. 

Now choose A small, so that xa~1g(x) — k is of bounded variation in (0, A). 
By the second Mean Value Theorem, the absolute value of I2 in (3.2) can be 

made less than e. 
Write the integral, with the range (A, oo), as 

I — J T \ I sin xT ^r- dx — T I cos xl ^ - ^ dx 
\7r/ \ J0 x Jo x 

Since g(x) Ç L(0, oo), we see that g(x)/x2 and g{x)/x belong to L(A, oo), 
A > 0. By the Riemann-Lebesgue theorem, both the integrals in the last 
expression vanish as T —> oo and a ^ 1. Thus, (3.2) reduces to the value 

/ 2 V / 2 r ( 2 - « ) . 1 , 
W a 2 

as T —> oo . 
Hence, 

lim r a I xf(x) dx = I — ) sinjax lim x* ^(x) , 

where 1 ^ a < 3. 

Note 2. Put a = 1 in the result of the previous theorem and we obtain the 
following result. 
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THEOREM 4. / / (i) g(x) Ç L(0, oo) and has a Fourier transform f(x) and 
(ii) g(x) is of bounded variation in some neighbourhood of x = 0, then 

limy, fTxf(x)dx = (-)1/2g(+0). 
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