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AN IDENTITY INVOLVING NORLUND POLYNOMIALS

A.E. OzLiK AND C. SNYDER

We prove an identity involving Nérlund polynomials, the proof of which is elemen-
tary and involves the enumeration of lattice points. The identity is slightly stronger
than an identity of Carlitz which he obtained by using Apostol’s transformation
formula for Lambert series.

1. INTRODUCTION

Using a transformation formula for Lambert series developed by Apostol (1], Carlitz
[2], proved an identity from which he was able to derive a number of properties of
Dedekind sums. Let us elaborate.

Let m be a fixed odd integer with m > 1 and let j be an integer such that
0 <7 < m+1. Then the Dedekind sums of Apostol are defined as

ei(h k) = S Bmyr_; (2) B, (22
( )l%;)B* (k)B(k)

where h, k are relatively prime integers, By(z) denotes the nth periodic Bernoulli
polynomial, and the summation is over a complete set of residues modulo k.

More specifically, we define the nth Bernoulli polynomial by the series

oo z" ze%*?
> Bu(z) = =

ez —1’

n=0

Then the nth periodic Bernoulli polynomial is given by
Ba(z) = Ba({z})

for any real number z, where {z} denotes the fractional part of z, that is z — [z].

For h, k, m as above and 7 € C, the set of complex numbers, with Imr > 0,

define

m+1

fh k)= ("';r 1)(k-r — h)™ic(h, k).

=0
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Carlitz then showed the identity

f(=k, b;7) = "'m_lf(h: k; —%) + %(B +7B)™H

where (B + 7B)™"? is written symbolically for "Ef: (m;."l)rJ'B,-Bm.,_l_,- and B, is the
nth Bernoulli number defined by B,(0) where BJ,.(z) is the nth Bernoulli polynomial.
Carlitz’ identity is a consequence of Apostol’s transformation formulas for Lambert
series.
In this note, we prove a slightly stronger identity by reformulating it as an identity
involving Nérlund polsrnomia.ls. Our proof is elementary and ultimately depends on
showing that two sets of lattice points are equal.

2. DEFINITION AND BASIC PROPERTIES OF NORLUND POLYNOMIALS

We now introduce the Nérlund polynomials and recall some of their properties; see
[3] and [4] for some of the results.

DEFINITION: The mth Nérlund polynomial in n parameters wy, ..., wy,, denoted
BS,':)(::; Wi, ..., W), is defined by

n_zz had m
2"e z
= (n)(p- z
(@ =) (e =) _,,;B"? (z; w1, ...,wn)m!.
Here w = (w1, ..., wn) € C™ and z is a variable.

In particular

2€% S p() (g )2
ews 1—2Bm(z,w)m!

- m=0

from which we see that

(1) (. — pym—1 z
B, )(z; w) =w™ 'Bn, (w)
where By,(z) is the mth Bernoulli polynomial given by

zezz
t4

o ™

€

PROPOSITION 1. For all nonnegative integers m and a € C,

B™(az; awy, ..., aw,) = a™ " B{(z; wy, ..., wa).
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PRroor:

azZZz

i B(”’)(a,z w)£ _ z2"e
AT T ml T (eow1z —1)... (eownz — 1)

m=0
a~"(az)"e*(2?)

3 () (g2 ) 2
— m—nn(n)/. ..
= e ). (e o) = 2 ¢ B @)

m=0

PROPOSITION 2. For m, n, w as above, and 1< j < n,
BS,'.‘)(::; w) = —BS,':)(a: — W) Wl ey Wimly —Wjy Wit1y ooy Wn).

PROOF:

Z B n (z’ w) zﬂetl

= (e“’lz —1)...(e¥n* — 1)

2"e*%e” Vit

= e o). (¢ —De i (e = 1)

B z" e(z—w,')z
T (e —1).. (1 —emwiT) .. (ewnz —1)
—z e(z—w’)z had
- B(") ~wi; @) —
(e“’l‘—1)...(e_“’i‘—1)...(e“'ﬂ‘—1) mz_:o (z ~ wj; w)
where @ = (W1, ..., Wj—1, —Wj, Wjt1, +++y Wn). 0

PROPOSITION 3. Let (ny,..., ni) bea partition of n andlet w = (wy, ..., wy)

=(wy, -+, wy) where w; = (w1, ..., Wn,)y ooy Wi = (Wn—ny+1y-..,wn). Then
B (zy +...+z4; w) = (B("‘)(z:; W)+ ...+ BO)(zy; ‘ik))m

where the last expression is written symbolically for

m!
Z ]—I-.—J? ( ‘)(zl, ) cen Bs-:“)(zk;c_u_,,).
J1seenn Jp 20
Jitetig=m
PROOF:
hiand m n_(z1+...4+2z1)z
(n) Cw) e = ze
Z Bm (zl +-.o+zk) Q)m! - (e“’lz —1)...(3“’": —l)
m=0
™M %12 2Pk eThZ

T oD (e D) @ o) (e - 1)

-3 (B(m)(zl; w )+ B("")(zk;gk))

m=0

mzm
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3. AN IDENTITY INVOLVING NORLUND POLYNOMIALS

LEMMA. Let h, k be relatively prime integers with k > 0. Then

f(h, k; 7) = EBS,?L( [h—:];kr—h,l)

»=0
and f(0,1; 7) = Bf,f)“(o; 1)= %(B +7B)™,

Here [z] is the largest integer less than or equal to z.

PRroOF:

fh k)= (’"J“)(k —RY™es(h, k)

3 Yo B ) ()

where {z} denotes the fractional part of z, that is, z —[z]. Since Bn,(z) = Bs,f)(z; 1),
we see by Proposition 1 that

f(hk; 7) = 22 (m“)Bf;l,_, (k7 — WY& kr — 1) B ({’;—“} 1)

1m+41
m+1) ) hp @ ([hu],
.=o( ; )Bm+1—j ('ry k ,k-r k) B; A i1]).

u=0 j

Then by Proposition 3 we have

k=1
2 hp hp
f(h, k1) = ZBS,._)H ('rp.— = T {T s kTt —h, 1

p=0
k-1
ZBS:_)H (‘rp— [%] ; kT —h, 1) .
u=0

In particular
£0, 1; ) = B, (0; 7, 1).

But by Propositions 1 and 3 and the fact that B,, = Bn,(0), we see

m+1

1

B0 1) =Y (’";‘ )BS:L-,-m; )BO(0; 1)
—0

m+1
1 m
s
j=0
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The lemma is now established.

By the lemma Carlitz’ identity takes the form
= —kv
ZBS:_),_I ('ru - [T ; hr + k, 1)

v=0
o (1 hy 1 (2)
m— § : 2 . + 2 .
T 1 B 1 (_;,‘ _ [—k—] H k (-T) h’ 1) Bm+l(0) Ty 1)’

u=0

for all odd m > 1. By using Proposition 1, this identity becomes
= —kv
ZBS:-)FI (TV — [-h—] ) hr + k, 1)
v=0
k-1 A
= Z Bgll (_F' - [_k'#] 75 _(hT + k)1 T) + BS:-)Fl(O) T, 1)’
»=0

for all odd m > 1.
We establish a little more.

THEOREM. Let h, k be relatively prime positive integers. Then for all integers

m20,
h—1 —ky
ZBS‘:) ('ru - [T] s hr + k, 1)
v=0
k-1 h
= Z B® (—u - [Tl‘] T; —(hT + k), 'r) + B{(0; 7, 1)
u=0
+ B@(0; hr + k, —7) — BD ((h — 1)7 4+ k; hr + k, ~7).
COROLLARY.

Let h, k and m be as in the theorem. Then
h—1 —ky

> B® (‘ru - [—h—} s hr + k, 1)

v=0

k—1
= 2 B (_y - [E—:] T; —(hT + k), "') + BR)(0; 7, 1)

u=0

+(1 = (-1)™)B®(0; hr + k, —7).

REMARK. Notice that Carlitz’ version is a special case when m is even. (m above is
m + 1 in the Carlitz identity.)
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PRroOOF OoF COROLLARY: By two applications of Proposition 2, we have

B® ((h—1)r + k; hr + k, —7) = —B®) (—1; —(h7 + k), —7)
=B (0; —(ht + k), 7).

Now apply Proposition 1 with @ = —1 to obtain
B(® (0; —(hT + k), 7) = (—l)m_zBs,f)(O; hr + k&, —1).

O

PRrRoOOF OF THEOREM: We reformulate the theorem into a sequence of equivalent
statements. We then prove the last of these statements by a lattice counting argument.

By the definition of the Nérlund polynomials, we need to show that

A1 p2elrv—l—ke/h))z ’E 22e(—p=[hn/klr)z
~ (e(hr+k)z —_ 1)(8’ - 1) = (e—(hr+h)z - 1)(erz _ 1)

22 22 (e((h—l)r+k)z _ 1)
- =0.
(erz — 1)(6‘ _ 1) + (e(h.f+k)z _ 1)(e—rz - 1)

We factor out

22

(e(hr+k)z — 1)(erz - 1)(8‘ — 1)

of the left-hand side of the equation and then divide both sides by this factor obtaining
the equivalent statement

h-1 k-1
(erz _ 1) Z e(fv—-[—lw/h.])z + (ez _ l)e(hr+k)z E e(—p—[hp/k]r)z
v=0 p=0

_ (e(h-r-Hc)z _ 1) ~ e (ef — 1) (e((h—l)r+k)z _ 1) —o0.

We now multiply out all the terms obtaining

h-1 h—1
S elrteAn)-be/m)s _ 3 orv-(-he/hz
=0 v=0
k-1 | k-1
+ Z e((h—lhp/k])T+E+1-p)z _ Z ((h—[hp/k)T+k—p)z
p=0 - p=0

_ e(h‘r+b)z +1-— e(h‘r+k+1)x + e(hr+k)z + e(r+1)z —e™* = 0.
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We simplify the left-hand side and then divide both sides by e™* obtaining

h-1 h-1 k—1
Z e(rv—[—kv/h])z _ Z e(r(v—l)—[—kv/h])z + Z e((h—l—[hu/k])r+k+l—u)z
v=1 v=1 u=1
k-1
e O S R (GO LS S
=1
z]+1 ifz¢Z
Using —[—z] = =] ¢ we get
(=] ifzel
h—1 A-1 k—1
T LT L U TR e i e e
v=0 v=1 p=1

k-1
— Y b lhu ek _ ((h-Drtk)z _ g,
u=1
In the last two sums on the left-hand side, we change variable of summation p —
k—p and use h —1 — [hu/k] - h—1—[h(k—p)/k] = h — 1 — h — [—(hu)/k] =
h—1—h+[hp/k]l+ 1= [hp/k] for 1 < p < k—1. Hence the above identity becomes

hz:l e(rv+[kv/h]+1)z _ hz:l e(r(v—1)+[kv/h]+1)z
v=0 v—1
k-1 k—1
+ Z ellhu/klr+u+1)z _ z (lbn/klrtm)z _ ((h-1)r+k)z _
=1 #=1

We finally have an equivalent form of the theorem that we shall prove. Comparing
terms shows that it suffices to prove

51052=T10TQUT3

where Sl={(u, [k—:]+l)l0<u<h—l},
by
Sz ATl fl<pu<k-1y,
kv
n={(oon [2] 1) nevena),

e {([%] ) 1 emcaei).
Ty = {(h—1, k)}.
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Let
B=17x Zﬂ([O, h] X [Oa k])’
By =Z x L0((0, k) x (0, k)),
Bi=1Ix1 n((O, h) X [0’ k])’
By =Z x Zn([0, k] x (0, k)).

Also let L denote the line in R x R with equation y = (k/h)z. Then geometrically we
have

S, = {P € B | P lies.just above L},

S2 = {P € B | (3Q € B;)(Q lies just to the left of L and P = Q + (0, 1))},
Ty = {P € B| (3Q € B,)(Q lies just above L and P = Q + (-1, 0))},

T, = {P € B, | P lies just to the left of L}.

Notice that from this description S; and S, are disjoint and T, T2, Ts are pairwise
disjoint.
We now show that §; U S; = T; UT; U Ty. To this end, suppose P € S; U S:.

CASE 1. Suppose P € S1. Then there are five possibilities which are depicted below.
The points represent points in B and the line segment represents a portion of L.

i) P/ i) P .

) / @ P
() P- (h, k (ivy P-/. (v) P
e (0,0) / oo 7

In(i) P€T2,in (ii) P€T;,in (ilil) P€Ts,in (iv) PeT; andin (v) P€ T;.
CASE 2. Suppose P € Sa. Then there are three possibilities given by

G) P-/ (i) P/ () P-/ (h, k)
In(i) P€Ty,in (i) P €T, and in (i) P € Ts.

Thus S;US; CThUT,UTs.
Now suppose Pe Ty UT> U Ts.

CASE 1. Suppose P € T1. Then we have two possibilities:
@ P / (if) P/

In (i) P€ S; andin (ii) P€ S;.
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CASE 2. Suppose P € T;. Then we have two possibilities:

@) 17 (i) P /

In (i) P€ S, andin (ii) P € S,.

CaAsSE 3. Suppose P € Ty, that is, P = (h — 1, k}. Then there are two possibilities:

O P b (i) P/ (h, k)
In(i) P€ S, andin (ii) P € S,.

Therefore 1 UT, UTs C S, U Sa.
The theorem is now established. 1]

It would be of interest to see if there are similar identities involving Nérlund poly-
nomials in more than two parameters. This might lead to the study of Lambert series
in several variables as well as reciprocity laws for “multidimensional” Dedekind sums.
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