SOME RESULTS RELATING THE BEHAVIOUR OF
FOURIER TRANSFORMS NEAR THE ORIGIN
AND AT INFINITY

C. NASIM

1. Introduction. It is known that under special conditions, Fourier sine
transforms and Fourier cosine transforms behave asymptotically like a power
of x, either as x — 0 or as x — o or both. For example (3),

F.(x) ~ ¢(+0)<§>1/2F(1 — &) sindrax®! (x > 0),

2 1/2
~ ¢(+oo)<;) I'(l — a)sindro ™! (x —0),

where f(x) = x™¢(x), 0 < @ < 1, and ¢(x) is of bounded variation in (0, )
and F,(x) is the Fourier cosine transform of f(x). This suggests that other
results connecting the behaviour of a function at infinity with the behaviour of
its Fourier or Watson transform near the origin might exist. In this paper we
derive various such results. For example, a special case of these results is

£(40) = ()”2113;? IR

where f(x) is the Fourier sine transform of g(x). It should be noted that the
Fourier inversion formula fails to give f(+0) directly in this case. Some
applications of these results to show the relationships between various forms of
known summation formulae are given.

2. Definition. A function S() is limitable by Riesz means (R, N, 7), to .S
as N — o0, if

N
lim 7N’ SOWN — )" tdt = S
0

N-ooo

for a sufficiently large 7.

3. The main results.

TaEOREM 1. If g(x) € L(0,0) and has a wJpje—1(2wx'/?)-transform f(x) and
x1/2—PMg (x) 1s of bounded variation near x = 0, then

Jim —f—‘/z> f Y G >(1 - )dx = lim 157 (x),

T r (P z-5+0
where 7 > (p — 1)/2 and p is a positive integer.
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Proof. Let, for p > 0,

L(x) = 2?4712, 0<x =T,
=0 x> T.

Its 7w, 0-1(27x!/?)-transform is given by
Vi
H(x) = = J; P a1 Quxt ) dt

= T”“x“lﬂjpﬂ (2 1rx1/2T1/2) .
Now

T £
(1.1) f Fle)a? P dy = TP f 2 () T, 0 (2mx ) dix,
0 0

since both integrals are equal to the absolutely convergent double integral

0 T
T f f P () Ty jmr Q) dixc dt.
0 0

Split the range of integration of the right-hand side of (1.1) into (0, A) and
(A, ©0), A >0, and let

. 1/2—p/4
lim x'*?/*g(x) = k, a constant.
-0

Now the integral with the range (0, A) can be written as

A
1.2) kT f & T (2w TR da
0

A

+ 77 ] T Quxt TV (M g (x) — B) dx
0

= Si(T) + S:(T), say.

We shall now show that S1(7") + S2(7") is limitable by Riesz means (R, T, 7)
to a finite limit as T'— o, for a large 7,

T
lim 77" f S1() (T — )™ dt
0

T—o0

T A
=krlim I7 . t”/"(]‘ _ t)f—l dt ‘I; xp/%lfp/z(%rxl/ztlﬂ) d

T>co
A T
= krlim 777 ) & dx fo T = ) T p Qe ) dt.
—00

By Sonine’s integral (3), the inner integral can be evaluated to yield:
A
ET(r + 1)x~" lim 7%/ f T g (2t T dic

T 0

= kT (r + 1) g P27 P21 J; P e (t) di
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by putting 2rx'/?T'? = { and making 7" — o0, the inner integral is equal to:

(1.3) T (p/2) liTo KM (x),

where 7 > (p — 3)/2.
Now consider

T
lim 77" So()(T — 1)t dt
o ‘ T A
= lim 777" PINT — 1) dt f VT 2w ) ¢ (x) dix,
T-c0 0 0
where N

¢x) = &g (x) — &

A T
lim + 7777 fo e (x) dx fo T = )T, p2ex Y dt.

T-c0

Again by Sonine’s integral, the inner integral can be evaluated to yield:

A
I'(r+ 1)z " lim 7777 fo XTI e (2w T ¢ () dix.

T

Choose A small enough so that ¢ (x) is of bounded variation in (0, A) and tends
to zero with x. Therefore, we can write

o(x) = ¢1(x) — Palx),

where ¢; and ¢, are positive non-decreasing bounded functions in (0, A) and
tend to zero as x — 0. The above integral can now be written as

A
(14) T(r+ 1)a " lim 77/*77 fo P @ T
T
X {¢1(x) — ¢a(x)} du.

Given any positive ¢, choose A so that |¢1(A)| < e. Since ¢1(x) is a positive
non-decreasing bounded function, we see, by the second Mean Value Theorem,
that the first part of the above integral is

A
é1(A) lim 777477 fs T T Qe 2T d,
T
where, for all 7,0 < § < A. Since |[¢1(A)| < e and the integral is bounded as
shown above in (1.3), we see that the absolute value of the last expression is
less than Ae, where 4 is some constant. Hence, the first expression in (1.4)
vanishes. Similarly, the second expression in (1.4) also vanishes.
The integral with the range (A, ) in the right-hand side of (1.1) yields:

T ©
lim 777" . P — )T e J; Vg (x) Ty (2mx P ) di

T

© T
= lim 77" J; % (x) dx J; T = )T e Qr ) dt.

T
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By Sonine’s first integral, we obtain

;im O<Tp/4—r/2-l/4 JA‘ x—(r/2+3/4)g(x) dx> _ ym O(]‘p/4—r/2~1/4) — 0,
for 7 > (p — 1)/2. Thus, the right-hand side of (1.1) is limitable (R, N, 7) by
Riesz means to

7 PL(p/2) lim o (),

as N — o for 7 > (p — 1)/2. The left-hand side of (1.1) yields:

lim 77" (1 — ) dt f Fla)x" 7 dx
T>co
T

= lim f(x)x”"’””(l - —’;> dx.

T 0

Hence, (1.1) reduces to

lim -

p/4—1/2 7 _ 1/2—p/4
i tgrmy Sy 2 = 5 e =

as required, for > (p — 1)/2.
Note 1. Consider the formulae (1),

N T /2
i & omso-) = J s =) e
(N T /2 "N
leim{ Z:; r,,(n)n”g"”“g(n)<1 —%) _f_,(v; 73y x”"‘ 1”g(x><1 ——-> }

where 7,(n) is the number of ways of expressing # as the sum of squares of p
integers and g (x) is the mJ, 21 (27x'/?)-transform, f(x), f'(x), . .., f@™3 (x) are
integrals, f(x), xf' (x), €% (x), . .., 227D (x) € L2(0,00), 7> (p — 1)/2.
By Theorem 1, with appropriate conditions, the summation formula can be
written, formally, as

e

15 > r,(m)n > (n) — lim x P (x)
z-5+0

e

= 2 rp(m)n' " (n) — lim &7 (x).
1 >+0

n=

Put p = 1. Then
gx) == f JOT-1p@ux ") dt.
0

Let (27x)'2 = u and (27t)!/? = v. Then we obtain

9 o\172 fre 9
ul/2g<u—> = <——> f v1’2g<v—>cos uv dy
27 T 0 27 ’
2 12 po 2
g1 _ (2) f 2 (v_>
u f<21r> - , ve\5- cos uv dv.

Similarly,
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Let F(x) = xV*f(x?/27) and G(x) = x'2g(x2/27). Thus, F(x) and G(x) are
Fourier cosine transforms and (1.5) becomes

Y P/ = 3 66/ @),

which is the Poisson summation formula, where the terms # = 0 should be
divided equally. Putting = 2 in (1.5) yields:

0 o)

> i) = 3 rmgm),

where f(x) and g(x) are 7nJo(27x!/?)-transforms, and 7(z) is the number of

solutions of the Diophantine equation x* 4+ y2 = #n. This is the Hardy-Landau
summation formula.

THEOREM 2. If g(x) € L(0,00) and has a =J,(27x'?)-transform f(x) and
x4g (x) is of bounded variation near x = 0, then

I r P /2 + 3/4)
1 <v+1/2)/2f v/2 _T T@/ .1
T:rg T . 2" f(x) dx (/2 £ 5/4) zlirfox 2(x),

where v > —1.

Proof. Let
Lx) =x? 0<x<T,

=0, x> T.

Its =J,(2wx'/2)-transform is given by

T
H(x) = = f £, Qaxt ") di
0

orpl/241/2
= (2m) Uy OA 2 f W' T, (u) du
0

= IO L @ T, v > —1

Applying Fubini’s theorem,

T @
(2.1) T'(H'mmf & *f(x) dx = Tmf & T Qxt TV g (x) dx.
0 0

Split the range of integration on the right-hand side of (2.1) into (0, A) and
(A, ), and let lim,_ 4o x4 (x) = k, where k is some constant. Then the
integral with the range (0, A) can be written as

A
T J & T Quext PTY) dx
0

A
+ T”“f & T Qe PV (6 Mg (x) — B) dov.
0
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The first integral in the above expression yields

—1/2 P(V/2 + 3/4:)

kr Tee sy BT
where » > —3/2. The second integral is
A
(2.2) Tmf & T QaxPTY?) ¢ (x) dr,
0

where ¢(x) = x4 (x) — k.

Choose A small enough so that ¢ (x) is of bounded variation over (0, A), and
therefore can be expressed as a difference of two non-decreasing bounded
functions ¢;(x) and ¢.(x), say. Then by applying the second Mean Value
Theorem, as before, the absolute value of expression (2.2) can be made less
than e. Hence,

A
(2.3) lim T1/4J; T, (2mx T g (%) dx

T-o0
—1/2
_m "Tw/24+3/4) . i
=TT o) o )
Next, consider the integral with the range (4, 0 ). By the asymptotic expansion
(4) of the Bessel function J,1,

Y f & T, et P T g (x) dx
A

= i f Mg (x)cos @mxPT? — yr /2 — 37 /4) dx + f O(T %™ (x) dx
A A

- i fA " g (w)cos(2ny/ (6T) — 6) dx + O(T‘”2 f:, v (x) dx> :

Since g(x) € L(0, o), we see that x~3/4g(x), x~%*g(x), and x~"/*g(x) belong to
L(A, ), A > 0. Hence, all the integrals above tend to zero as I — 0, the
first and the third by virtue of Riemann-Lebesgue theorem (2, p. 11), that is,

(2.4) lim 7 fm T, @m/ (6T))g (x) dx = 0.

T-00

Combining (2.4) and (2.3), we obtain, from (2.1),

T —1/2
. (r+1/2) /2 v/2 _m "T(w/2+3/4) .  ip
ym 1 J, e as = T(/2+ 5/4) Lm« e),

when » > —1, as required.

Note 1. Letting # = (2mx)2 and v = (27¢)'/2, the conditions of Theorem 2

become
2 © 2
e f ¥ ) _ 12 U ), 1/2
" g<27r> J:) v f<21r)./,,(m)) (m}) de,
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or,

Gu) = f " F@) ) T, () do,

0

where x1%2g(x2/27) = G(x) and x12f(x?/27) = F(x). Similarly,

F(u) = f G @) ()’ J, () dv.
0
Making the same substitutions in the main result we obtain:

rw/24+3/4) . .
TG 2 + 5/4) gy
where F(x) and G(x) are x'/2J,(x)-transforms.

Let v = 1/2. Then (2.5) becomes

N
(2.5) lim z\r““/”f PR dt =
0

N-co

N

1/2
lim v | 4R () dt=<%> G(+0),

Noow

where F(x) and G(x) are Fourier sine transforms.

Example. Let G(x) = e~*. Then

and G(0) =

From (2.5), we obtain
¥

lim 77! sdt =
Nll?, o 1 + I

THEOREM 3. If g(x) € L(0, 00 ) and has a sine transform f(x) and x*~'g(x)is
of bounded variation near x = 0, where 1 < a < 3, then

T 1/2 _
lim 77¢ xf(x) dx = (—-) TE=a) sinfar lim x* g (x).
0 ™ o

T z5+0

Proof. Let

Lx) =x 0<x<T,

=0, x> T.
Then its sine transform

H(x) = ()m ¢ sin xt dt
- (%)

By Fubini’s theorem, as before,

T 1/2 © * _
3.1) 1T°° fo xf(x)dx:T‘“(—?;) fo sin«l — xTcos Ty gy

X

sinxT — xT cos xI
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Split the range of integration on the right-hand side of (3.1) into (0, A) and
(A, ).
Let lim, 0 x*'g(x) = k, say. Then the integral with the range (0, A) is:

o\172 A
(3.2) (;) T™° J‘ x“D(sin 7 — T cos xT) dx
0
o\ 12 A
+ (—) T_“f x~“(sin xT — xT cos x1) (x* g(x) — k) dx
s 0
= I+ I,, say.
1/2 AT
lim I; = (——) k lim w P (sin u — u cos u) du.
T—>c0 ™ T 0

Integrating by parts, note that the integrated terms vanish when 1 < o < 3,
and we obtain (4, p. 260),

1/2 o)
lim [; = <2> k f sin % ' ™ du
T>00 ™ o 0

1/2
= (—2—> T2 = a—)sin%onr lim x* g (x).
™ « 2540
It can be easily seen that when @ = 1, the above result holds. Hence, the value
of Iyisvalid for 1 £ a < 3.

Now choose A small, so that x*~1g(x) — k is of bounded variation in (0, A).

By the second Mean Value Theorem, the absolute value of I, in (3.2) can be
made less than e.

Write the integral, with the range (A, ), as

1/2 © ©
<-72;> T—“{ f sin xT° gf;) dx — T f cos xT% dx} )
0 0

Since g(x) € L(0, ), we see that g(x)/x? and g(x)/x belong to L(A, ),
A > 0. By the Riemann-Lebesgue theorem, both the integrals in the last
expression vanish as 7'— o and @ = 1. Thus, (3.2) reduces to the value

1/2 _
(z) TC—a)
o

™

as I — o0,
Hence,

T 1/2 _
lim T“’f xf(x) dx = <%> 'F—(Qa 2) sinar lim " g (x),
0

T z->+0

where 1 < a < 3.

Note 2. Put o = 1 in the result of the previous theorem and we obtain the
following result.
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TueoreM 4. If (i) g(x) € L(0,0) and has a Fourier transform f(x) and
(i) g(x) 7s of bounded variation in some neighbourhood of x = 0, then

liml J;T xf(x) dx = (—i)l/zg(-l-O).

T-c0 I‘
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